
Risk Management Solutions
Risk Management Resources
Explore how SAS can help you define the future of risk management.
In the Spotlight
Investing in enterprise risk management? Discover why SAS is a leader.
Browse the latest e-books, white papers, webinars and more.

Featured Resource
Discover how emerging technologies are transforming every aspect of financial services.
To browse resources by type, select an option below.
-
- Choose resource type
- Аналитический отчет
- Краткое описание продукта
- Краткое описание решения
- Обзорная брошюра
- Оперативная сводка
- Справка
- Технический документ
- Технический документ
- Вебинар
- Article
- Customer Story
- E-Book
- Industry Overview
- Insights Page
- Press Release
- Аналитический отчет Chartis RiskTech100 2022SAS is the only vendor to earn a Top 5 rank in the Chartis RiskTech100 each year since its 2005 debut. SAS also won three solution categories – Risk and Finance Integration, IFRS 9 and Trade-Based AML – for 2022.
- Article Будущее банковского стресс-тестирования с аналитикой SAS в AzureУзнайте о вызовах, с которыми сталкиваются компании при стресс-тестировании, и о преимуществах перехода в облако.
- Вебинар Гибкий подход к автоматизации задач управления рисками: вопросы прогнозирования, оптимизации и подготовки отчетностиРыночная нестабильность и оценка рисков компании: на какие задачи в области управления рисками обратить внимание, какие метрики прогнозировать и как не только сохранить устойчивость бизнеса, но и сделать шаг вперед, сохранив и приумножив преимущества от использования инструментов SAS.
- Вебинар Управление нефинансовыми рисками в свете новых требований Банка России и роль внутреннего аудитаНовые требования Банка России к системе управления операционным риском обязывают финансовые организации привести практики управления в соответствие с нововведениями. Чтобы правильно выстроить приоритеты задач и разобраться в тонкостях вышедших требований, приглашаем вас на вебинар.
- Вебинар Управление моделями и автоматизация процессов валидацииНестабильный рынок и модели: как быстро адаптироваться к бурно изменяющимся условиям и правильно применять свои аналитические ресурсы. Как российские компании адаптируются к новым условиям рынка, и как инструменты SAS могут помочь в этом.
- Article Beyond IFRS 17 – what's next?IFRS 17 is not just a new accounting standard. Its fundamental objective is to provide transparency and insight to the insurance business while identifying strengths and areas for improvement. Learn how to keep a long-term vision and achieve broader business value beyond the immediate demands of IFRS 17.
- Article Препятствий для построения моделей с помощью технологий искусственного интеллекта и машинного обучения нетМодели машинного обучения уже на протяжении пяти лет применяются российскими финансовыми организациями для оценки кредитного риска и валидации моделей. О том, насколько регуляторы готовы работать с моделями на базе технологий ИИ и машинного обучения, и пойдет речь в данном интервью.
- Вебинар Практика управления нефинансовыми рисками в свете новых требований Банка РоссииУзнайте как правильно выстроить приоритеты задач и разобраться в тонкостях вышедших требований Банка России к системе управления операционным риском
- Вебинар Правильные решения в условиях кризиса: как организовать работу с аналитическими моделями в быстро меняющейся среде с помощью принципов ModelOpsНа вебинаре вы узнаете, как управлять аналитическими моделями во времена экономической нестабильности и при этом получать максимум практической пользы от внедрения технологий машинного обучения.
- Аналитический отчет Chartis RiskTech Quadrant for Credit Risk Solutions 2020
- Аналитический отчет Risk Technology Awards 2020Consumer credit modelling software of the year – SAS
- Article Страховой Дом ВСК: «Страховым компаниям сегодня жизненно важны IT-инновации»Какие технологии позволяют страховщику максимально учитывать характеристики автовладельца и транспортного средства и более объективно оценивать принимаемые риски, рассказал вице-президент Страхового Дома ВСК Василий Бусаров.
- Вебинар Как удержать позиции на рынке медицинского страхования в условиях экономического спада.Стратегия и практика применения аналитических решений для повышения эффективности андеррайтинга и медэкспертизы
- Вебинар COVID-19: управление рисками корпоративных клиентов во время нестабильностиИзменения в оценках рисков для клиентов корпоративного бизнеса и субъектов МСБ: новые вызовы в условиях пандемии. С какими сложностями сталкивается банковский сектор, и как инструментыSAS могут помочь их преодолеть.
- Article Фокус – на контрольВремя характеризует наши запросы. Сейчас это оперативность, скорость, доступность и простота. Основополагающие изменения, отвечающие темпам жизни и набранным «сверхскоростям» и затронувшие все сферы жизни.
- Customer Story Modernizing consumer lending in VietnamVietCredit aims to revolutionize the consumer finance market with SAS.
- Customer Story Making faster, better lending decisionsLocal Government Federal Credit Union sees efficiency gains with SAS.
