Modernizing clinical trials with confidence.

Only SAS delivers a single, open, cloud-native analytics foundation for clinical research, with embedded analytic tools, support for data standards and optional integrated analytic applications. Accelerate your modernization strategy with support for decentralized trials using remote patient monitoring and digital biomarkers. Confidently deliver new therapies to market faster with SAS. 

Maximum value from existing or new analytics applications 

Integrates analytic applications – including those you have already developed or from SAS – for a variety of business needs. Ability to pull data directly from existing EDC systems for quicker access to data and potential cost savings.

Broader access to programming talent 

Gives users the flexibility to program in SAS, R and Python.

Solid framework for traditional & emerging trial designs 

Supports new, decentralized and hybrid trial models, including automation, decision support and activity tracking.

Improved efficiency & reduced errors in data aggregation & preparation  

Includes a central hub for all incoming data, better data management and analytical data preparation. Provides full mapping of data source, data manipulations and a final destination for data.

Faster time to market & cost containment 

Implements and properly manages data standards and controlled terminology.

Cloud-native, one-stop shop for clinical analysis & submission

Provides everything you need for validation, regulatory compliance, versioning, audit trails and documentation support to improve efficiency and speed time to market.

Expanded access to & collaboration with clinical data

Includes a centralized clinical information repository that gives global access to a clinical pharma data analytics foundation for all authorized development team members.

Rigorous statistical analysis & regulatory controls

Combines regulatory compliance and control features with seamless development and execution of SAS programs to reduce risk.

Efficiently transform, analyze and report on clinical trial data. Develop new therapies faster by giving everyone access to powerful pharma analytics.

Empower all stakeholders with approachable analytics. 

Drive global collaboration among internal team members, consultants, contractors and development partners by putting easy-to-use pharma analytics in the hands of knowledge workers in areas such as preclinical operations, clinical operations and medical affairs.

Increase flexibility with seamless, open source integration. 

Your hiring managers need the ability to hire the best programming talent available. SAS Life Science Analytics Framework fully embraces open source, enabling you to expand your hiring pool by giving users the flexibility to program in SAS, R or Python. 

Streamline and automate clinical research processes to gain instant insight. 

Workflow capabilities aid project management oversight and support process enablement to lower costs while increasing the speed and efficiency of clinical research. The framework supports multiple analyses with different team members, access rights and context-specific privileges. You can assign tasks and track progress for each analysis activity and deliverable for a single study or your entire portfolio. Easily deploy workflows on a per-deliverable basis, whether it be a table, listing or figure. And automate clinical process activities using process orchestration capabilities, such as scheduled job initiation and completion notification.

Build confidence and trust with SAS' proven experience.

SAS is widely accepted as the gold standard for providing statistical capabilities to determine the safety and efficacy of medicines in clinical research. The model-driven approach for CDISC standards governance and enhanced study metadata management drive efficiency from study setup to submission.

Expand information management.

A fully integrated environment spans from operational data systems (such as eCRF), electronic health records, sensors and wearables, omics data, biomarker data, etc., through standardization, analysis and reporting, and post-approval meta-analysis. End-to-end management of clinical data means less time spent on operational data management activities and more time spent on exploring, monitoring data quality, and executing advanced analytics and statistics.

Explore More on SAS® Life Science Analytics Framework & Beyond



Get the latest news, views and best practices on analytics from the brightest minds in the business. 


Get insights



Find out how to deploy an analytics foundation for clinical research. 


Get white paper



Find out how Santen uses cloud-based analytics from SAS to help develop new ocular therapies faster. 


Read story

Connect with SAS and see what we can do for you.