SAS® Programming in the Pharmaceutical Industry
Second Edition

Jack Shostak
Contents

List of Programs ... xi
About This Book ... xv
About The Author ... xix
Acknowledgements .. xxii

Chapter 1 Environment and Guiding Principles ... 1
The Statistical Programmer’s Working Environment ... 2
 Pharmaceutical Industry Vocabulary ... 2
 Statistical Programmer Work Description ... 2
The Drug/Device Development Process ... 3
 Industry Regulations and Standards ... 4
 Your Clinical Trial Colleagues ... 8
Guiding Principles for the Statistical Programmer .. 10
 Understand the Clinical Study ... 10
 Program a Task Once and Reuse Your Code Everywhere 11
 Clinical Trial Data Are Dirty ... 13
 Use SAS Macros Judiciously ... 15
 A Good Programmer Is a Good Student ... 17
 Strive to Make Your Programming Readable ... 17

Chapter 2 Preparing and Classifying Clinical Trial Data 19
Preparing Clinical Trial Data ... 20
 “Clean” the Data If They Are Needed for Analysis 20
 Categorize Data If Necessary .. 21
 Avoid Hardcoding Data .. 24
Classifying Clinical Trial Data .. 26
 Demographics and Trial-Specific Baseline Data .. 27
Concomitant or Prior Medication Data ... 27
Medical History Data .. 28
Investigational Therapy Drug Log .. 29
Laboratory Data ... 30
Adverse Event Data ... 31
Endpoint/Event Assessment Data .. 34
Clinical Endpoint Committee (CEC) Data ... 35
Study Termination Data ... 36
Treatment Randomization Data ... 36
Quality-of-Life Data ... 38

Chapter 3 Importing Data ... 39
Importing Relational Databases and Clinical Data Management Systems 40
 SAS/ACCESS SQL Pass-Through Facility ... 40
 SAS/ACCESS LIBNAME Statement ... 41
Importing ASCII Text ... 41
 PROC IMPORT and the Import Wizard .. 42
 SAS DATA Step .. 48
 SAS Enterprise Guide ... 49
Importing Microsoft Office Files ... 52
 LIBNAME Statement ... 53
 Import Wizard and PROC IMPORT ... 55
 SAS/ACCESS SQL Pass-Through Facility ... 58
 SAS Enterprise Guide ... 59
Importing XML ... 62
 XML LIBNAME Engine .. 63
 SAS XML Mapper .. 67
Importing CDISC Model Content Files ... 68
 Importing CDISC SAS Transport Format Files ... 69
 Importing define.xml .. 69
 Importing CDISC ODM Files .. 70

Chapter 4 Transforming Data and Creating Analysis Data Sets 71
Key Concepts for Creating Analysis Data Sets ... 72
 Defining Variables Once .. 72
 Defining Study Populations ... 72
Contents

Obtaining Correlation Coefficients ... 226
General Approach to Obtaining Statistics .. 226

Chapter 8 Exporting Data .. 229
Exporting Data to the FDA... 229
 Using the SAS XPORT Transport Format .. 230
 Creating ODM XML and define.xml .. 231
Exporting Data Not Destined for the FDA .. 232
 Exporting Data with PROC CPORT .. 232
 Exporting ASCII Text .. 233
 Exporting Data to Microsoft Office Files .. 240
 Exporting Other Proprietary Data Formats ... 243
Encryption and File Transport Options .. 244

Chapter 9 The Future of SAS Programming in Clinical Trials 245
Changes in the Business Environment .. 245
Changes in Technology .. 246
Changes in Regulations ... 246
Changes in Standards ... 247
Use of SAS Software in the Clinical Trial Industry .. 247

Chapter 10 Further Resources .. 249
Regulatory Resources ... 250
 SAS Programming Validation ... 250
 FDA Resources ... 250
Standards and Industry Organizations .. 251
SAS Help .. 252
 Google Search .. 252
 lexjansen.com ... 252
 SAS-L ... 252
 SAS Technical Support ... 252
 SAS Users Groups .. 253
 SAS Manuals and Online Documentation .. 253
 SAS Press ... 253
 SAS Focus Areas .. 253
 Third-Party SAS Web Pages ... 254
Useful Technical Skills ... 254
Chapter 2 Preparing and Classifying Clinical Trial Data

Preparing Clinical Trial Data .. 20
 “Clean” the Data If They Are Needed for Analysis .. 20
 Categorize Data If Necessary .. 21
 Avoid Hardcoding Data ... 24

Classifying Clinical Trial Data ... 26
 Demographics and Trial-Specific Baseline Data ... 27
 Concomitant or Prior Medication Data ... 27
 Medical History Data ... 28
 Investigational Therapy Drug Log ... 29
 Laboratory Data .. 30
 Adverse Event Data .. 31
 Endpoint/Event Assessment Data .. 34
 Clinical Endpoint Committee (CEC) Data ... 35
 Study Termination Data .. 36
 Treatment Randomization Data .. 36
 Quality-of-Life Data .. 38

This chapter describes the key clinical data preparation issues and the different classes of clinical data that are found in clinical trials. Each class of data brings with it a different set of challenges and special handling issues. Sample case report form (CRF) pages are provided. These pages are loosely based on the Clinical Data Interchange Standards Consortium’s (CDISC) Clinical Data Acquisition Standards Harmonization (CDASH) data collection standard. They are provided with each type of data to aid you in visualizing what the data in the CDISC Study Data Tabulation Model (SDTM) standard would look like. The key data preparation issues presented are concepts that apply universally across the various classes of clinical trial data.
Preparing Clinical Trial Data

Clinical trial data come to the statistical programmer in two basic forms: numeric variables and character string (text) variables. With this in mind, there are two considerations for all numeric and text variables. All data should be cleaned if they are needed for analyses, and any data entered as free-text variables should be coded or categorized if they are needed for analyses. Generally speaking, it is much more preferable if the data is coded either inherently by data collection design or later by clinical data management before it ever is sent to a statistical programmer.

“Clean” the Data If They Are Needed for Analysis

If data will be summarized or analyzed as part of the protocol-defined statistical analysis, they should be cleaned first. “Cleaned” in this context means that erroneous data that have been entered into a variable are repaired before data analysis. Under the direction of the statistics group and based on the needs of the statistical analysis plan, the data management group is responsible for cleaning the clinical data.

Before the statistical programmer receives data that are ready for analysis, the clinical data management group cleans the data. This is done through a query process, which is built into the clinical data management system. The clinical data management query process usually looks like this:

1. A programmatic or manual investigation of the data finds an errant data point.
2. A “query” or data clarification form (DCF) for that data point is sent to the clinical site.
3. The clinical site responds to the query. If the data is collected via an electronic data capture system, the site may fix the data issue.
4. If the clinical site does not fix the data issue themselves, then the clinical data management group updates the database or CRF based on the response from the clinical site.

Depending on the size and complexity of the clinical trial, queries sent to sites can easily number in the thousands. Because the cost of reconciling these queries quickly rises, it is important to be judicious when creating them. It is worth noting that electronic data capture (EDC) systems may reduce the number of queries needed, because the entry screens are often programmed so that errant data cannot be entered. It is also worth noting that if the clinical data is placed into the CDISC SDTM format, there can be a large number of automatic data queries generated because standard queries and cross data type queries are easy to generate from the SDTM data model.

In order to reduce unnecessary data queries, the statistics group should be consulted early in the clinical database development process to identify variables that are critical for data analysis. Optimally, the statistical analysis plan would already be written by the time of database development so that the queries could be designed based on the critical variables indicated in the analysis plan. However, at the database development stage, usually only the clinical protocol exists to guide the statistics and clinical data management departments in developing the query or data management plan.
How clean the data must be depends on the importance of the data. Critical analysis variables must be clean, so this is where the site and data management groups should focus their resources. If the data are “dirty” at the time of statistical analysis, many inefficient and costly workarounds may need to be applied in the statistical programming, and the quality of the data analysis could suffer. However, if a variable is not important to the statistical analysis, then it is better to save the expense of cleaning that variable.

