SAS® Insights
News and views from the analytics experts
Most recent articles
-
- Select a topic
- Analytics
- Artificial Intelligence
- Business Intelligence
- Cloud
- Data for Good
- Data Management
- Fraud
- IoT
- Machine Learning and Deep Learning
- Marketing
- Risk Management
- Five AI technologiesDo you know the difference between artificial intelligence and machine learning? Can you explain the basics of AI technologies like GenAI and AI agents? Read our overview to understand these and other technologies behind the AI craze.
- AI transforms insurance: See 8 examples of how it worksUsing AI for insurance can boost value for customers, insurance companies and stakeholders alike. Examples range from stronger fraud detection and improved customer service to optimized underwriting processes and competitive advantage. Learn more about how AI is transforming the industry.
- What is AI modeling?AI modeling involves creating programs that use one or a combination of algorithms to allow computers to think, learn and predict outcomes. Much like a human brain, AI models absorb input data – numbers, texts, images, video, sound – to learn how to predict outcomes or solve specific tasks without explicit instructions at every step.
- Understanding digital twin technologyLearn how digital twin technology can change industries from health care to manufacturing, and shape the future of data modeling and process improvements.
- Big data in government: How data and analytics power public programsBig data in government is vital when analyzed and used to improve the outcomes of both public and private sector programs – from emergency response to workforce effectiveness. The vast volumes of data created every day are the foundation of insightful changes for government agencies across the globe.
- Unlocking a strategic approach to data and AIAI is only as good as the data that powers it – this is a fundamental truth about data and AI that defines the limits of what’s possible with artificial intelligence. It may seem surprising, but it's rarely a bad algorithm or a bad learning model that causes AI failures. It's not the math or the science. More often, it's the quality of the data being used to answer the question.
- AI como fonte de ansiedade: Manter a calma perante as mudançasA AI como fonte de ansiedade não é uma brincadeira. Quer receie certos trabalhos tornarem-se obsoletos, distorção da informação, ou simplesmente deixar escapar oportunidades, compreender a AI como fonte de ansiedade será fundamental para ultrapassar esses sentimentos.
- Fraud detection and machine learning: What you need to knowMachine learning and fraud analytics are critical components of a fraud detection toolkit. Discover what you’ll need to get started defending against fraud – from integrating supervised and unsupervised machine learning in operations to maintaining customer service.
- Utilização de*** dados sintéticos para impulsionar avanços na AIAprenda porque é que os dados sintéticos são vitais para as iniciativas em AI, como os negócios os utilizam para desbloquear o crescimento, e como podem ajudar a fazer face aos desafios éticos.
- Conheça 6 formas de utilizar a análise de big data que podem melhorar o processamento dos pedidos de indemnização de segurosPorque é que deve incluir a análise de processamento de dados nos seus pedidos de indemnização de seguros? Porque é que juntar a análise e a AI, ao ciclo de vida dos pedidos de indemnização, pode proporcionar um ROI quantificável.
- O que são alucinações de IA?Separar os factos da ficção gerada pela IA pode ser difícil. Fique a saber como é que os grandes modelos de linguagem conduzem a alucinações de IA – e descubra como usar a GenAI de forma responsável.
- O que são chatbots?Os chatbots são uma forma de IA conversacional desenhados para simplificar a interação humana com os computadores. Aprenda mais sobre os chatbots que são utilizados em negócios e como estes podem ser incorporados em aplicações analíticas.
- A data scientist’s views on data literacyData literacy is a social imperative – and understanding data and data analysis is critical for being a responsible citizen. Get a data scientist and teacher's perspective on the value of having foundational knowledge so you can more easily tell data facts from data fiction.
- How AI and advanced analytics are impacting the financial services industryTop SAS experts weigh in on topics that keep financial leaders up at night – like real-time payments and digital identity. See how advanced analytics and AI can help.
- Intelligent policing: Data visualization helps crack down on crimeLearn how data visualization can give police real-time views of locations enriched with other data to help them make intelligent, fact-based decisions.