- Article МСФО 17: нет времени на раздумьяМСФО 17 - это основанный на принципах стандарт бухгалтерского учета для ориентированной на будущее оценки договоров страхования. Предназначенный для повышения финансовой прозрачности, МСФО 17 требует, чтобы страховщики более подробно сообщали о том, как договоры страхования и перестрахования влияют на их финансы и риск.
- Article Стандарт МСФО 17 и Директива Solvency IIПомимо директивы Solvency II, вступившей в силу в Европейском союзе в январе 2016 г., вскоре появится еще один регламент, который также кардинально изменит положение дел в сфере страхования — МСФО 17 (ранее — МСФО 4, фаза II).
- Article Сценарное стресс-тестирование: выходя за пределы нормативных требований Благодаря регуляторному стресс-тестированию банки получили навыки управления в условиях определенности.
- E-Book Stress and Strategy: A C-Suite Guide to Scenario-Based Risk ManagementThis e-book from SAS and Argyle explores some of the ways that top-performing organizations are undertaking scenario-based risk assessment to develop and manage their business strategies.
- Аналитический отчет Chartis RiskTech Quadrant for Credit Risk Solutions 2018This Chartis research paper covers the RiskTech Quadrant for Credit Risk Solutions for 2018.
- Технический документ Keys to robust credit risk modeling and decisioning for better customer experienceModernizing and automating the end-to-end process for origination and servicing – from data management to model development to credit decisions – can reduce credit losses and boost performance. This paper explores how infusing machine learning into this process supports more effective credit decisions for individuals, products or portfolios.
- Технический документ Risk-Aware Finance and the Changing Nature of CreditNew research by Chartis and SAS highlights how financial institutions must align finance and risk departments to accurately assess future risks and bolster budgeting and forecasting capabilities. This paper explores how risk-aware finance is becoming essential to meeting future regulatory and competitive demands.
- Технический документ Designing the Infrastructure for Credit Risk Model Development and Deployment in UtilitiesExplore the challenges of setting up credit risk modeling – and how to establish an effective program through better planning and design.
- Технический документ Insurers: Are You Ready for IFRS 17?This white paper tells you what to look for in an IFRS 17 solution and explains why insurers should be taking action now to prepare for the new requirements.
- Аналитический отчет How Data Science Teams Leverage Machine Learning and Other Advanced AnalyticsGartner's 2017 customer reference survey for data science and machine learning platforms reveals how many organizations are undertaking data science initiatives.
- Технический документ Tackle the Complexity of IFRS 9 and CECL StandardsThe US standard for CECL increases the complexity of the allowance estimation process. Outside the US, IFRS 9 is having the same effect. Learn about best practices for getting this right.
- Технический документ Designing the Infrastructure for Credit Risk Model DevelopmentExplore the most common problems organizations face when setting up infrastructure for analytics – and credit risk modeling specifically – and learn about ways to increase productivity and reduce problems through better planning and design.
- Технический документ CECL: Don't Neglect the FundamentalsFirms that proactively implement a CECL process that is controlled, efficient, collaborative and sustainable will find themselves with a competitive advantage over time. This paper discusses the long-term benefits of this holistic approach.
- Article CECL: Are US banks and credit unions ready?CECL, current expected credit loss, is an accounting standard that requires US banking institutions and credit unions to estimate life-of-loan losses at origination or purchase.
- Технический документ Analytics Platform and Program: Keys to Success for Regulatory Compliance in Financial ServicesAdvanced analytics is at the heart of regulatory compliance processes in financial services. This paper discusses data enormity and preparation for analysis; flexibility in computing platforms; and a comprehensive program for data, analytics and models.
- Технический документ Solvency II Compliance and beyond: The essential steps for insurance firmsLearn about the essential steps that insurance companies need to complete to ensure Solvency II compliance – and beyond – with the ability to support enterprise risk management.
- Article Credit risk management is the answerLending and loan volume is back up to pre-crisis levels. But banks are facing higher delinquencies as well. That's why improving credit risk management is crucial.
- Технический документ The Changing Landscape for Credit Risk ManagementDeveloping and executing credit risk models as they become increasingly integrated with firmwide risk, balance sheet targets and limits will require more sophisticated models, enhanced data management and high-performance computing. Read this paper to learn more.
- Article IFRS 9 and CECL: The challenges of loss accounting standardsThe loss accounting standards, CECL and IFRS 9, change how credit losses are recognized and reported by financial institutions. Although there are key differences in the standards for CECL (US) and IFRS 9 (international), both require a more forward-looking approach to credit loss estimation.
- Технический документ BCBS 239: A Path to Good Risk TakingIn the face of all the challenges and potential opportunity, BCBS 239 principles provide a solid foundation for data and analytics. And implementing them should be seen as a strategic investment.
- Технический документ The Future of Model Risk Management for Financial Services FirmsBanks have been using credit scoring models for decades, but since the financial crisis of 2008, regulators have formalized the discipline of model risk management (MRM), driving the need for more rigorous, enterprise-level model information management. Regulators now want to evaluate bank models to access their trustworthiness – not blindly accept the numbers they generate.