Categorize Data If Necessary

Clinical trial data come in two basic forms: numeric variables and text variables. Numeric variables are easy for the statistical programmer to handle. Numbers can be analyzed with SAS in a continuous or categorical fashion without much effort. If a numeric variable needs categorization, it is easy enough to categorize the data within SAS. For example, if you had to classify patient age, a simple DATA step such as the following might serve well.

Program 2.1 Categorizing Numeric Data

```sas
data adsl;
  set adsl;
  if . < age <= 18 then
    agegr1n = 1;
  else if 18 < age <= 60 then
    agegr1n = 2;
  else if 60 < age then
    agegr1n = 3;
run;
```

The problem for the statistical programmer in categorizing data comes from text variables or, more specifically, free-text variables. A “free-text” variable is one that may contain any characters and is typically limited only in length. As an example, let’s say you need to summarize the adverse events for a set of patients in a trial. The following SAS code shows the data and a quick summarization of the adverse events.

Program 2.2 Summarizing Free-Text Adverse Event Data

```sas
data AE;
  input USUBJID $ 1-7 AETERM $ 9-41;
  datalines;
  100-101 HEDACHE
  100-105 HEADACHE
  100-110 MYOCARDIAL INFARCTION
  200-004 MI
  300-023 BROKEN LEG
  400-010 HIVES
  500-001 LIGHTHEADEDNESS/FACIAL LACERATION
; 
run;
```
options nodate nonumber missing = ' ';
ods escapechar='#';
ods pdf style=htmlblue file='program2.2.pdf';

proc freq
data = ae;
tables aeterm;
run;

ods pdf close;

Program 2.2 yields the following output.

<table>
<thead>
<tr>
<th>AETERM</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 HEDACHE</td>
<td>1</td>
<td>14.29</td>
<td>1</td>
<td>14.29</td>
</tr>
<tr>
<td>01 LIGHTHEADEDNESS/FACIAL LACERAT</td>
<td>1</td>
<td>14.29</td>
<td>2</td>
<td>28.57</td>
</tr>
<tr>
<td>04 MI</td>
<td>1</td>
<td>14.29</td>
<td>3</td>
<td>42.86</td>
</tr>
<tr>
<td>05 HEADACHE</td>
<td>1</td>
<td>14.29</td>
<td>4</td>
<td>57.14</td>
</tr>
<tr>
<td>10 HIVES</td>
<td>1</td>
<td>14.29</td>
<td>5</td>
<td>71.43</td>
</tr>
<tr>
<td>10 MYOCARDIAL INFARCTION</td>
<td>1</td>
<td>14.29</td>
<td>6</td>
<td>85.71</td>
</tr>
<tr>
<td>23 BROKEN LEG</td>
<td>1</td>
<td>14.29</td>
<td>7</td>
<td>100.00</td>
</tr>
</tbody>
</table>

There are three problems with this adverse events summary. First, “HEADACHE” and “HEDACHE” are counted as separate events even though it is clear that the latter is simply a misspelling of the former. Second, “MI” and “MYOCARDIAL INFARCTION” are considered as separate events even though the former is simply an abbreviation of the latter. Finally, “LIGHTHEADEDNESS/FACIAL LACERATION” refers to perhaps related but different adverse events that need to be counted separately. All three of these problems exist because the data were entered in free-text fashion and summarized from the free-text variable AETERM.

There is only one good solution to handling free-text variables that are needed for statistical analysis. The free-text variables need to be coded by clinical data management in the clinical database. If the adverse events were coded with a dictionary, such as MedDRA, which will be explored further in Chapter 4, the previous example might look like Program 2.3.
Program 2.3 Summarizing Coded Adverse Event Data

data ae;
 label USUBJID = "Unique Subject Identifier"
 AEPTCD = "Preferred Term Code"
 AETERM = "Reported Term for the Adverse Event"
 AEDECOD = "Dictionary-Derived Term";

 input USUBJID $ 1-7 AEPTCD $ 9-16
 AETERM $ 18-38 AEDECOD $ 40-60;

datalines;
 100-101 10019211 HEDACHE HEADACHE
 100-105 10019211 HEADACHE HEADACHE
 100-110 10028596 MYOCARDIAL INFARCTION MYOCARDIAL INFARCTION
 200-004 10028596 MI MYOCARDIAL INFARCTION
 300-023 10061599 BROKEN LEG LOWER LIMB FRACTURE
 400-010 10046735 HIVES URTICARIA
 500-001 10013573 LIGHTHEADEDNESS DIZZINESS
 500-001 10058818 FACIAL LACERATION SKIN LACERATION
;
run;

options nodate nonumber missing = ' ';
ods escapechar='#';
ods pdf style=htmlblue file='program2.3.pdf';

proc freq
 data = ae;
 tables aeterm_aedecod;
run;

ods pdf close;
Program 2.3 yields the following output.

![The SAS System]

The FREQ Procedure

<table>
<thead>
<tr>
<th>Dictionary-Derived Term</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEDECOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIZZINESS</td>
<td>1</td>
<td>12.50</td>
<td>1</td>
<td>12.50</td>
</tr>
<tr>
<td>HEADACHE</td>
<td>2</td>
<td>25.00</td>
<td>3</td>
<td>37.50</td>
</tr>
<tr>
<td>LOWER LIMB FRACTURE</td>
<td>1</td>
<td>12.50</td>
<td>4</td>
<td>50.00</td>
</tr>
<tr>
<td>MYOCARDIAL INFARCTION</td>
<td>2</td>
<td>25.00</td>
<td>6</td>
<td>75.00</td>
</tr>
<tr>
<td>SKIN LACERATION</td>
<td>1</td>
<td>12.50</td>
<td>7</td>
<td>87.50</td>
</tr>
<tr>
<td>URTICARIA</td>
<td>1</td>
<td>12.50</td>
<td>8</td>
<td>100.00</td>
</tr>
</tbody>
</table>

You can see the benefit of coding the adverse events in the resulting summary. The headaches and myocardial infarctions are grouped appropriately, and splitting lightheadedness and facial laceration into separate events leads to those data being summarized separately as well.

However, there are some alternative, albeit poor, solutions to the free-text variable problem. One option is to *hardcode* events so that they are categorized properly. We will discuss hardcoding further in the next section, but it is generally a practice to be avoided as much as possible. Another option is to use a SAS DATA step string function such as SOUNDEX, INDEX, INDEXW, or SUBSTR to try to categorize data in like groups. This approach is very risky, because you cannot be guaranteed to capture all free-text data and categorize them the same way with these text-scanning tools. If the free-text data are unimportant, then such tools can be used. However, if the data are unimportant, then they probably should not be analyzed anyway and at best should be presented in some type of data listing.

Avoid Hardcoding Data

Sometimes even after clinical data management make a good attempt at cleaning and coding the data, you may find that the data still contain some undesired or discrepant values. Perhaps a variable was left uncoded, or perhaps there is a serious adverse event known to have occurred that has not yet been entered in the clinical database. When this happens, the statistical programmer may result to hardcoding. Hardcoding is explicitly stating the value of a symbolic object or variable in a program. An example of hardcoding follows.
Program 2.4 A Hardcoding Example

```
data endstudy;
  set endstudy;

  if subjid = "101-1002" then
    discterm = "Death";
run;
```

In this example, it is known from non-database sources that at study termination, subject 101-1002 died. That information is hardcoded into the program and overrides the information coming from the clinical data management system. Here are two reasons why hardcoding is a bad practice:

- Hardcoding overrides the database controls in a clinical data management system. With hardcoding, there is no clear audit trail of data change, and CFR 21 – Part 11 controls might be considered compromised.
- Data often change in a trial over time, and the hardcode that is written today may not be valid in the future. Unfortunately, a hardcode may be forgotten and left in the SAS program, and that can lead to an incorrect database change.

Many organizations expressly forbid hardcoding in their SAS programming standard operating procedures, while others allow the practice. Occasionally, there may be a justifiable reason for hardcoding. For instance, there may be an upcoming data safety and monitoring board (DSMB) or independent data monitoring committee (IDMC) meeting where the clinical trial must be monitored for safety information using the best available data. If there is a critical adverse event that the statistical staff is aware of but it cannot be entered in the clinical data management system in time, then perhaps that would justify hardcoding. However, it is better to avoid hardcoding at all costs and instead correct data in the clinical data management system. If hardcoding must be done, then an approach like the following might be used.

