Contents

About This Book ... xiii
About The Author .. xxiii

Chapter 1 Getting Started: Data Analysis with JMP .. 1
Overview .. 1
Goals of Data Analysis: Description and Inference ... 2
Types of Data .. 3
Starting JMP .. 4
A Simple Data Table ... 5
Graph Builder: An Interactive Tool to Explore Data .. 9
Using an Analysis Platform ... 12
Row States ... 14
Exporting JMP Results to a Word-Processor Document .. 17
Saving Your Work ... 18
Leaving JMP ... 19

Chapter 2 Data Sources and Structures ... 21
Overview .. 21
Populations, Processes, and Samples .. 22
Representativeness and Sampling ... 23
 Simple Random Sampling .. 24
 Other Types of Random Sampling .. 26
 Non-Random Sampling ... 26
 Big Data ... 26
Cross-Sectional and Time Series Sampling ... 27
Study Design: Experimentation, Observation, and Surveying 27
Chapter 5 Review of Descriptive Statistics ... 85
Overview ... 85
The World Development Indicators .. 86
 Millennium Development Goals .. 86
Questions for Analysis ... 87
Applying an Analytic Framework .. 88
 Data Source and Structure .. 88
 Observational Units ... 89
 Variable Definitions and Data Types .. 89
Preparation for Analysis ... 90
Univariate Descriptions ... 90
Explore Relationships with Graph Builder .. 93
Further Analysis with the Multivariate Platform .. 96
Further Analysis with Fit Y by X .. 97
Summing Up: Interpretation and Conclusions ... 99
Visualizing Multiple Relationships ... 100

Chapter 6 Elementary Probability and Discrete Distributions 103
Overview ... 103
The Role of Probability in Data Analysis .. 104
Elements of Probability Theory ... 104
 Probability of an Event ... 105
 Rules for Two Events ... 106
 Assigning Probability Values .. 107
Contingency Tables and Probability ... 108
Discrete Random Variables: From Events to Numbers .. 111
Three Common Discrete Distributions .. 111
 Integer Distribution .. 112
 Binomial .. 113
 Poisson ... 115
Simulating Random Variation with JMP .. 116
Discrete Distributions as Models of Real Processes ... 118
Application ... 120
Chapter 10 Inference for a Single Categorical Variable

Overview

Two Inferential Tasks

Statistical Inference is Always Conditional

Using JMP to Conduct a Significance Test

Confidence Intervals

Using JMP to Estimate a Population Proportion

 Working with Casewise Data

 Working with Summary Data

A Few Words About Error

Application

Chapter 11 Inference for a Single Continuous Variable

Overview

Conditions for Inference

Using JMP to Conduct a Significance Test

 More About P-Values

 The Power of a Test

What if Conditions Aren’t Satisfied?

Using JMP to Estimate a Population Mean

Matched Pairs: One Variable, Two Measurements

Application

Chapter 12 Chi-Square Tests

Overview

Chi-Square Goodness-of-Fit Test

 What Are We Assuming?

Inference for Two Categorical Variables

Contingency Tables Revisited

Chi-Square Test of Independence

 What Are We Assuming?

Application

Chapter 13 Two-Sample Inference for a Continuous Variable

Overview

Conditions for Inference
Using JMP to Compare Two Means ... 228
 Assuming Normal Distributions or CLT .. 228
 Using Sampling Weights (optional section) .. 231
 Equal vs. Unequal Variances .. 232
 Dealing with Non-Normal Distributions .. 233
Using JMP to Compare Two Variances .. 235
Application ... 237

Chapter 14 Analysis of Variance ... 241
Overview ... 241
What Are We Assuming? ... 241
One-Way ANOVA .. 243
 Does the Sample Satisfy the Assumptions? ... 245
 Factorial Analysis for Main Effects ... 248
What if Conditions Are Not Satisfied? .. 251
Including a Second Factor with Two-Way ANOVA ... 252
 Evaluating Assumptions .. 254
 Interaction and Main Effects ... 255
Application ... 259

Chapter 15 Simple Linear Regression Inference .. 265
Overview ... 265
Fitting a Line to Bivariate Continuous Data .. 266
The Simple Regression Model .. 269
 Thinking About Linearity ... 270
 Random Error .. 271
What Are We Assuming? ... 271
Interpreting Regression Results .. 272
 Summary of Fit ... 272
 Lack of Fit .. 273
 Analysis of Variance ... 273
 Parameter Estimates and t-tests ... 274
Testing for a Slope Other Than Zero ... 275
Application ... 278
Chapter 16 Residuals Analysis and Estimation 285
Overview... 285
Conditions for Least Squares Estimation... 286
Residuals Analysis ... 287
 Linearity ... 289
 Curvature ... 289
 Influential Observations .. 291
 Normality .. 292
 Constant Variance ... 292
 Independence ... 293
Estimation ... 295
 Confidence Intervals for Parameters 296
 Confidence Intervals for Y|X ... 297
 Prediction Intervals for Y|X ... 298
Application ... 299

Chapter 17 Review of Univariate and Bivariate Inference 305
Overview ... 305
Research Context .. 306
One Variable at a Time ... 306
Life Expectancy by Income Group .. 307
 Checking Assumptions ... 307
 Conducting an ANOVA ... 310
Life Expectancy by GDP Per Capita ... 312
Summing Up .. 314

Chapter 18 Multiple Regression .. 315
Overview .. 316
The Multiple Regression Model .. 316
Visualizing Multiple Regression .. 316
Fitting a Model .. 319
A More Complex Model .. 322
Residuals Analysis in the Fit Model Platform 324
Simple Linear Regression Inference

Overview

In Chapter 4, we learned to summarize two continuous variables at a time using scatterplot, correlations, and line fitting. In this chapter, we’ll return to that subject, this time with the object of generalizing from the patterns in sample data in order to draw conclusions about an entire population. The main statistical tool that we’ll use is known as linear regression analysis. We’ll devote this chapter and the three later chapters to the subject of regression.

