SAS Text Analytics, Time Series, Experimentation and Optimization
Exam Content Guide
Below we provide a list of the objectives that will be tested on the exam.
For more specific details about each objective download the complete exam content guide.
Text Analytics - 30%
- Create data sources for text mining
- Import data into SAS Text Analytics
- Use text mining to support forensic linguistics using stylometry techniques
- Retrieve information for Analysis
- Parse and quantify Text
- Perform predictive modeling on text data
- Use the High-Performance (HP) Text Miner Node
Time Series - 30%
- Identify and define time series characteristics, components and the families of time series models
- Diagnose, fit, and interpret ARIMAX Models
- Diagnose, fit, and interpret Exponential Smoothing Models
- Diagnose, fit, and interpret Unobserved Components Models
Experimentation & Incremental Response Models - 20%
- Explain the role of experiments in answering business questions
- Relate experimental design concepts and terminology to business concepts and terminology
- Explain how incremental response models can identify cases that are most responsive to an action
- Use the Incremental Response node in SAS Enterprise Miner
Optimization - 20%
- Optimize linear programs
- Optimize nonlinear programs
Zusätzliche Ressourcen
Certification Community
Machen Sie mit und werden Sie Teil der Community.
Certified Professional Directory
Ein Register von SAS Certified Professionals.
FAQ
Haben Sie eine Frage? Benötigen Sie mehr Informationen? Wir helfen Ihnen gerne..