Program 2.5 An Improved Hardcoding Example

```
data endstudy;
  set endstudy;

  **** HARDCODE APPROVED BY DR. NAME AT SPONSOR ON 02/02/2012;
  if subjid = "101-1002" and "&sysdate" <= "01MAY2012"d then do;
    discterm = "Death";
    put "Subject " subjid "hardcoded to termination reason"
      " discterm;
  end;
run;
```

Note that this program uses SAS code comment text to indicate that hardcoding is being used and with whose approval. Requiring a keyword such as “HARDCODE” in the comment facilitates searches for hardcodes later. Also, note that a PUT statement is provided to the SAS log, verifying during program execution that hardcoding has been used. The hardcode in Program 2.5 has an
expiration date. For example, if you know that you have an upcoming IDMC date next year, you can program the hardcodes to expire in the month that precedes the IDMC meeting.

In summary, for data to be useful in clinical trial analyses, they need to be quantifiable. The data must be either a continuous measure or a categorical value. Free text poses a problem for analysis, and, if it is a valuable variable for the statistical analyses, it really must be coded. Finally, hardcoding should be used only when absolutely necessary, because it is inherently problematic. Organizations that do allow hardcoding should document in their standard operating procedures (SOPs) that it is an approved business practice and how it is to be used.

Classifying Clinical Trial Data

There are different ways to classify clinical trial data. As mentioned earlier, data can be classified by their physical nature into discrete chunks or as a more continuous measurable quantity. In clinical trials, there are other important contextual ways of grouping data as well. For instance, clinical trials are primarily focused on determining two things about a drug, biologic, or device: Is it efficacious, and is it safe? The data that help to answer these questions are broadly classified as efficacy data and safety data, respectively.

The Clinical Data Interchange Standards Consortium (CDISC) and its Submission Data Standards group have provided another way to broadly categorize clinical trial data. They have categorized data into interventions class, events class, findings class, and other special-purpose “domains” such as demographics. Interventions are the drug administration and surgical procedures that the patient receives during the course of the trial. Events are the unplanned clinical occurrences that the patient experiences over the course of the trial. Findings capture the planned examinations of the patient over the course of the trial. The demographics of a patient are that person’s essential baseline characteristics.

The following sample CRF forms have been made to align with the CDISC CDASH standard.
Demographics and Trial-Specific Baseline Data

Here is a typical demographics CRF:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Subject: _ _ _ - _ _ _</th>
<th>Subject Initials: _ _ _</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMOGRAPHICS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth Date:</td>
<td>_ _ / _ _ / _ _ _ (Day/Month/Year)</td>
<td></td>
</tr>
<tr>
<td>Sex:</td>
<td>Male □ Female □</td>
<td></td>
</tr>
<tr>
<td>Race:</td>
<td>Caucasian □ Black □ Asian □ Other □</td>
<td></td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>Hispanic □ Non-Hispanic □</td>
<td></td>
</tr>
</tbody>
</table>

Trial-specific patient characteristics may be included with the demographics data as well. Height, weight, smoking status, and sometimes vital signs are common additions. These measures are collected because they may be relevant to the therapeutic intervention and could be used to stratify the statistical analysis. Demographic and other baseline characteristics are used to define patient groupings, or strata, for subpopulation analyses, or they may be used as covariates during inferential analyses. Demographic and baseline characteristics are also commonly used to show that the therapeutic treatments under study have comparable populations at baseline. Demographics data fall into the special purpose demographics SDTM domain and play a part in efficacy and safety analyses, because either may be stratified by demographics and baseline characteristics. Other baseline subject characteristics would get stored in the subject characteristics SDTM domain or in the appropriate SDTM domain (e.g., blood pressure in vital signs).

Concomitant or Prior Medication Data

Concomitant medications and prior medications are collected in one of two forms: a list-type free-text format where the medications get coded later by data management, or a pre-categorized data format. Here is the free-text CRF format:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Subject: _ _ _ - _ _ _</th>
<th>Visit</th>
<th>Concomitant Medications:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medication or Therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>etc.</td>
</tr>
</tbody>
</table>
Here is the pre-categorized per protocol CRF format:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Subject: _ _ _ - _ _ _</th>
<th>Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concomitant Medications:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication or Therapy</td>
<td>Did the subject take?</td>
<td>Start Date</td>
</tr>
<tr>
<td>ACE Inhibitor</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Anticonvulsant</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Beta Blocker</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Psychoactive Medication etc.</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

The free-text CRF format is useful in that it allows for an explicit description of the medication taken, whereas the pre-categorized format omits that detail. However, the free-text list format necessitates additional coding with a coding dictionary such as WHOdrug in order to be useful for analyses. The pre-categorized format has the benefit of capturing only the medications of concern for the given protocol and therapy and eliminates the cost of additional coding.

An essential detail for the statistical programmer to watch for in prior or concomitant medications data is whether or not the start and end dates are important for analyses. Unfortunately, it is often the case that the importance of the timing of prior or concomitant medications is not determined until after much of the data have been entered or even after the database is closed to entry. For instance, it may be decided later that a specific concomitant medication has to be watched carefully for interaction with a medication used in the study. If insufficient attention was placed on the quality of the medication start and end dates, then determining whether there is overlap with study medication is difficult if not impossible.

Concomitant or prior medications may be used in either safety or efficacy analyses. The presence of specific medications may be used as covariates for inferential analyses. Also, medications are often summarized to show that the therapies under study come from medically comparable populations. Medications may be used to determine protocol compliance and to help define a protocol-compliant study population. Concomitant medications may be examined to determine whether they interact with study therapy or whether they can explain the presence of certain adverse events. From a CDISC SDTM perspective, concomitant medications are considered an intervention.

Medical History Data

Like concomitant medication data, patient *medical history* data are collected in one of two forms: a list-type free-text format where the histories get coded, or a pre-categorized data format. Here is the free-text CRF format:
Here is the pre-categorized medical history CRF format:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Subject: _ _ _ - _ _ _</th>
<th>Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical History:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical History Term</td>
<td>Start Date</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Again, the free-text CRF format is useful in that it allows for explicit description of the historical condition, whereas the pre-categorized CRF format omits that detail. However, the free-text list format necessitates coding with a coding dictionary such as MedDRA in order to be useful for analyses. The pre-categorized format is useful here, because only medical history relevant to the investigational therapy can be captured and the cost of additional coding of the history data is eliminated entirely.

Medical history data may be used in either safety or efficacy analyses. The presence of historical medical conditions may be used as covariates for inferential analyses. Also, medical histories are typically summarized to show that the therapies under study come from study populations with comparable disease histories. Medical histories may be used to determine protocol compliance and to help define a protocol-compliant study population. Medical history is considered a finding from a CDISC SDTM perspective.

Investigational Therapy Drug Log

Drug logs, or drug exposure data, capture the investigational drug dosing times. Here is a sample drug log CRF form:

The investigational therapy drug log can be a source of problems for the statistical programmer. Here again, dates and times of dosing may be critical for effective use of this data. Missing dosing records, start times, or stop times can seriously hinder the quality of the reporting of dosing data. It is important to look at the analysis plan to determine if the dosing data are important to analysis. If they are important, then data management should clean the data to ensure the quality of the medication start and stop times.

Drug log or exposure data are used in many ways for both efficacy and safety analyses. As a safety issue, the drug record is often used in conjunction with adverse events to determine whether adverse events were treatment-emergent. In other words, did the patient have an adverse event that might have been caused by the investigational therapy? Also, drug log data may be used for safety analysis purposes to watch for abnormal laboratory values or other clinical events after dosing. Finally, drug log data are useful for determining protocol violations and can be used to determine treatment compliance. The drug log data are categorized as an intervention from a CDISC SDTM perspective.

Associated with drug log or drug exposure data is another type of data called drug accountability. This data captures the disposition of the study drug. It is not concerned with whether a patient was exposed to the drug but where the drug went. Drug accountability tracks data such as how many pills a patient was sent home with and how many they returned. It can be used to calculate protocol dosing compliance and is categorized as a finding from a CDISC SDTM perspective. Because the data is so interrelated, it is not uncommon to find data collection forms merge or integrate information from drug exposure and drug accountability.