Because Chapter 4 is now many pages back, we’ll begin by reviewing some basic concepts of bivariate data and line fitting. Then, we’ll discuss the fundamental model used in simple linear regression. After that, we’ll discuss the crucial conditions necessary for inference, and finally, we’ll see how to interpret the results of a regression analysis.
Fitting a Line to Bivariate Continuous Data

We introduced regression in Chapter 4 using the data table Birthrate 2005. This data table contains several columns related to the variation in the birth rate and the risks related to childbirth around the world as of 2005. In this data table, the United Nations reports figures for 194 countries. Let’s briefly revisit that data now to review some basic concepts, focusing on two measures of the frequency of births in different nations.

1. Open the Birthrate 2005 data table now.

As we did in Chapter 4, let’s look at the columns labeled BirthRate and Fertil. A country’s annual birth rate is defined as the number of live births per 1,000 people in the country. The fertility rate is the mean number of children that would be born to a woman during her lifetime. We plotted these two variables in Chapter 4; let us do that again now.

2. Select Analyze ► Fit Y by X. Cast Fertil as Y and BirthRate as X, and click OK.

Your results will look like those shown in Figure 15.1.

Figure 15.1: Relationship Between Birth Rate and Fertility Rate

This is the same graph that we saw in Figure 4.10. Again, we note that general pattern is upward from left to right: fertility rates increase as the birth rate increases, although there are some countries that depart from the pattern. The pattern can be described as linear, although there is a mild curvature at the lower left. We also see that a large number of countries are concentrated in the lower left, with low birth rates and relatively low maternal mortality.
In Chapter 4, we illustrated the technique of line-fitting using these two columns. Because these two columns really represent two ways of thinking about a single construct (“how many babies?”), let us turn to a different example to expand our study of simple linear regression analysis.

We’ll return to a subset of the NHANES data, and look at two body measurement variables. Because adult body proportions are different from children and because males and females differ, we’ll restrict the first illustrative analysis to male respondents ages 18 and up. Our subset is a simple random sample of 465 observations drawn from the full NHANES data table, representing approximately 5% of the original data.

3. Open the data table called NHANES SRS. This table contains young and female respondents in addition to the males. To use only the males 18 years and older in our analysis, we’ll use the Data Filter.

4. Select Rows ▶ Data Filter.

5. While pressing the CTRL key, highlight RIAGENDR and RIDAGEYR, and click Add.

6. In the Data Filter (see Figure 15.2 after step 6 below), select the Show and Include options (the Select option is already selected).

7. Then click Male under RIAGENDR to include just the male subjects.

8. Finally, click the number 0 to the left RIDAGEYR and replace it with 18. This sets the lower bound for RIDAGEYR to be just 18 years. We want to select any respondent who is a male age 18 or older.

Figure 15.2: Selection Criteria for Males Age 18 and Older
We’ve restricted the analysis to male respondents who are 18 years of age and older. Now we can begin the regression analysis. We’ll examine the relationship between waist circumference and body mass index, or BMI, which is the ratio of a person’s weight to the square of height. In the data table, waist measurements are in centimeters, and BMI is kilograms per square meter. In this analysis, we’ll see if there is a predictable relationship between men’s waist measurements and their BMIs.

We begin the analysis as we have done so often, using the *Fit Y by X* platform.

1. Select *Fit Y by X*. Cast **BMXBMI** as **Y** and **BMXWAIST** as **X** and click **OK**.

This graph (see Figure 15.3) illustrates the first thing that we want to look for when planning to conduct a linear regression analysis—we see a general linear trend in the data. Think of stretching an elliptical elastic band around the cloud of points; that would result in a long and narrow ellipse lying at a slant, which would contain most, if not all, of the points. In fact, we can use JMP to overlay such an ellipse on the graph.

2. Click the red triangle next to **Bivariate Fit** and select **Density Ellipse > 0.95**.

The resulting ellipse appears incomplete because of the default axis settings on our graph. We can customize the axes to show the entire ellipse using the grabber to shift the axes.

Figure 15.3: A Linear Pattern of BMI vs. Waist
Chapter 15: Simple Linear Regression Inference

3. Move the grabber tool near the origin on the vertical axis and slide upward until you see a hash mark below 15 appear on the Y axis. Do the same on the horizontal axis until the waist value of 60 cm appears on the X axis.

This graph is a fairly typical candidate for linear regression analysis. Nearly all of the points lie all along the same sloped axis in the same pattern, with consistent scatter. Before running the regression, let’s step back for a moment and consider the fundamental regression model.

The Simple Regression Model

When we fit a line to a set of points, we do so with a model in mind and with a provisional idea about how we came to observe the particular points in our sample. The reasoning goes like this. We speculate or hypothesize that there is a linear relationship between Y and X such that whenever X increases by one unit (centimeters of waist circumference, in this case), then Y changes, on average, by a constant amount. For any specific individual, the observed value of Y could deviate from the general pattern.

Algebraically, the model looks like this:

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \]

where \(Y_i \) and \(X_i \) are the observed values for one respondent, \(\beta_0 \) and \(\beta_1 \) are the intercept and slope of the underlying (but unknown) relationship, and \(\epsilon_i \) is the amount by which an individual’s BMI departs from the usual pattern. Generally speaking, we envision \(\epsilon_i \) as purely random noise. In short, we can express each observed value of \(Y_i \) as partially reflecting the underlying linear pattern, and partially reflecting a random deviation from the pattern. Look again at Figure 15.3. Can you visualize each point as lying in the vicinity of a line? Let’s use JMP to estimate the location of such a line.

1. Click the red triangle next to Bivariate Fit and select Fit Line.

Now your results will look like Figure 15.4 on the next page. We see a green fitted line that approximates the upward pattern of the points.

Below the graph, we find the equation of that line:

\[\text{BMXBMI} = -5.888872 + 0.3410071 \times \text{BMXWAIST} \]

The slope of this line describes how these two variables co-vary. If we imagine two groups of men whose waist circumferences differ by 1 centimeter, the group with the
larger waists would average BMIs that are 0.34 kg/m\(^2\) higher. As we learned in Chapter 4, this equation summarizes the relationship among the points in this sample. Before learning about the inferences that we might draw from this, let’s refine our understanding of the two chunks of the model: the linear relationship and the random deviations.

