Centrum Wiedzy - Analityka
Recent Analytics Insights
- AI transforms insurance: See 8 examples of how it worksUsing AI in insurance can boost value for customers, insurance companies and stakeholders alike. Examples range from stronger fraud detection and improved customer service to optimized underwriting processes and competitive advantage. Learn more about how AI is transforming the industry.
- AI and humanity: Collaborating to solve global problemsDisplaced communities, the food crisis and natural disasters – these situations affect quality of life, and even the ability to survive. Could artificial intelligence be the unexpected boost humanity needs? Could it accelerate our ability to make a positive, lasting impact? Learn more and read examples of how AI is being used to find solutions to global problems.
- Five AI technologiesDo you know the difference between artificial intelligence and machine learning? Can you explain the basics of AI technologies like GenAI and AI agents? Read our overview to understand these and other technologies behind the AI craze.
- What is AI modeling?AI modeling involves creating programs that use one or a combination of algorithms to allow computers to think, learn and predict outcomes. Much like a human brain, AI models absorb input data – numbers, texts, images, video, sound – to learn how to predict outcomes or solve specific tasks without explicit instructions at every step.
- Understanding digital twin technologyLearn how digital twin technology can change industries from health care to manufacturing, and shape the future of data modeling and process improvements.
- Big data in government: How data and analytics power public programsBig data in government is vital when analyzed and used to improve the outcomes of both public and private sector programs – from emergency response to workforce effectiveness. The vast volumes of data created every day are the foundation of insightful changes for government agencies across the globe.
- Unlocking a strategic approach to data and AIAI is only as good as the data that powers it – this is a fundamental truth about data and AI that defines the limits of what’s possible with artificial intelligence. It may seem surprising, but it's rarely a bad algorithm or a bad learning model that causes AI failures. It's not the math or the science. More often, it's the quality of the data being used to answer the question.
- Obawy przed sztuczną inteligencją: Spokój w obliczu zmianLęk przed sztuczną inteligencją to nie żart. Niezależnie od tego, czy obawiasz się, że praca stanie się przestarzała, informacje zostaną zniekształcone, czy zostaniesz wykluczony, zrozumienie przyczyn lęku przed sztuczną inteligencją może pomóc ci go przezwyciężyć.
- Fraud detection and machine learning: What you need to knowMachine learning and fraud analytics are critical components of a fraud detection toolkit. Discover what you’ll need to get started defending against fraud – from integrating supervised and unsupervised machine learning in operations to maintaining customer service.
- Wykorzystanie danych syntetycznych do rozwoju sztucznej inteligencjiDowiedz się, dlaczego dane syntetyczne mają kluczowe znaczenie dla inicjatyw związanych ze sztuczną inteligencją, w jaki sposób firmy wykorzystują je do odblokowania wzrostu i jak mogą pomóc w sprostaniu wyzwaniom etycznym.
- What are AI hallucinations?Separating fact from AI-generated fiction can be hard. Learn how large language models can fail and lead to AI hallucinations – and discover how to use GenAI responsibly.
- What are chatbots?Chatbots are a form of conversational AI designed to simplify human interaction with computers. Learn how chatbots are used in business and how they can be incorporated into analytics applications.
- A data scientist’s views on data literacyData literacy is a social imperative – and understanding data and data analysis is critical for being a responsible citizen. Get a data scientist and teacher's perspective on the value of having foundational knowledge so you can more easily tell data facts from data fiction.
- Przeciwdziałaj oszustwom związanym z wnioskami ubezpieczeniowymi!Oszuści uwielbiają łatwość prowadzenia handlu w kanałach cyfrowych. Inteligentne firmy ubezpieczeniowe wykorzystują dane z tych kanałów (certyfikat urządzenia, adres IP, geolokalizacja itp.) w połączeniu z analityką i uczeniem maszynowym do wykrywania oszustw związanych z wnioskami ubezpieczeniowymi popełnianymi przez agentów, klientów i grupy oszustów.
- 4 strategies that will change your approach to fraud detectionAs fraudulent activity grows and fighting fraud becomes more costly, financial institutions are turning to anti-fraud technology to build better arsenals for fraud detection. Discover four ways to improve your organization's risk posture.
- Public health infrastructure desperately needs modernizationPublic health agencies must flex to longitudinal health crises and acute emergencies – from natural disasters like hurricanes to events like a pandemic. To be prepared, public health infrastructure must be modernized to support connectivity, real-time data exchanges, analytics and visualization.
- Analytics leads to lifesaving cancer therapiesA long-shot treatment offers hope to 10-year-old Harrison after he learns the DNA profile of his cancer is resistant to chemo. Find out how data and analytics play a role in cancer research and cancer treatments that are saving lives.
- Key questions to kick off your data analytics projectsThere’s no single blueprint for starting a data analytics project. Technology expert Phil Simon suggests these 10 questions as a guide.
- Analytics tackles the scourge of human traffickingVictims of human trafficking are all around us. From forced labor to sex work, modern-day slavery thrives in the shadows. Learn why organizations are turning to AI and big data analytics to unveil these crimes and change future trajectories.
Send SAS Insights straight to your inbox