Laboratory Data

Laboratory data may consist of many different collections of tests, such as ECG laboratory tests, microbiologic laboratory tests, and other therapeutic-indication-specific clinical lab tests. However, laboratory data traditionally consist of results from urinalysis, hematology, and blood chemistry tests. Traditional laboratory data can come from what are called local laboratories, which are labs at the clinical site, or from central laboratories where the clinical sites send their samples for centralized analysis. Often when the laboratory data come from a central laboratory, there is no CRF page for the data, and they are loaded into the clinical data management system directly from an electronic file. Local laboratory data may be represented with a CRF page such as this:
Laboratory data can pose a challenge to the statistical programmer in many ways. Simply obtaining the data can sometimes be difficult. Occasionally you have to work with a specialized local laboratory, and sometimes just getting the data to the statistics group in a usable format can be hard if CDISC CDASH and SDTM standards are not used. For example, the local laboratory staff may have used Microsoft Excel for data entry, and when they entered the data they entered rows within the columnar data with inconsistent formats, making machine readability of the resulting data file difficult. Another common issue is found within the “units” variable shown above. If local labs were used, it is likely that the lab units will have to be converted to a common unit for each laboratory test. Finally, laboratory values often need to be flagged as outside the normal range or perhaps outside the “clinical concern”/“panic range,” where the latter is just a more extreme version of the former. Sometimes, the local or central laboratory flags these records, but it is not uncommon for the statistical programmer to have to make these assignments as well.

Laboratory data are most often associated with safety analyses, but they may play a part in efficacy analyses as well, especially if the laboratory data are part of the clinical endpoint definition. From a CDISC SDTM perspective, laboratory data are a finding, because they are a planned assessment. The CDISC SDTM has a number of specialized laboratory-like data domains besides LB for laboratory data. These domains that are very laboratory-like include EG for ECG data, VS for vital signs data, MB for microbiology, and PC and PP for pharmacokinetic data.

Adverse Event Data

In the FDA’s “Guidance for Industry E6 Good Clinical Practice: Consolidated Guidance,” an adverse event is defined as follows:
Any untoward medical occurrence in a patient or clinical investigation subject administered a pharmaceutical product and that does not necessarily have a causal relationship with this treatment. An AE can therefore be any unfavorable and unintended sign (including an abnormal laboratory finding), symptom, or disease temporally associated with the use of a medicinal (investigational) product, whether or not related to the medicinal (investigational) product.

The adverse event form is fairly standard across clinical trials. The form consists of a list of events for which data are entered as free text and are later coded with a dictionary such as MedDRA and some associated event attribute variables. In just about any clinical trial, an adverse event form similar to the following sample will be found.

The adverse event form is a cornerstone of patient safety monitoring, and as such it contains very important data. There are several data issues for the statistical programmer to be concerned about here.

Treatment-Emergent Signs and Symptoms

In guidance document ICH E3, “Structure and Content of Clinical Study Reports,” the FDA defines *treatment-emergent signs and symptoms (TESS)* as “events not seen at baseline and events that worsened even if present at baseline.” As simple as that may sound, it can sometimes be quite difficult to implement in programming. The important data variables that come into play are dosing record dates and times, adverse event start and stop times, and adverse event severity. All of these data variables need to be completed accurately for TESS to be calculated properly.
Serious Adverse Event Reconciliation

Just as there is an adverse event form, there is usually a serious adverse event (SAE) form. Note here that “serious” as defined by the FDA is different from “severe” on the adverse event form. A patient can have a “severe” headache that may not be considered “serious.” The ICH guideline (also in ICH E3) entitled “Clinical Safety Data Management: Definitions and Standards for Expedited Reporting” defines serious adverse events as follows:

A serious adverse event (experience) or reaction is any untoward medical occurrence that at any dose: results in death, is life-threatening, requires inpatient hospitalization or prolongation of existing hospitalization, results in persistent or significant disability/incapacity, or is a congenital anomaly/birth defect.

Historically, a separate CRF is used to capture serious adverse events, because those often must be reported to the FDA within 24 hours. Often, this means that the serious adverse events CRF data and the regular trial CRF adverse events are collected in different data tables, if not entirely different software systems. Pharmaceutical companies often want to reconcile the two databases to ensure that all serious adverse events appear in the regular-trial CRF adverse events database and that any event in the serious adverse events database is flagged properly as serious in the regular CRF adverse events database.

The problem is that the regular-trial adverse events database and the serious adverse events database do not join well if at all programmatically. You can attempt to join or merge the two databases by event start date and coded term, and that will join many regular-trial adverse events to the serious events. However, this is far from foolproof, because of mismatches in adverse event start dates and because the adverse events may have been coded slightly differently in the two systems. The best way to link the serious adverse events and adverse events databases is to have the clinical data management system create a linking variable key for you. In lieu of that, the only way to reliably link the two data sources is manually.

The good news is that with modern electronic data capture systems and the upcoming absorption of electronic health care data into clinical trials databases, the problem of reconciling adverse events to serious adverse event data will be fixed. Many electronic data capture systems now collect the serious and regular adverse event data in the same electronic form, which makes integration of the data unnecessary.

Concomitant Medication Reconciliation

Additional concomitant medication may be given in response to an adverse event, and especially with serious adverse events. Often you want to know precisely which medication was taken, but because that information may not be well captured on the adverse event form, there needs to be a linkage with the concomitant medications form. Once again, this is not something that can reliably be done with a program unless the clinical data management system creates a linking variable key behind the adverse event and concomitant medications forms. Some data management systems do this and, again, with electronic data capture, this is becoming more prevalent.
Laboratory Data Reconciliation

The adverse event for a patient may indicate a medical condition such as hypercholesteremia, so there may be a request to ensure that there are elevated cholesterol laboratory data that can verify such a claim. You can sometimes make this kind of verification with programming if you know precisely which lab tests are involved and what level indicates a probable adverse event.

In the end, because of the importance of the data, it is imperative that the entire adverse event form data are cleaned. Reconciling the adverse event data with other clinical data in the clinical data management system can be very difficult if the data management system does not provide variable keys for linking such data. Adverse event data fall into the safety area of statistical analyses and are considered an event from a CDISC SDTM perspective.

Endpoint/Event Assessment Data

Endpoint or event assessments typically capture what the clinical trial was designed to study. For example, if a clinical trial were studying an anti-epilepsy medication, then the event form would likely collect seizure information. The endpoint or event assessment form is designed to collect data after the investigational drug or device intervention so that these data can be statistically compared to data from the patient’s state before the drug or device intervention. Endpoint or event collection pages vary widely because of the broad range of ways to measure clinical disease, but here is a simplified sample endpoint collection page:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Subject: _ _ _ _ _ _ _</th>
<th>Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint Assessment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visit Date: _ _ / _ _ / _ _ _ _ (Day/Month/Year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did the patient have an event of interest?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>If yes, what day did the event occur on? _ _ / _ _ / _ _ _ _ (Day/Month/Year)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this form, “event” would be replaced by some clinical finding such as “myocardial infarction,” “stroke,” “seizure,” or the like. This example form is extremely simplified, because there are usually a number of associated event qualifying data variables captured as well. The event/endpoint page data must be clean, because it likely captures the primary efficacy data for the clinical trial.