Figure 15.4: Estimated Line of Best Fit

![Figure 15.4: Estimated Line of Best Fit](image)

Thinking About Linearity

If two variables have a linear relationship, their scatterplot forms a line or at least suggests a linear pattern. In this example, our variables have a *positive* relationship: as \(X\) increases, \(Y\) increases. In another case, the relationship might be negative, with \(Y\) decreasing as \(X\) increases. But what does it mean to say that two variables have a *linear* relationship? What kind of underlying dynamic generates a linear pattern of dots?

As noted earlier, linearity involves a constant change in \(Y\) each time \(X\) changes by one unit. \(Y\) might rise or fall, but the key feature of a linear relationship is that the shifts in \(Y\) do not accelerate or diminish at different levels of \(X\). If we plan to generalize from our sample, it is important to ask if it is reasonable to expect \(Y\) to vary in this particular way as we move through the domain of realistically possible \(X\) values.
Random Error

The regression model also posits that empirical observations tend to deviate from the linear pattern, and that the deviations are themselves a random variable. We’ll have considerably more to say about the random deviations in Chapter 16, but it is very useful at the outset to understand this aspect of the regression model.

Linear regression analysis doesn’t demand that all points line up perfectly, or that the two continuous variables have a very close (or “strong”) association. On the other hand, if groups of observations systematically depart from the general linear pattern, we should ask if the deviations are truly random, or if there is some other factor to consider as we untangle the relationship between Y and X.

What Are We Assuming?

The preceding discussion outlines the conditions under which we can generalize using regression analysis. First, we need a logical or theoretical reason to anticipate that Y and X have a linear relationship. Second, the default method that we use to estimate the line of best fit works reliably. We know that the method works reliably when the random errors, ε_i, satisfy four conditions:

- They are normally distributed.
- They have a mean value of 0.
- They have a constant variance, σ^2, regardless of the value of X.
- They are independent across observations.

At this early stage in the presentation of this technique, it might be difficult to grasp all of the implications of these conditions. Start by understanding that the following might be red flags to look for in a scatter plot with a fitted line:

- The points seem to bend or oscillate predictably around the line.
- There are a small number of outliers that stand well apart from the mass of the points.
- The points seem snugly concentrated near one end of the line, but fan out toward the other end.
- There seem to be greater concentrations of points distant from the line, but not so many points concentrated near the line.
In this example, none of these trouble signs is present. In the next chapter, we’ll learn more about looking for problems with the important conditions for inference. For now, let’s proceed assuming that the sample satisfies all of the conditions.

Interpreting Regression Results

There are four major sections in the results panel for the linear fit (see Figure 15.5), three of which are fully disclosed by default. We’ve already seen the equation of the line of best fit and discussed its meaning. In this part of the chapter, we’ll discuss the three other sections in order.

Figure 15.5: Regression Results

Summary of Fit
Under the heading Summary of Fit, we find five statistics that describe the fit between the data and the model.

- **RSquare** and **RSquare Adj** both summarize the strength of the linear relationship between the two continuous variables. The RSquare statistics range between 0.0 and 1.0, where 1.0 is a perfect linear fit. Just as in Chapter 4, think of
RSquare as the proportion of variation in \(Y \) that is associated with \(X \). Here, both statistics are approximately 0.86, suggesting that a man’s waist measurement could be a very good predictor of his BMI.

- **Root Mean Square Error** (RMSE) is a measure of the dispersion of the points from the estimated line. Think of it as the sample standard deviation of the random noise term, \(\varepsilon \). When points are tightly clustered near the line, this statistic is relatively small. When points are widely scattered from the line, the statistic is relatively large. Comparing the RMSE to the mean of the response variable (next statistic) is one way to assess its relative magnitude.

- **Mean of Response** is just the sample mean value of \(Y \).

- **Observations** is the sample size. In this table, we have complete waist and BMI data for 107 men.

Lack of Fit

The next heading is **Lack of Fit**, but this panel is initially minimized in this case. Lack of fit tests typically are considered topics for more advanced statistics courses, so we only mention them here without further comment.

Analysis of Variance

These ANOVA results should look familiar if you’ve just completed Chapter 14. In the context of regression, ANOVA gives us an overall test of significance for the regression model. In a one-way ANOVA, we hypothesized that the mean of a response variable was the same across several categories. In regression, we hypothesize that the mean of the response variable is the same regardless of \(X \)—that is to say that \(Y \) does not vary in tandem with \(X \).

We read the table just as we did in the previous chapter, focusing on the F-ratio and the corresponding \(P \)-value. Here F is over 658 and the \(P \)-value is smaller than 0.0001. This probability is so small that it is highly unlikely that the computed F-ratio came about through sampling error. We reject the null hypothesis that waist circumference and BMI are unrelated, and conclude that we’ve found a statistically significant relationship.

Not only can we say that the pattern describes the sample, we can say with confidence that the relationship generalizes to the entire population of men over age 17 in the United States.
Parameter Estimates and t-tests

The final panel in the results provides the estimated intercept and slope of the regression line, and the individual t-tests for each. The slope and intercept are sometimes called the coefficients in the regression equation, and we treat them as the parameters of the linear regression model.

In Figure 15.6, we reproduce the parameter estimate panel, which contains five columns. The first two columns—**Term** and **Estimate**—are the estimated intercept and slope that we saw earlier in the equation of the regression line.

Figure 15.6: Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>|t| |
|-----------|-----------|-----------|---------|-----|
| Intercept | -5.88872 | 1.346137 | -4.37 | <.0001* |
| BMXWAIST | 0.3410071 | 0.013291 | 25.66 | <.0001* |

Because we’re using a sample of the full population, our estimates are subject to sampling error. The **Std Error** column estimates the variability attributable to sampling. The **t Ratio** and **Prob>|t|** columns show the results of a two-sided test of the null hypothesis that a parameter is truly equal to 0.