- Технический документ Firmwide Scenario Analysis and Stress TestingThis paper explores the two most commonly used firmwide scenario model approaches for stress testing, firmwide risk capital measures and how regulatory stress testing is different from the firmwide risk capital approach mandated by CCAR and EBA.
- Технический документ BCBS 239: Meeting Regulatory Obligations While Optimizing Cost ReductionsExplore how forward-looking finance executives are using high-performance technologies to create fundamentally superior, compliant risk reporting processes – and ultimately help executives realize the goal of sustainable profitability
- Технический документ Effective Utility Risk Management
- E-Book Adapting to the New Age of Risk AnalyticsRapid advancements in technology are leading to a new age of risk analytics. The availability of commercial and open source software – coupled with significantly improved integration using industry standard tools – has made analytics more user friendly, expanding its reach to a broader range of business professionals.
- Технический документ Scenario-Based Risk Management: Overcoming the ChallengesAs regulatory stress test regimes mature, financial institutions are looking for ways to harness investments they made in stress testing programs to gain additional business value.
- Технический документ Stress Testing 2.0: Better Informed Decisions Through Expanded Scenario-Based Risk ManagementA road map for those who are starting to build – or are rethinking their approach to – their stress testing infrastructure and strategy.
- Оперативная сводка Climate RiskA collection of articles from Risk.net on the impact of climate change on banks. SAS provides some key ideas for companies performing a self-assessment of their maturity in climate risk management.
- Технический документ Seven trends that will transform bankingAdvanced analytics and big data are enabling smarter decisions and more efficient processes, from credit to compliance and risk management.
- Технический документ LDTI Should Spell OpportunityComplying with the Long-Duration Targeted Improvements standard presents major challenges to insurance companies. At the same time, it offers them the opportunity to modernize business processes and information systems.
- Технический документ LDTI: Finding a solution for today and tomorrowSAS can help insurers address the data and technology complexities of LDTI with a solution that solves the problems of today while looking ahead to obstacles of the future.
- Технический документ Compete and win with better model risk managementAs explored in this paper, models can degrade over time, and sound model risk management (MRM) is the key to managing this risk.
- Технический документ Machine Learning Model GovernanceBanks are rapidly expanding their use of machine learning-enabled (ML) models, because they can provide step-level improvements in accuracy. But ML models need even more rigorous governance than traditional models. This paper explores what's required to implement effective ML model governance.
- Технический документ Basel IV: The push you neededIn a landscape of great uncertainty and the economic crisis sparked by COVID-19, financial institutions must address the challenges Basel IV will bring. An integrated risk management approach is the best path forward to meeting ever-evolving regulatory needs.
- Технический документ Artificial Intelligence in Banking and Risk ManagementGlobal Association of Risk Professionals (GARP) and SAS survey drew more than 2,000 responses from across the financial services industry to answer questions about the current and future state of AI in risk.
- Технический документ Building Artificial Intelligence in Credit Risk: A Commercial Lending PerspectiveWhat will it take for banks to trust artificial intelligence (AI) and machine learning (ML) with judgments about data accuracy and leverage it for commercial lending process automation?
- Технический документ Outrunning risk with cloudBy employing cloud-based risk modeling and decisioning capabilities, banks can make faster, more sophisticated risk calculations that keep them one step ahead of existing and emerging threats.
- Технический документ How to compete in the new era of customer-centric insuranceAdopt an agile pricing strategy that recognises changing behaviour and risk profiles. This Paper explains how to reduce the time needed to build hand-coded models and accommodate a range of programming languages to quickly respone to market changes.
- Технический документ Managing Models and Their RisksComputational and technological challenges present opportunities for a fast-evolving risk management discipline.
- Event Collateral Технический документ Model Risk Management: Today's Governance and Future DirectionsA GARP-SAS Survey on Model Risk in the Age of Artificial Intelligence and Machine Learning.
- Технический документ Intelligent Decision Automation for Telecommunications in the Digital AgeLearn how communications providers who adapt and embrace analytics and AI will unlock opportunities by converting current processes to be reliably smart, such as credit risk, fraud and collections.
- Технический документ From Crisis to Opportunity: Redefining Risk ManagementHow a more automated approach to risk management can transform banks’ performance, during the pandemic and beyond.
- Технический документ The Future of Risk Modeling Explore the future of risk modeling with a comprehensive offering that covers data management, modeling, governance, reporting, batch execution, real-time scoring and decisioning with a platform designed for all types of risk models.

Blogs: Risk Management
Blogs: Risk Management
In this series, risk management experts share tips, tricks and practical advice on managing risk to drive efficiency and compliance.

Join the SAS Risk Management Community
Join the SAS Risk Management Community
Be a part of the SAS Risk Management community, where you can interact with peers and SAS experts to ask questions, share tips and tricks, and discuss all our risk-related banking, stress testing and insurance solutions.