The problem with endpoint data usually occurs when they need to be reconciled against data that are collected by the *clinical endpoint committee (CEC)*, which we discuss next. The endpoint/event data are almost always used for efficacy analyses but may be used for safety analyses as well. From a CDISC SDTM perspective, the endpoint/assessment is often considered a finding, because it is a planned examination, but it could also be considered an unplanned event.
Clinical Endpoint Committee (CEC) Data

It is often the case that the endpoint/event form captures data that are not entirely objective because they contain some level of clinical judgment. For instance, when precisely is a cold cured, was an event truly a myocardial infarction, or did any given event truly occur? The clinical site investigator may decide, using his or her clinical judgment, that a given event occurred, but often it is necessary to have an independent assessment of that event by another physician. This independent review helps to ensure that events are reported in a consistent way across multiple clinical sites for a clinical trial. Usually what happens is that a condition on the regular case report form “triggers” the release of a CEC form to be sent to the CEC. The CEC then takes the CEC form and verifies whether or not an actual event occurred based on the data available in the patient’s clinical records at the given site. A sample CEC form follows:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Subject: _ _ - _ _</th>
<th>Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint Assessment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did the patient have the event of interest?</td>
<td>☐ Yes ☐ No</td>
<td></td>
</tr>
<tr>
<td>If yes, on what day did the event occur?</td>
<td>_ _ / _ _ / _ _ (Day/Month/Year)</td>
<td></td>
</tr>
<tr>
<td>Other supportive data fields go here to verify that the event happened.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer signature: ___________________ _ _ / _ _ / _ _ (Day/Month/Year)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this CEC form, “event” would be replaced by some clinical finding such as “myocardial infarction,” “stroke,” “seizure,” or the like. Once again, this form is extremely simplified, and there are usually a number of associated data variables captured that help to support the existence of the event.

The biggest problem for the statistical programmer when using CEC data is reconciling these data against the regular CRF endpoint/event data. This can be a difficult task, especially when you consider that a patient may have more than one event on a given day. Fortunately, because the endpoint/event data are so critical to a clinical trial, the quality of the reconciliation from the CEC form to the CRF form is not often relegated to some form of fuzzy data join. Usually there will be a definitive linkage via a key mapping data set that links the CEC event data to the CRF event data. However, if that key data set does not exist, then the statistical programmer must prepare for some difficult programming. It is also worth noting that the data from the adverse event forms, laboratory forms, and other forms, as well as a specific “event” form, may in fact trigger clinical events. This may add to the complexity of the reconciliation programming.

The clinical endpoint committee data are almost always used for efficacy analyses, but they may also be used for safety analyses. From a CDISC SDTM perspective, the endpoint/assessment is considered a finding, as it is a planned examination.
Study Termination Data

The study termination form collects patient exit information from the clinical trial. Here is a sample study termination form:

![Study Termination Form]

The study termination form data may be used for efficacy or safety analysis purposes. With regard to safety, if patients discontinue a study medication earlier than patients on standard therapy or placebo, then that is important to know. For efficacy analyses, patients who withdraw due to a lack of efficacy or adverse event may be precluded from being considered a treatment responder or success. Also, often the study termination date is used as a censor date in time-to-event analyses for therapy efficacy. Study termination forms play a key role in patient disposition summaries found at the start of a clinical study report. From a CDISC SDTM perspective, the study termination form is a finding.

Treatment Randomization Data

The randomization of a patient to a given therapy is the cornerstone of a randomized clinical trial. You may find these data in more than one place. They are often found within some form of Interactive Voice Response System (IVRS), but they may also be found in an electronic file that contains the treatment assignments or on the CRF itself. If randomization data are found on the CRF, they usually consist only of the date of randomization for treatment-blinded trials. IVRS data are often found outside the confines of the clinical data management system and usually consist of the following three types of data tables.

Randomization Scheme Data Set

The randomization scheme assigns a therapy randomly across a study population based on various stratification factors such as site, blocking factor, and perhaps subject demographics. There is no actual patient assignment information in this data table. Here is an example of a randomization scheme with a blocking factor size of four and a treatment ratio of 2:2:
Notice that treatment is randomly assigned within the given blocks and that there are two placebos and two study medications in each block. Also notice the “index” variable. The order of the randomization scheme is critical to the usefulness of the scheme, because that is the order in which patients are assigned treatment. If the order of the scheme is altered in any way, then the scheme is damaged.

Drug Kit List Data Set

The *drug kit list* is simply a list that shows which drug container/kit label goes with which study medication. It might look something like this:

<table>
<thead>
<tr>
<th>Kit Number</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000001</td>
<td>Study Medication</td>
</tr>
<tr>
<td>10000002</td>
<td>Study Medication</td>
</tr>
<tr>
<td>10000003</td>
<td>Study Medication</td>
</tr>
<tr>
<td>10000004</td>
<td>Study Medication</td>
</tr>
<tr>
<td>10000005</td>
<td>Study Medication</td>
</tr>
</tbody>
</table>

Drug Assignment Data Set

The *drug assignment data set* indicates which patient got which drug. It might look something like this:

<table>
<thead>
<tr>
<th>Site</th>
<th>Subject</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>0001</td>
<td>Study Medication</td>
</tr>
<tr>
<td>101</td>
<td>0002</td>
<td>Study Medication</td>
</tr>
<tr>
<td>101</td>
<td>0003</td>
<td>Placebo</td>
</tr>
<tr>
<td>101</td>
<td>0004</td>
<td>Placebo</td>
</tr>
</tbody>
</table>
Note that the drug assignment data may not exactly match the order in the randomization scheme, because different patients pass screening procedures and are eligible for randomization at different times. Sometimes there are errors in treatment assignment, due to drug kits being misallocated or lost, that lead to a discrepancy between the drug assignment and the randomization scheme.

Other data sets may be found within the IVRS system that prove useful to the statistical programmer as well. Often the IVRS collects several baseline patient characteristics that are used in the stratification of the randomization scheme and subsequent assignment of study therapy. Finally, the preceding examples show in detail what the treatment variable is, in the “treatment” column. It is more often the case that the treatment variable is coded, such as “A” or “B” or “C.” It is of paramount importance that you know with absolute certainty how the treatment code can be properly interpreted.

The randomization data are used in both efficacy and safety analyses, because they are typically the key stratification variable for the trial. The randomization data allow you to answer the question of whether patients who are getting the study therapy fare better than the alternative. The CDISC SDTM allocated that actual treatment assignment information to the special demographics domain. The study therapy kit number would go in the CDISC SDTM DA domain.

Quality-of-Life Data

Sometimes you may also see quality-of-life (QOL) data collected for your clinical trial. Quality-of-life data are collected to measure the overall physical and mental well-being of a patient. These data are usually collected with a multiple-question patient questionnaire and may be summed up in an aggregate patient score for analysis. Some commonly used quality-of-life questionnaires are the SF-36 and SF-12 Health Survey, but there are quite a few disease-specific QOL questionnaires available to clinical researchers. Quality-of-life data are often a subset of a type of data called patient-reported outcomes. They are patient-reported outcomes, because many times the patient reports them directly into a data collection tool, such as a website, themselves. From a CDISC SDTM standpoint, questionnaire data is classified as a finding.
Index

A
Access files
See Microsoft Office files
ACDM (Association for Clinical Data Management) 250, 251
ADaM (Analysis Data Model) 5, 73, 83
Adobe PDF files 167–168
adverse events
about 31–32
concomitant medication 33
creating summaries 22, 130–139
laboratory data 34
serious adverse events (SAE) 33
treatment-emergent signs and symptoms (TESS) 32
American Statistical Association 251
analyses of clinical data
correlation coefficients 226
descriptive statistics 216–218
inferential statistics 218–225
statistical analysis plan (SAP) 11
time-to-event analysis statistics 225
Analysis Data Model (ADaM) 5, 73, 83
Analysis Data Model and ADaM Implementation Guide 105, 108
analysis data sets
about 71–72
categorical data 90–93
change-from-baseline 105–108
common types of 105–111
creating 72–104
data manipulation 99–104
defining baseline observations 73
defining study day 78
defining study populations 72–73
defining variables 72
last observation carried forward (LOCF) 73–77
many-to-many comparisons/joins 93–95
medical dictionaries 95–98
missing results 90–93
time-to-event 108–111
transposing data 82–89
windowing data 78–82
zero results 90–93
Analysis of Clinical Trials Using SAS: A Practical Guide (Dmitrienko) 215
analysis of variance (ANOVA) 224
analysis plan 11
Anatomical-Therapeutic-Chemical (ATC) classification 98
angle brackets (<>) 11
annotated CRF 11
ANOVA (analysis of variance) 224
APIs (application program interfaces) 9
approval process (FDA) 3–4
ARRAY statements 84
ASCII text
about 41–42
creating output 164–165
exporting 233–239
IMPORT procedure 42–47
Import Wizard 42–47
SAS DATA step 48–49
SAS Enterprise Guide 49–52
ascii2pdf script 168
association, tests for 218–221
Association for Clinical Data Management (ACDM) 250, 251
ATC (Anatomical-Therapeutic-Chemical) classification 98
autocall facility 13
AVAL variable 108