Why do we test the hypotheses that the intercept and slope equal zero? The reason relates to the slope and what a zero slope represents. If X and Y are genuinely independent and unrelated, then changes in the value of X have no influence or bearing on the values of Y. In other words, the slope of a line of best fit for two such variables should be zero. For this reason, we always want to look closely at the significance test for the slope. Depending on the study and the meaning of the data, the test for the intercept may or may not have practical importance to us.

In a simple linear regression, the ANOVA and t-test results for the slope will always lead to the same conclusion about the hypothesized independence of the response and factor variables. Here, we find that our estimated slope of 0.341 kg/m² change in BMI per 1 cm increase in waist circumference is very convincingly different from 0: in fact, it’s more than 25 standard errors away from 0. It’s inconceivable that such an observed difference is the coincidental result of random sampling.
Testing for a Slope Other Than Zero

In some investigations, we might begin with a theoretical model that specifies a value for the slope or the intercept. In that case, we come to the analysis with hypothesized values of either β_0 or β_1 or both, and we want to test those values. The Fit Y by X platform does not accommodate such significance tests, but the Fit Model platform does. We used Fit Model in the prior chapter to perform a two-way ANOVA. In this example, we’ll use it to test for a specific slope value other than 0.

We’ll illustrate with an example from the field of classical music, drawn from an article by Prof. Jesper Rydén of Uppsala University in Sweden (Rydén 2007). The article focuses on piano sonatas by Franz Joseph Haydn (1732–1809) and Wolfgang Amadeus Mozart (1756–1791) and investigates the idea that these two composers incorporated the golden mean within their compositions. A sonata is a form of instrumental music consisting of two parts. In the first part, the composer introduces a melody—the basic tune of the piece—known formally as the exposition. After the exposition comes a second portion that elaborates upon the basic melody, developing it more fully, offering some variations, and then recapitulating or repeating the melody. Some music scholars believe that Haydn and Mozart strove for an aesthetically pleasing but asymmetric balance in the lengths of the exposition and development or recapitulation sections. More specifically, they might have divided their sonatas (deliberately or not) so that the relative lengths of the shorter and longer portions approximated the golden mean.

The golden mean (sometimes called the golden ratio), characterized and studied in the West at least since the ancient Greeks, refers to the division of a line into a shorter segment a, and a longer segment b, such that the ratio of $a:b$ equals the ratio of $b:(a+b)$. Equivalently,

$$\frac{a}{b} = \frac{b}{a+b} = \phi \approx 0.61803.$$

We have a data table called Mozart containing the lengths, in musical measures, of the shorter and longer portions of 29 Mozart sonatas. If, in fact, Mozart was aiming for the golden ratio in these compositions, then we should find a linear trend in the data. Moreover, it should be characterized by this line:

$$a = 0 + 0.61803(b)$$
So, we’ll want to test the hypothesis that $\beta_1 = 0.61803$ rather than 0.

1. Open the data table called Mozart.

2. Select Analyze ▶ Fit Model. Select Parta as Y, then add Partb as the only model effect, and run the model.

Both the graph and the Summary of Fit indicate a strong linear relationship between the two parts of these sonatas. Figure 15.7 shows the parameter estimates panel from the results.

Figure 15.7: Estimates for Mozart Data

| Term | Estimate | Std Error | t Ratio | Prob>|t| |
|---------|----------|-----------|---------|------|
| Intercept | 1.3596328 | 2.882715 | 0.47 | 0.6410 |
| Partb | 0.6259842 | 0.030851 | 20.29 | <.0001* |

Rounding the estimates slightly we can write an estimated line as $\text{Parta} = 1.3596 + 0.626(\text{Partb})$. On its face, this does not seem to match the proposed equation above. However, let’s look at the t-tests. The estimated intercept is not significantly different from 0, so we cannot conclude that the intercept is other than 0. The hypothesized intercept of 0 is still credible.

Now look at the results for the slope. The estimated slope is 0.6259842, and its standard error is 0.030851. The reported t-ratio of about 20 standard errors implicitly compares the estimated slope to a hypothesized value of 0. To compare it to a different hypothesized value, we’ll want to compute the following ratio:

$$\frac{\text{estimate} - \text{hypothesized}}{\text{std. error}} = \frac{0.6259842 - 0.61803}{0.030851} = 0.2578$$

We can have JMP compute this ratio and its corresponding p-value as follows:

3. Click the red triangle next to Response Parta and select Estimates ▶ Custom Test. Scroll to the bottom of the results report where you will see a panel like the one shown in Figure 15.8.

4. The upper white rectangle is an editable field for adding a title; type Golden Mean in the box.
5. In the box next to Partb, change the 0 to a 1 to indicate that we want to test the coefficient of Partb.

6. Finally, enter the hypothesized value of the golden mean, .61803 in the box next to =, and click the Done button.

Figure 15.8: Specifying the Column and Hypothesized Value

The Custom Test panel now becomes a results panel, presenting both a t-test and an F test, as shown in Figure 15.9. As our earlier calculation showed, the estimated slope is less than 0.26 standard errors from the hypothesized value, which is very close. Based on the large p-value of 0.798, we fail to reject the null hypothesis that the slope equals the golden mean.

Figure 15.9: Custom Test Results
In other words, the golden mean theory is credible. As always, we cannot prove a null hypothesis, so this analysis does not definitively establish that Mozart’s sonatas conform to the golden mean. This is an important distinction in the logic of statistical testing--our tests are able to discredit a null hypothesis with a high degree of confidence, but we cannot confirm a null hypothesis. What we can say is that we have put a hypothesis to the test, and it is still plausible.

Application

Now that you have completed all of the activities in this chapter, use the concepts and techniques that you’ve learned to respond to these questions.