- Impeça fraudes em aplicações de seguros!Os vigaristas adoram a facilidade com que conseguem cometer crimes nos canais digitais. As companhias de seguros inteligentes estão a utilizar dados desses canais (impressão digital do dispositivo, endereço IP, geolocalização, etc.) juntamente com análise e machine learning para detetar fraudes nas aplicações de seguros que são perpetuadas por agentes, clientes e grupos criminosos organizados.
- Modern manufacturing's triple play: Digital twins, analytics and IoT IoT-powered digital twins revolutionize manufacturing with real-time data analysis, predictive maintenance & optimized production. Discover their transformational impact.
- Public health infrastructure desperately needs modernizationPublic health agencies must flex to longitudinal health crises and acute emergencies – from natural disasters like hurricanes to events like a pandemic. To be prepared, public health infrastructure must be modernized to support connectivity, real-time data exchanges, analytics and visualization.
- Porque é que os bancos precisam de uma abordagem ao clima e risco ESG mais evoluída?A gestão do risco ambiental, social e de governança (ESG) é importante para os bancos, entidades reguladoras, investidores e consumidores – no entanto, existem muitas interpretações sobre como fazê-lo Para florescerem, as organizações têm de desenvolver as suas práticas de gestão do risco – incluindo aquelas que são afetadas pelo risco ESG.
- Know your blind spots in tax fraud preventionTax agencies sometimes miss fraud that's happening right under their noses – despite robust external fraud prevention efforts. Find out where traditional tax fraud prevention and detection efforts fall short, and how analytics can change that.
- The importance of data quality: A sustainable approachBad data wrecks countless business ventures. Here’s a data quality plan to help you get it right.
- Containing health care costs: Analytics paves the way to payment integrityTo ensure payment integrity, health care organizations must uncover a broad range of fraud, waste and abuse in claims processing. Data-driven analytics – along with rapid evolutions in the use of computer vision, document vision and text analytics – are making it possible.
- Key questions to kick off your data analytics projectsThere’s no single blueprint for starting a data analytics project. Technology expert Phil Simon suggests these 10 questions as a guide.
- Analytics tackles the scourge of human traffickingVictims of human trafficking are all around us. From forced labor to sex work, modern-day slavery thrives in the shadows. Learn why organizations are turning to AI and big data analytics to unveil these crimes and change future trajectories.
- 10 ways analytics can make your city smarter From child welfare to transportation, read 10 examples of analytics being used to solve problems or simplify tasks for government organizations.
- Analytics: A must-have tool for leading the fight on prescription and illicit drug addictionStates and MFCUs now have the analytics tools they need to change the trajectory of the opioid crisis by analyzing data and predicting trouble spots – whether in patients, prescribers, distributors or manufacturers. The OIG Toolkit with free SAS® programming code makes that possible.
- How to uncover common point of purchaseFraudsters use many techniques to steal card data. Banks that want to stay ahead of common point of purchase (CPP) and contain the costs of fraud need to implement advanced analytics techniques to strengthen their fraud prevention programs.
- 5 IoT applications retailers are using today The Internet of Things can bring big benefits, but what is IoT and how are retailers taking advantage of it?
- Top prepaid card fraud scamsThe margin for prepaid cards is slim, so it's particularly important to root out the scams. Here are some tips for combating and mitigating prepaid card fraud.
- Model risk management: Vital to regulatory and business sustainabilitySloppy model risk management can lead to failure to gain regulatory approval for capital plans, financial loss, damage to a bank's reputation and loss of shareholder value. Learn how to improve model risk management by establishing controls and guidelines to measure and address model risk at every stage of the life cycle.
- Online payment fraud stops hereBillions of dollars each year are lost to online payment fraud through channels that provide convenient – yet vulnerable – ways to shop and bank. See how to fight back and win with advanced analytics.
- Detetar e prevenir a fraude nas aplicações bancáriasA fraude nos créditos, por norma, começa por uma candidatura falsa. É por isso que é tão importante usar a análise logo no ponto de partida. Aprenda como a análise e a aprendizagem automática podem detetar fraudes logo nos primeiros pontos de contacto dos pedidos ao reconhecer os maiores desafios – identidades sintéticas.
Send SAS Insights straight to your inbox