B
bar charts 175, 185–189
baseline 10
baseline observations 73
BAT files 254
Index

bias 4
binomial variables 218
biostatistics 8
blinding 4
BODYTITLE option 166
box plots 176, 189–192
BOXPLOT procedure 178
Burlew, Michele
SAS Macro Programming Made Easy 16
business environment 245
BY processing 16, 84
BY statement 16, 214

C
C# programming language 255–256
Carpenter, Art
Carpenter's Complete Guide to the SAS Macro Language 16
Carpenter's Complete Guide to the SAS Macro Language (Carpenter) 16
case report form (CRF) 8, 19
categorical data 90–93, 218–221
Categorical Data Analysis Using the SAS System (Stokes) 218
categorizing data 21–24
CDASH (Clinical Data Acquisition Standards Harmonization) model 5, 19
CDER Common Data Standards Issues Document 7
CDER Data Standards Program 8
CDISC (Clinical Data Interchange Standards Consortium) 5, 19, 26, 68–69, 251
CDISC ADaM Basic Data Structure for Time-to-Event Analyses 109
CDISC procedure 68–69, 70, 231–232
CEC (clinical endpoint committee) 34–35
Censor variable 108
certifications 256
CFR 21 - Part 11 law 6, 246
change-from-baseline data set 105–108
change-from-baseline scatter plots 174
Class tab (SAS XML Mapper) 68
classifying clinical trial data 19, 26–38
cleaning data 20–21
clinical data
classifying 19, 26–38
management systems 40–41
preparing 19, 20–26
Clinical Data Acquisition Standards Harmonization (CDASH) model 5, 19
clinical data analysis
correlation coefficients 226
descriptive statistics 216–218
inferential statistics 218–225
statistical analysis plan (SAP) 11
time-to-event analysis statistics 225
Clinical Data Interchange Standards Consortium (CDISC) 5, 19, 26, 68–69, 251
clinical endpoint committee (CEC) 34–35
Clinical Standards Toolkit 70, 231–232
clinical studies 10–11
clinical study report (CSR) 2
clinical trial graphs
about 173–174
bar charts 175, 185–189
box plots 176, 189–192
common types of 174–178
forest plots 176–177, 193–197
Kaplan-Meier Survival Estimates plots 177–178, 198–212
line plots 174–175, 182–185
samples of 179–212
SAS tools for creating 178–179
scatter plots 174, 179–182
clinical trial tables
See tables
clinical trials
colleagues 8–10
future of SAS programming in 245–247
study designs 4
using SAS software in 247
CMH (Cochran-Mantel-Haenszel) test 220
CNSR variable 108
Cochran-Mantel-Haenszel (CMH) test 220
code reuse 11–13
Cody, Ron
 SAS Functions by Example, Second Edition 104
colleagues, of statistical programmers 8–10
c comma-delimited files
 See ASCII text

Common Statistical Methods for Clinical Research with SAS Examples (Walker and Shostak) 215
COMPUTE block 121, 162
"Computer Systems Validation in Clinical Research: A Practical Guide" (ACDM) 250
concomitant medication data 27–28, 33, 140–145
Condition tab (SAS XML Mapper) 68
conditional logic 14–15
CONTENTS procedure 65–66, 68
continuous data
 inferential statistics 221–225
 summary tables 122–130
contract research organization (CRO) 2
CORR procedure 226
correlation coefficients 226
covariates 27
Cox proportional hazards model 196
CPORT procedure 231, 232–233
CRF (case report form)
 about 8
 concomitant medications 27–28
demographics 27
drug logs 29–30
laboratory data 30–31
medical history data 28–29
prior medications 27–28
samples 26–38
trial-specific baseline data 27
CRO (contract research organization) 2
crossover trials 4
CSR (clinical study report) 2
CSS variable 217

CSV files
 See ASCII text
CV variable 217
CYCLEATTRS option, SGPLOT procedure 189

D
data
 See also clinical data
 See also exporting data
 See also importing data
categorizing 21–24
cleaning 20–21
continuous 122–130, 221–225
efficacy 26
encryption options 255
hardcoding 24–26
managing 8–9
manipulating 99–104
missing 90–93
normalization of 82–89
transposing 82–89
windowing 78–82
data analysis
 correlation coefficients 226
descriptive statistics 216–218
inferential statistics 218–225
statistical analysis plan (SAP) 11
time-to-event analysis statistics 225
data safety and monitoring board (DSMB) 25
data sets 13–14, 100–103
DATA steps
 about 48–49
 redefining variables within 100–103
 transposing data with 86–89
DATA_NULL 170
dBASE database 243
DBSASLABEL option 58
DDE (Dynamic Data Exchange) 61
define.xml 5, 69, 231–232
Delwiche, Lora
 The Little SAS Book: A Primer 17
demographic data 27
dependent variables 83
DESCENDING option 221
descriptive statistics 216–218
device approval process 4
dictionaries, referencing 95–98
digital signatures 6, 246
Dmitrienko, Alex
 Analysis of Clinical Trials Using SAS: A Practical Guide 215
domains 26
double-blind trials 4
drug approval process 3–4
drug assignment data sets 37–38
Drug Information Association 251
drug kit lists 37
drug logs CRF 29–30
DSMB (data safety and monitoring board) 25
Dynamic Data Exchange (DDE) 61

E
"E3 Structure and Content of Clinical Study Reports" (FDA) 6, 32, 250
"E6 Good Clinical Practice: Consolidated Guidance" (FDA) 6–7, 250
"E9 Statistical Principles for Clinical Trials" (FDA) 6, 250
eCTD (Electronic Common Technical Document) 7
EDC (electronic data capture) 8, 20
efficacy data 26
electronic signatures 6, 246
electronic submission to FDA 229–232
encryption options 244, 255
endpoint assessments 34
Enterprise Guide
 about 213
 exporting data to Microsoft Office files with 242–243
 exporting data with 238–239
 importing data 49–52, 59–62
Enumeration tab (SAS XML Mapper) 68
equivalence trial 4
event assessments 34
events class 26
Excel files
 See Microsoft Office files
EXPORT procedure
 exporting ASCII text with 233–237
 exporting data to Microsoft Office files with 240–242
Export Wizard
 exporting ASCII text with 233–237
 exporting data to Microsoft Office files with 240–242
exporting data
 about 229–230
 ASCII text 233–239
 with CPORT procedure 232–233
 creating define.xml 231–232
 creating ODM XML 231–232
 descriptive statistics with FREQ procedure 216
 descriptive statistics with UNIVARIATE procedure 217–218
 encryption options 244
 file transport options 244
 to Microsoft Office files 240–243
 proprietary data formats 243–244
 using SAS XPORT transpose format 230–231
Extreme Programming (XP) 255

F
failure estimate plots 201–205
FDA (Food and Drug Administration)
 about 3
 exporting data to 229–232
 regulation and guidance 5–6
 resources 250–251
File Transfer Protocol (FTP) 255
file transport options 244, 255
findings class 26
Fisher’s exact test 219
floating-point comparisons 104
Food and Drug Administration
 See FDA (Food and Drug Administration)
FOOTNOTE statement 166
footnotes 170
forest plots 176–177, 193–197
FORMAT procedure 195
Format tab (SAS XML Mapper) 67
free-text variables 21–22
 See also ASCII text
FREQ procedure
 clinical trial graphs 189
 Cochran-Mantel-Haenszel tests in 220
 for data sets 84, 92
 exporting descriptive statistics with 216
 output for 24
 tables and listings 146
FTP (File Transfer Protocol) 255
future of SAS programming 245–247