1. **Scenario:** Return to the NHANES SRS data table.
 a. Exclude and hide respondents under age 18 and all males, leaving only adult females. Perform a regression analysis for BMI and waist circumference for adult women, and report your findings and conclusions.
 b. Is waist measurement a better predictor (in other words, a better fit) of BMI for men or for women?
 c. Perform one additional regression analysis, this time looking only at respondents under the age of 17. Summarize your findings.

2. **Scenario:** High blood pressure continues to be a leading health problem in the United States. In this problem, continue to use the NHANES SRS data table. For this analysis, we’ll focus on just the following variables:
 - **RIAGENDR:** respondent’s gender
 - **RIDAGEYR:** respondent’s age in years
 - **BMXWT:** respondent’s weight in kilograms
 - **BPXPLS:** respondent’s resting pulse rate
 - **BPXSY1:** respondent’s systolic blood pressure (“top” number in BP reading)
 - **BPXD1:** respondent’s diastolic blood pressure (“bottom” number in BP reading)
 a. Investigate a possible linear relationship of systolic blood pressure versus age. What, specifically, tends to happen to blood pressure as people age? Would you say there is a strong linear relationship?
 b. Perform a regression analysis of systolic and diastolic blood pressure. Explain fully what you have found.
c. Create a scatterplot of systolic blood pressure and pulse rate. One might suspect that higher pulse rate is associated with higher blood pressure. Does the analysis bear out this suspicion?

3. **Scenario:** We’ll continue to examine the World Development Indicators data in *BirthRate 2005*. We’ll broaden our analysis to work with other variables in that file:
 - **MortUnder5**: deaths, children under 5 years per 1,000 live births
 - **MortInfant**: deaths, infants per 1,000 live births
 a. Create a scatterplot for MortUnder5 and MortInfant. Report the equation of the fitted line and the Rsquare value, and explain what you have found.

4. **Scenario:** How do the prices of used cars vary according to the mileage of the cars? Our data table *Used Cars* contains observational data about the listed prices of three popular compact car models in three different metropolitan areas in the U.S. All of the cars are two years old.
 a. Create a scatterplot of price versus mileage. Report the equation of the fitted line and the Rsquare value, and explain what you have found.

5. **Scenario:** Stock market analysts are always on the lookout for profitable opportunities and for signs of weakness in publicly traded stocks. Market analysts make extensive use of regression models in their work, and one of the simplest ones is known as the *random (or drunkard’s walk)* model. Simply put, the model hypothesizes that over a relatively short period of time the price of a particular share of stock is a random deviation from its price on the prior day. If Y_t represents the price at time t, then $Y_t = Y_{t-1} + \varepsilon$. In this problem, you’ll fit a random walk model to daily closing prices for McDonald’s Corporation for the first six months of 2009 and decide how well the random walk model fits. The data table is called *MCD*.
a. Create a scatterplot with the daily closing price on the vertical axis and the prior day’s closing price on the horizontal. Comment on what you see in this graph.

b. Fit a line to the scatterplot, and test the credibility of the random walk model. Report on your findings.

6. **Scenario:** Franz Joseph Haydn was a successful and well-established composer when the young Mozart burst upon the cultural scene. Haydn wrote more than twice as many piano sonatas as Mozart. Use the data table Haydn to perform a parallel analysis to the one we did for Mozart.

 a. Report fully on your findings from a regression analysis of Parta versus Partb.

 b. How does the fit of this model compare to the fit using the data from Mozart?

7. **Scenario:** Throughout the animal kingdom, animals require sleep and there is extensive variation in the number of hours in a day that different animals sleep. The data table called Sleeping Animals contains information for more than 60 mammalian species, including the average number of hours per day of total sleep. This will be the response column in this problem.

 a. Estimate a linear regression model using gestation as the factor. Gestation is the mean number of days that females of these species carry their young before giving birth. Report on your results and comment on the extent to which gestational period is a good predictor of sleep hours.

 b. Now perform a similar analysis using brain weight as the factor. Report fully on your results and comment on the potential usefulness of this model.

8. **Scenario:** For many years, it has been understood that tobacco use leads to health problems related to the heart and lungs. The Tobacco Use data table contains recent data about the prevalence of tobacco use and of certain diseases around the world.

 a. Using cancer mortality (CancerMort) as the response variable and the prevalence of tobacco use in both sexes (TobaccoUse), run a regression analysis to decide whether total tobacco use in a country is a predictor of the number of deaths from cancer annually in that country.
b. Using cardiovascular mortality (CVMort) as the response variable and the prevalence of tobacco use in both sexes (TobaccoUse), run a regression analysis to decide whether total tobacco use in a country is a predictor of the number of deaths from cardiovascular disease annually in that country.

c. Review your findings in the earlier two parts. In this example, we’re using aggregated data from entire nations rather than individual data about individual patients. Can you think of any ways in which this fact could explain the somewhat surprising results?

9. Scenario: In Chapter 2, our first illustration of experimental data involved a study of the compressive strength of concrete. In this scenario, we look at a set of observations all taken at 28 days (4 weeks) after the concrete was initially formulated. The data table is Concrete28. The response variable is the Compressive Strength column, and we’ll examine the relationship between that variable and two candidate factor variables.

a. Use Cement as the factor and run a regression. Report on your findings in detail. Explain what this slope tells you about the impact of adding more cement to a concrete mixture.

b. Use Water as the factor and run a regression. Report on your findings in detail. Explain what this slope tells you about the impact of adding more water to a concrete mixture.
10. Scenario: Prof. Frank Anscombe of Yale University created an artificial data set to illustrate the hazards of applying linear regression analysis without looking at a scatterplot (Anscombe 1973). His work has been very influential, and JMP includes his illustration among the sample data tables packaged with the software. You’ll find Anscombe both in this book’s data tables and in the JMP sample data tables. Open it now.

a. In the upper-left panel of the data table, you’ll see a red triangle next to the words The Quartet. Click the triangle, and select Run Script. This produces four regression analyses corresponding to four pairs of response and predictor variables. Examine the results closely, and write a brief response comparing the regressions. What do you conclude about this quartet of models?

b. Now return to the results, and click the red triangle next to Bivariate Fit of Y1 By X1; select Show Points and re-interpret this regression in the context of the revised scatterplot.

c. Now reveal the points in the other three graphs. Is the linear model equally appropriate in all four cases?

11. Scenario: Many cities in the U.S. have active used car markets. Typically, the asking price for a used car varies by model, age, mileage, and features. The data table called Used Cars contains asking prices (Price) and mileage (Miles) for three popular budget models; all cars were two years old at the time the data were gathered, and we have data from three U.S. metropolitan areas. All prices are in dollars. In this analysis, Price is the response and Miles is the factor.
a. Because the car model is an important consideration, we’ll begin by analyzing the data for one model: the Civic EX. Use the Data Filter to isolate the Civic EX data for analysis. Run a regression; how much does the asking price decline, on average, per mile driven? What would be a mean asking price for a two-year old Civic EX that had never been driven? Comment on the statistical significance and goodness-of-fit of this model.

b. Repeat the previous step using the Corolla LE data.

c. Repeat one more time using the PT Cruiser data.

d. Finally, compare the three models. For which set of data does the model fit best? Explain your thinking. For which car model are you most confident about the estimated slope?

12. Scenario: We’ll return to the World Development Indicators data in WDI. In this scenario, we’ll investigate the relationship between access to improved sanitation (the percent of the population with access to sewers and the like) and life expectancy. The response column is life_exp and the factor is sani_acc.

a. Use the Data Filter to Show and Include only the observations for the Year 2010, and the Latin America & Caribbean Region nations. Describe the relationship you observe between access to improved sanitation and life expectancy.

b. Repeat the analysis for East Asia & Pacific countries in 2010.

c. Now do the same one additional time for the countries located in Sub-Saharan Africa.

d. How do the three regression models compare? What might explain the differences in the models?
13. **Scenario:** The data table called **USA Counties** contains a wide variety of measures for every county in the United States.

 a. Run a regression casting **sales_per_capita** (retail sales dollars per person, 2007) as **Y** and **per_capita_income** as **X**. Write a short paragraph explaining why county-wide retail sales might vary with per capita income, and report on the strengths and weaknesses of this regression model.

1 Why a subsample? Some of the key concepts in this chapter deal with the way individual points scatter around a line. With a smaller number of observations, we’ll be able to better visualize these concepts.

2 Like all statistical software, JMP uses a default method to line-fitting that is known as *ordinary least squares estimation*, or OLS. A full discussion of OLS is well beyond the scope of this book, but it’s worth noting that these assumptions refer to OLS in particular, not to regression in general.

3 They will have identical *P*-values and the F-ratio will be the square of the *t* ratio.

Index

A
alpha (α) 203–205
alternative hypothesis 183–184
alternative models, evaluating 333–335
analysis
See also specific types
capability 418–421
with Fit Y by X 97–99
with multivariate platform 96–97
trend 371–373
analysis of variance (ANOVA)
about 241
applications 259–264
assumptions about 241–243
conducting 310–311
interpreting regression results 273
one-way 243–251
satisfaction of conditions 251–252
two-way 252–259
analysis platform, using 12–14
analytics frameworks, applying 88–89
ANOVA
See analysis of variance (ANOVA)
applications
analysis of variance (ANOVA) 259–264
chi-square tests 224–226
data 36–37, 57–61
discrete distributions 120–123
experimental design 400–406
forecasting techniques 376–380
linear regression analysis 278–284
multiple regression 335–338
normal model 141–144
probability 120–123
quality improvement 423–426
regression analysis 356–360
residuals analysis 299–304
residuals estimation 299–304
sampling and sampling distributions 164–168
variables 79–83
applying analytics frameworks 88–89
ARIMA (AutoRegressive Integrated Moving
Average) models 373–376
assigning probability values 107–108
assumptions
See also inference, conditions for
about analysis of variance (ANOVA) 241–243
evaluating 254–255
asterisk (*) 187
autocorrelation 362–363, 364
AutoRegressive Integrated Moving Average
(Arima) models 373–376
autoregressive models 373–376
axes, customizing in histograms 52–53

B
bars, customizing in histograms 52–53
beta (β) 203–205
"Big Data" 26
binomial distribution 113–115
bivariate data 63–64
bivariate inference
about 305–307
life expectancy by GDP per capita 312–314
life expectancy by income group 307–311
research context 306
blocking 391–393
blocks 383–384
bootstrapping 206
Box, George 373, 382–383
box plot 47
box-and-whiskers plot 47
bubble plots 78–79

collinearity
about 325
dealing with 332–333
equation 326–332
column properties 7
Column Switcher 95
columns, of data tables 3
combining data from sources 441–444
comparing
two means with JMP 228–235
two variances with JMP 235–236
complement of an event 105
complex sampling 161–163
conditional probability 106
conditional values 221
conducting
analysis of variance (ANOVA) 310–311
significance testing with JMP 183–187, 198–205
confidence band 297
confidence intervals
about 187–188
estimating 182
for parameters 296–297
for $Y|X$ 297–298
confidence limits 57
constant variance 292–293
contingency tables
about 219–221
displaying covariation in categorical variables 68–71
probability and 108–110
continuous columns 3–4
continuous data
fitting lines to bivariate 266–269
probability and 125–126
using Distribution platform for 47–51
continuous variables
inference for single 197–213
one categorical variable and 71–73
sample observations of 176–178
two 73–77
two-sample inference for 227–240

capability analysis 418–421
cases 22
casewise data 188–189
categorical 3
categorical regression models 339
See also regression analysis
categorical variables
distributions of 41–47
inference for 181–195
inference for two 219
one continuous variable and one 71–73
sample observations of 175–176
two 65–71
center of distributions 47, 48
Central Limit Theorem (CLT) 158–161, 228–231
central tendency, of distributions 47, 48
Chart command 44–46
checking data for suitability of normal model 136–140
chi-square distribution 186, 215
chi-square tests
about 215
applications 224–226
contingency tables 219–221
goodness-of-fit test 216–219
of independence 221–223
inference for two categorical variables 219
Classical method, of assigning probabilities 107
CLT (Central Limit Theorem) 158–161, 228, 231
clustering 161–163
Index

control charts
 about 408–409
 for individual observations 409–411
 for means 411–415
 for proportions 415–418
control limits 410, 412
correlation 77

 covariation
 one continuous, one categorical variable 71–73
 two categorical variables 65–71
 two continuous variables 73–77
creating
 data tables 5–9, 34
 pseudo-random normal data 140–141
cross-section 23
cross-sectional data 88
cross-sectional sampling 27
CTRL key 137
cumulative probabilities 115, 130–134
curvature 289
curvilinear regression models 339
 See also regression analysis
curvilinear relationships 347–356
customizing histograms 52–53
cycle pattern 362