G
GCHART procedure 178
GCPs (Good Clinical Practices) 6–7
"General Principles of Software Validation:
 Final Guidance for Industry and FDA Staff" 250
GETNAMES option 58
GLM procedure 224–225
Good Clinical Practices (GCPs) 6–7
Google Search 252
GPLOT procedure 178
graphics assistants 212–214
GRAPHICS statement 182
Graphics Template Language (GTL) 212
Graph-N-Go facility 212
GROUP= option 182, 185, 192
GROUP=TRTP statement 182
GTL (Graphics Template Language) 212
"Guidance for Clinical Trial Sponsors:
 Establishment and Operation of Clinical Trial Data Monitoring Committees" (FDA) 251
"Guidance for Industry: Computerized Systems Used in Clinical Investigations" 250
"Guidance for Industry: Providing Regulatory Submissions in Electronic Format - General Considerations" 164
Guidance for Industry Providing Regulatory Submissions in Electronic Format:
 Submissions Under Section 745(a) of the Federal Food, Drug, and Cosmetic Act 251
Guidance for Industry Providing Regulatory Submissions in Electronic Format:
 Standardized Study Data 251
"Guidance on Electronic Standardized Study Data" 229
"Guidance on Electronic Submission of Applications" 229
Gupta, Sunil
 Quick Results with the Output Delivery System 165

H
hardcoding data 24–26
Haworth, Lauren E.
 Output Delivery System: The Basics and Beyond 165
hazard ratios 196
HIPAA regulations 246
HTML database 243
HTML output 182
HTML/XHTML/XML specifications 255

I
ICH (International Conference on Harmonization) 5, 251
ID statement 86–88
IDMC (independent data monitoring committee) report 25, 113
IEEE (Institute of Electrical and Electronics Engineers) 254–255
INDEX

IF-THEN/ELSE logic 14–15
Implementing CDISC Using SAS: An End-to-End Guide 69, 72, 89, 232
IMPORT procedure 42–47, 55–58
Import Wizard 42–47, 55–58
importing data
about ASCII text 41–52
CDISC Model content files 68–69
CDISC ODM files 70
CDISC SAS transport format files 69
clinical data management systems 40–41
define.xml 69
Microsoft Office files 52–62
relational databases 40–41
SAS/ACCESS LIBNAME statement 41
SAS/ACCESS SQL pass-through facility 40–41
XML 62–68
%INCLUDE macro statement 12
independent data monitoring committee (IDMC) report 25, 113
independent variables 83
INDEX function 24
INDEXW function 24
industry regulations and standards 4–8, 251
inferential analyses 27
inferential statistics
obtaining from categorical data analysis 218–221
obtaining from continuous data analysis 221–225
INFILE statement 48–49
information technology (IT) 9
INPUT statement 48–49
Instant ODS: Style Templates for the SAS Output Delivery System (Johnson) 166
Institute of Electrical and Electronics Engineers (IEEE) 254–255
intent-to-treat population 73
Interactive Voice Response System (IVRS) 36
International Conference on Harmonization (ICH) 5, 251
interquartile range 189
interventions class 26
Investigational New Drug (IND) application 3, 7
investigator 10
IT (information technology) 9
IVRS (Interactive Voice Response System) 36

J
Jansen, Lex 252
Java/JavaScript 254, 255–256
JMP database 243
jobs, qualifying for and obtaining 256
Johnson, Bernadette
Instant ODS: Style Templates for the SAS Output Delivery System 166
joins 93–95

K
Kaplan-Meier Survival Estimates tables 152–159, 177–178, 198–212
KEYLEGEND statement 185
Kruskal-Wallis test 224–225
KURTOSIS variable 217

L
laboratory data 30–31, 34, 145–152
Laboratory Data Model (LAB) 5
last observation carried forward (LOCF) 73–77
lexjansen.com 252
LIBNAME statement 12, 53–55
LIFETEST procedure
clinical trial graphs 201, 209
creating Kaplan-Meier Survival Estimates plot using 210–212
creating Survival Estimates plot directly from 209–212
for data sets 109
time-to-event analysis statistics 225
line plots 174–175, 182–185
LINEPARM statement 182
LINESIZE output option 164, 166
LinkedIn 256
listings, creating 159–164
The Little SAS Book: A Primer (Delwiche and Slaughter) 17
LOCF (last observation carried forward) 73–77
LOGISTIC procedure 84, 195, 196–197, 221
logistic regression analysis 176, 221
log-rank test 225
Lotus 1-2-3 database 243

M
macro-based reporting systems 172
macros 15–16
%MAKECOD macro 15
Mantel-Haenszel test 219–220
many-to-many comparisons/joins 93–95
MARKERATTRS statement 196
markup languages 255
matrix management structure 9
Matthews, Carol
Validating Clinical Trial Data Reporting with SAS 6, 250
MAX variable 217
MEAN variable 217
MEANS procedure 218
MedDRA (Medical Dictionary for Regulatory Activities) 95–97
MEDIAN variable 218
medical devices, approving 4
medical dictionaries 95–98
Medical Dictionary for Regulatory Activities (MedDRA) 95–97
medical history data CRF 28–29
medical writing 10
MERGE statement 102
MERGE-BY statement 93
Microsoft Developer Network 255
Microsoft Office files
about 52–53
Excel pivot-point year 100
exporting data to 240–243
footnotes in Windows files 170
IMPORT procedure 55–58
Import Wizard 55–58
LIBNAME statement 53–55
reading Access files with LIBNAME statement 54–55
reading Access files with SQL pass-through facility 59
reading Excel files with IMPORT procedure 57–58
reading Excel files with LIBNAME statement 53–54
reading Excel files with SQL pass-through facility 58–59
SAS Enterprise Guide 59–62
SAS/ACCESS SQL pass-through facility 58–59
MIN variable 217
MISSING option
REPORT procedure 161–162
TABLES statement 216
missing results 90–93
MIXED option 58
MODE option 217
modeling tools 255
multi-center trials 4

N
N variable 217
NMISS variable 217
NOBS variable 217
non-inferiority trials 4
nonparametric tests 219
normalization of data 82–89
NPARIWAY procedure 224–225
N-sample test of the means 224–225
NxP tests 219–220

O
Object Linking and Embedding (OLE) 61
ODBC (Open Database Connectivity) 61
ODM (Operational Data Model) 5, 70
ODM XML
 See XML files
ODS destination 129, 170, 182
ODS Graphics Designer 179, 213
ODS Graphics Editor 213–214
ODS HTML statement 182
ODS LISTING statement 213
ODS OUTPUT statement 223–224, 226–227
ODS Report Writing Interface 170
ODS RTF statement
 BODYTITLE option 166
 sending output to 165–166
ODS STYLE 170–171
ODS TRACE 226–227
OLE (Object Linking and Embedding) 61
ON clause 95
one-sample t tests 221–223
one-way analysis of variance 224–225
online documentation 253
Open Database Connectivity (ODBC) 61
OpenCDISC Validator 232
Operational Data Model (ODM) 5, 70
Oracle database, getting data from 40–41
ORDER= option 221
OTHERWISE clause 15
OUT= option 144, 216
OUTPCT option 216
Output Delivery System: The Basics and Beyond (Haworth) 165
OUTPUT statement 217

parallel trials 4
parametric tests 219
parent-child data problem 13–14
Pass-Through Facility 40–41, 58–59
patient disposition tables 122
patient listings, creating 159–164
patient medical history data 28–29, 139
PDF (portable document format) files 167–168
PDUFA (Prescription Drug User Fee Act) V 246
Pearson chi-square tests 219
per-protocol populations 73
Pharmaceutical Users Software Exchange (PhUSE) 251
PharmaSUG user group 253
phases 3
PHREG procedure 109, 196, 225
PhUSE (Pharmaceutical Users Software Exchange) 251
pivot point 99–100
portable document format (PDF) files 167–168
pre-clinical studies 3
predictor variables 221
preparing clinical trial data 19, 20–26
Prescription Drug User Fee Act (PDUFA) V 246
PRINT procedure 53–54, 65–66, 159
prior medication data 27–28, 140–145
PROC TEMPLATE Made Easy: A Guide for SAS Users (Smith) 171
programming
 readability of 17
tasks 11–13
project management 9
Properties tab (SAS XML Mapper) 67
protcols 10
PSI (Statisticians in the Pharmaceutical Industry) 251
PUT statement 25, 131
p-value 222–223

P
P1 variable 217
P5 variable 217
P10 variable 217
P90 variable 218
P95 variable 218
P99 variable 218
page counter 168–169
PANELBY statement 189
Paradox database 243
Index 281