D
data
 See also continuous data
 applications 36–37, 57–61
 bivariate 63–64
 casewise 188–189
 checking for suitability of normal model 136–140
 combining from sources 441–444
 cross-sectional 88
 entering from keyboards 432–437
 experimental 27–31
 importing directly from websites 440–441
 longitudinal 88
 matched pairs of 207–209
 moving from Excel files to JMP data tables 437–440
 observational 31, 88
 panel 23
 populations 22–23
 processes 22–23
 raw case data 34–36
 representativeness 23–26
 samples and sampling 22–26
 study design 27–34
 summary 34–36, 190
 survey 31–34
 time-series 88
 types of 3–4, 89

data analysis
 goals of 2
 role of probability in 104
data dictionary 32
Data Filter tool 43–44
Data Grid area 8
data management
 See also data 431
data sources 427–429
data tables
 about 3
 creating 5–9, 34
 moving data from Excel files to JMP 437–440
degrees of freedom (DF) 217
density functions 126–128, 170
description 2
descriptive statistics
 about 85–86
 analysis with Fit Y by X 97–99
 analysis with multivariate platform 96–97
 applying analytics frameworks 88–89
 data source and structure 88
 exploring relationship with Graph Builder 93–96
 interpretation 99
 observational units 89
 preparation for analysis 90
questions for analysis 87–88
univariate descriptions 90–92
variables and data types 89
visualizing multiple relationships 100–101
World Development Indicators (WDI) 86–87
detecting patterns 362–365
DF (degrees of freedom) 217
dichotomous dependent variables 343–346
dichotomous independent variables 340–342
disclosure button 8–9
discrete distributions
about 103
applications 120–123
as models of real processes 118–119
discrete random variables
about 111
three common 111–116
dispersion, of distributions 47, 48
Distribution command 173
Distribution platform, for continuous data 47–51
"distribution-free" methods 223
distributions
See also discrete distributions
binomial 113–115
of categorical variables 41–47
center of 47, 48
central tendency of 47, 48
chi-square 186, 215
dispersion of 47, 48
Hypergeometric 180
integer 112–113
non-normal 233–235
normal 170–172, 228–231
Poisson 115–116
probability 111, 170
of quantitative variables 47–57
theoretical discrete 111
of variables 40–41
dummy variables 340–342
Dunnett's method 249

E
effect likelihood ratio tests 346
equal variances, compared with unequal variances 232
error 191
estimating
confidence intervals 182
population means with JMP 206–207
population proportions with JMP 188–190
evaluating
alternative models 333–335
assumptions 254–255
events
probability of 105
rules for two 106–107
Excel
JMP Add-in for 439–440
moving data to JMP data tables from files in 437–440
excluded rows 15
expected frequency 219
experimental data 27–31
experimental design
about 381–382
applications 400–406
blocks and blocking 383–384, 391–393
factorial designs 384–391
factors 383–384
fractional designs 393–397
goals of 382–383
multi-factor experiments 384–391
randomization 383–384
reasons for experimenting 382
response surface designs 397–400
experimental runs 384
exporting JMP results to word-processor documents 17–18
extraordinary sampling variability 174–178
Index 453

F
factor profiles 256
factorial analysis 248–251
factorial designs 384–391
factors 383–384
Fit Model platform, residuals analysis in 324–325
Fit Y by X, analysis with 97–99
fitting 12
five-number summary 56
fly ash 382
forecasting techniques
about 361
applications 376–380
autoregressive models 373–376
detecting patterns 362–365
smoothing methods 365–371
trend analysis 371–373
fractional designs 393–397
frequency of values 47
full factorial experimental design 385–391

G
Gaussian density function 128
generalization, simulation to 154–155
golden mean 275
goodness-of-fit test 216–219
Gosset, William 207
Grabber 52
Graph Builder
about 9–12
exploring categorical data with 46–47
exploring data with 75
exploring relationships with 93–96
using 54–55
graphing categorical data 44–46
graphs, linked 51

H
Hand tool 52
Haydn, Franz Joseph 275
Help tool 254
heterogeneity of variance 292–293
heteroskedasticity 292–293, 324–325
hidden rows 15
histograms 47, 52–53
Holt, Charles 369
Holt's Method 369–370
homogeneity 235
homogeneity of variance 292–293
homoskedasticity 292–293
Hypergeometric distribution 180
hypothesis testing 182

I
IIP (Index of Industrial Production) 362
importing
data directly from websites 440–441
Excel files from JMP 437–439
independence
about 293–295
chi-square tests of 221–223
independent events 107
Index of Industrial Production (IIP) 362
indicator variables 340–342
individual observations, charts for 409–411
inference
See also bivariate inference
See also linear regression analysis
See also univariate inference
about 2, 197, 227
applications 191–196, 209–213, 237–240
comparing two means with JMP 228–235
comparing two variances with JMP 235–236
conditional status of statistical 182–183
conditions for 197–198, 227–228
conducting significance testing with 183–187
Index

conducting significance testing with JMP 198–205
confidence interval estimation 182, 187–188
estimating population means with JMP 206–207
estimating population proportions with JMP 188–190
matched pairs 207–209
satisfying conditions 205–206
for single categorical variable 181–195
for single continuous variable 197–213
for two categorical variables 219
two-sample 227–240
influential observations 289–291
integer distribution 112–113
interaction effect 252, 255–259
interpretation 99
interpreting regression results 272–278
interquartile range (IQR) 57
inverse cumulative problems, solving 134–136
IQR (interquartile range) 57
irregular pattern 362