Q

Q1 variable 218
Q3 variable 218
QA (quality assurance) 10
QOL (quality-of-life) data 38
QRANGE variable 218
query process 20
Quick Results with the Output Delivery System (Gupta) 165

R

randomization 4, 36–38
RANGE variable 217
RDBMS (relational database management system) 9
readability of code 17
redefining data set variables 100–103
REFLINE statement 185, 196
regulations
 changes in 246
 industry 4–8
regulatory resources 250–251
relational database management system (RDBMS) 9
relational databases 40–41
REPORT procedure 159, 166
 creating clinical trial tables with 118–122
 creating listings with 160–164
 MISSING option 161–162
resources
 jobs 256
 regulatory 250–251
 SAS help 252–254
 standards and industry organizations 251
 technical skills 254–256
reusing code 11–13
ROUND function 104
RTF (rich text format) 165, 255
%RUN macro 15

S

SAE (serious adverse events) 33
safety data 26
safety populations 73
SAP (statistical analysis plan) 11
SAS certifications 256
SAS Enterprise Guide about 213
 exporting data to Microsoft Office files with 242–243
 exporting data with 238–239
 importing data 49–52, 59–62
SAS Focus Areas 253–254
SAS Functions by Example, Second Edition (Cody) 104
SAS Global Forum (SGF) 253
SAS Graph Template Language: Reference 179
SAS Graph Template Language: User's Guide 179
SAS Graphics, when to use 214
SAS Help 252–253
SAS Macro Programming Made Easy (Burlew) 16
SAS ODS Graphics: Procedures Guide 179
SAS Press 253
SAS programming, future of 245–247
SAS technical support 252–253
SAS XML Mapper 62, 67–68
SAS XPORT transport format 230–231
SAS/ACCESS LIBNAME statement 41
SAS/ACCESS SQL pass-through facility 40–41, 58–59
SAS-L mailing list 252
SCANTEXT option 58
SCANTIME option 58
scatter plots 174, 179–182
SCATTER statement 182, 196, 209
scripting 254
SDLC (system development life cycle) 172, 254–255
SDTM (Study Data Tabulation Model) 5, 19, 83
Secure File Transport Protocol (SFTP) 244, 255
SELECT statement 15, 59, 95
SERIES statement 185
serious adverse events (SAE) 33
SET statement 102
SF-36/SF-12 Health Survey 38
SFTP (Secure File Transfer Protocol) 244, 255
SGANNO= option 179
SGF (SAS Global Forum) 253
SGPANEL procedure 178, 186–189
SGPLOT procedure
 clinical response line plot using 183–185
 clinical trial graphs 178, 179–182, 209–210, 214
 creating a Kaplan-Meier Survival Estimates Plot using 198–201
 creating box plot using 190–192
 creating forest plot using 193–196
 creating Kaplan-Meier Failure Estimates Plot using 202–205
 creating Kaplan-Meier Survival Estimates plot using 206–209
CYCLEATTRS option 189
SGRENDER procedure 213
SGSCATTER procedure 178
shift, laboratory data 145–152
Shilling, Brian
 Validating Clinical Trial Data Reporting with SAS 6, 250
Shostak, Jack
 Common Statistical Methods for Clinical Research with SAS Examples 215
sign test 223
signatures, electronic 6, 246
single-blind trials 4
site management 8
site-based trials 4
SKEWNESS variable 217
Slaughter, Susan
 The Little SAS Book: A Primer 17
Smith, Kevin
 PROC TEMPLATE Made Easy: A Guide for SAS Users 171
Society for Clinical Data Management 251
software, using in clinical trial industry 247
software development life-cycle model (SDLC) 172
SOUNDEX function 24
Spearman correlation coefficient 226
SPSS database 243
SQL (structured query language) 40
SQL procedure 76, 93–95
standards
 changes in 246–247
 industry 4–8
Stata database 243
statistical analysis plan (SAP) 11
Statistical Graphics Procedures by Example: Effective Graphs Using SAS 179, 206
statistical programmers
 being a good student 17
 drug/device development process 3–10
 guiding principles for 10–17
 work description 2
statistically significant association 218
Statisticians in the Pharmaceutical Industry (PSI) 251
statistics, obtaining 226–227
STD variable 217
STDMEAN variable 217
Stokes, Maura
 Categorical Data Analysis Using the SAS System 218
strata 27
stratified N xp test 220
structural query language (SQL) 40
"Study Data Standards for Submissions to CDER" 7, 251
Study Data Tabulation Model (SDTM) 5, 19, 83
study day variables 78
study populations, defining 72–73
study termination form 36
STYLE= option 165, 168, 170
STYLEATTRS statement 189
subject level analysis data set 105
submission of electronic files to FDA 229–232
subsetting data sets 13–14
SUBSTR function 24
SUM variable 217
SUMMARY procedure 218
SUMWGT variable 217
superiority trials 4
survival plots, creating with number at risk 205–209
system development life cycle (SDLC) 172, 254–255
systems development methodology 254–255

T
table shell 130
tables
 about 114–115
 clinical trial table 114–122
 creating 114–159
 creating adverse event summaries 130–139
 creating concomitant or prior medication tables 140–145
 creating Kaplan-Meier Survival Estimates tables 152–159
 creating laboratory shift tables 145–152
 creating with REPORT procedure 118–122
 creating with TABULATE procedure 116–118
 typical continuous/categorical summary tables 122–130
TABLES statement 216, 220
TABULATE procedure 84, 116–118, 218
tasks, programming 11–13
technical skills 254–256
technology, changes in 245–246
TEMPLATE procedure 182
TESS (treatment-emergent signs and symptoms) 32
tests for unequal variances 223
TEXTSIZE option 58
third-party SAS Web pages 254
time-to-event analysis statistics 108–111, 177, 225
Time-to-Event variable 108
TITLE statement 166
tools, for creating clinical trial graphs 178–179
transport format files 69
TRANSPOSE procedure 84–89
transposing data 82–89
treatment-emergent signs and symptoms (TESS) 32
trial-specific baseline data CRF 27
triple-blind trials 4
TTEST procedure 223–224
t-tests 222–223
2x2 test 218–219
two-sample t-tests 223–224
two-sided tests 221

U
UML (Unified Modeling Language) 255
unequal variances, tests for 223
UNIVARIATE procedure 217–218, 221
UNIX environment 170
UPDATE statement 102
USEDDATE option 58
users groups 253
US$ variable 217

V
Validating Clinical Trial Data Reporting with SAS (Shilling and Matthews) 6, 250
variables, defining 72
VBAR Parm statement 189
VBOX statement 189
284 Index

VBScript programming 254
version control software 254

W
W3C 255
Walker, Glenn
 Common Statistical Methods for Clinical
 Research with SAS Examples 215
WHERE clause 14
WHO Drug Dictionary 95
Wilcoxon rank sum test 224
Wilcoxon signed rank test 223
windowing data 78–82

X
XAXIS statement 196
XML files
 about 62–63, 231–232
 SAS XML Mapper 62, 67–68
 XML LIBNAME engine 62, 63–66,
 231–232
XML LIBNAME engine 62, 63–66, 231–232
XML Mapper 62, 67–68
XMLMap Settings tab (SAS XML Mapper) 68
XP (Extreme Programming) 255
XPORT transport format 230–231

Y
YEARCUTOFF option 99–100

Z
zero results 90–93
Jack Shostak, Associate Director of Statistics, manages a group of statistical programmers at the Duke Clinical Research Institute. A SAS user since 1985, he is the author of *SAS Programming in the Pharmaceutical Industry*, and coauthor of *Common Statistical Methods for Clinical Research with SAS Examples, Third Edition*, as well as *Implementing CDISC Using SAS: An End-to-End Guide*. Shostak has published papers for the Pharmaceutical SAS Users Group (PharmaSUG) and the NorthEast SAS Users Group (NESUG), and he contributed a chapter, "Reporting and SAS Tool Selection," in the book *Reporting from the Field*. He is active in the Clinical Data Interchange Standards Consortium (CDISC) community, contributing to the development of Analysis Data Model (ADaM), and he serves as an ADaM trainer for CDISC.
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.