J
Jenkins, Gwilym 373
jitter 10, 238
JMP
See also specific topics
Add-in, for Excel 439–440
comparing two means with 228–235
comparing two variances with 235–236
conducting significance testing with 183–187, 198–205
estimating population means with 206–207
estimating population proportions with 188–190
exporting results to word-processor documents 17–18
leaving 19
selecting simple random samples with 147–150
simulating random variation with 116–118
starting 4–5
JMP Scripting Language (JSL) 150
joint probability 106
joint relative frequency 221
joint-frequency table 68–71
JSL (JMP Scripting Language) 150

K
KDD (Knowledge Discovery in Databases) 427
key fields 442
Knowledge Discovery in Databases (KDD) 427
Kruskal-Wallis Test 234

L
label property 7
labeled rows 15
Lack of Fit 273
linear exponential smoothing (Holt's Method) 369–370
linear regression analysis
about 265
applications 278–284
assumptions of 271–272
fitting lines to bivariate continuous data 266–269
interpreting regression results 272–278
simple regression model 269–271
linearity 270, 287–289
linked graphs/tables 51
logarithmic growth 312
logarithmic models 352–356
longitudinal data 88
longitudinal sampling 27
lower fences 57
M

Mann-Whitney U Test 234
margin of error 189
matched pairs 207–209
MDGs (Millennium Development Goals) 86–87
means
 comparing two with JMP 228–235
control charts for 411–415
metadata 6
Millennium Development Goals (MDGs) 86–87
missing data 65, 66
model specification 339
modeling types 3
modifying analysis 67
Mozart, Wolfgang Amadeus 275
multicollinearity 325
multi-factor experiments 384–391
multiple regression
 about 315
 applications 335–338
 collinearity 325–333
 evaluating alternative models 333–335
 fitting a model 319–321
 model 316, 322–323
 residuals analysis in Fit Model platform 324–325
 visualizing 316–319
multivariate platform, analysis with 96–97
mutually exclusive events 106

N

National Health and Nutrition Examination Survey (NHANES) 32
nominal columns 4
non-linear regression models 339
 See also regression analysis
non-linear relationships 347–356
non-normal distributions, comparing two means
 with JMP 233–235
nonparametric equivalent test 251–252
nonparametric methods 223
non-parametric test 205
non-random sampling 26
normal density function 128
normal distributions 170–172, 228–231
normal model
 about 125, 128–129
 applications 141–144
 checking data for suitability of 136–140
 continuous data and probability 125–126
density functions 126–128
generating pseudo-random normal data 140–141
normal calculations 129–136
Normal Probability Plot (NPP) 136–140
Normal Quantile function 135
Normal Quantile Plots 136–140
normality 291–292, 314
NPP (Normal Probability Plot) 136–140
null hypothesis 184

O

observational data 31, 88
observational units 22, 89
observations 3
one-way analysis of variance (ANOVA) 243–251
optimization 383
ordinal columns 4
ordinary least squares estimation (OLS) 284n2
ordinary sampling variability 174–178
outlier box plots 56–57
overlap marks 245

P

panel data 23
panel studies 27
panning axes 53
parameter estimates 274, 346
parameters, confidence intervals for 296–297
Pareto charts 421–423
patterns, detecting 362–365
percentiles 55–56
Pipeline and Hazardous Materials Program (PHMSA) 118–119
Poisson distribution 115–116
polynomial functions 347
population means, estimating with JMP 206–207
population proportions, estimating with JMP 188–190
populations 2, 22–23
post-stratification weights 162
power of a test 203–205
predictability, of risks 23
prediction bands 298
prediction intervals, for Y | X 298
Prediction Variance Profile Plot 398
primitives 101
probability and probabilistic sampling
about 103, 169
applications 120–123
assigning values 107–108
contingency tables and 108–110
continuous data and 125–126
cumulative probabilities 115, 130–134
events, probability of 105
extraordinary sampling variability 174–178
normal distributions 170–172
ordinary sampling variability 174–178
probability distributions and density functions 170
role of in data analysis 104
t distributions 170–172
usefulness of theoretical models 172–174
probability distributions 111, 170
probability of an event (Pr(A)) 105
probability theory 104–108
process capability 418–419
processes
about 22–23
in quality improvement 408
proportions, charts for 415–418
pseudo-random normal data, generating 140–141
p-value 186–187, 191, 201–202

Q
quadratic models 347–351
quality improvement
about 407
applications 423–426
capability analysis 418–421
control charts 408–418
Pareto charts 421–423
processes 408
variation in 408
quantile 55
quantitative 3
quantitative variables, distributions of 47–57

R
random error 271
Random function 140–141
random variation, simulating with JMP 116–118
randomization 23, 383–384
Rasmussen, Marianne 104–105, 110
raw case data 34–36
red triangles 6, 99, 137
regression analysis
See also multiple regression
applications 356–360
curvilinear relationships 347–356
dichotomous dependent variable 343–346
dichotomous independent variables 340–342
interpreting results 273
non-linear relationships 347–356
relationships
curvilinear 347–356
exploring with Graph Builder 93–96
non-linear 347–356
visualizing multiple 100–101
Relative Frequency method, of assigning probabilities 107
re-launching analysis 67
representativeness, of data 23–26
residuals, normality in 314
residuals analysis
about 285, 286–287
applications 299–304
conditions for least squares estimation 286
constant variance 292–293
curvature 289
in Fit Model platform 324–325
independence 293–295
influential observations 289–291
linearity 287–289
normality 291–292
residuals estimation
about 285, 295
applications 299–304
conditions for least squares estimation 286
confidence intervals for parameters 296–297
confidence intervals for \(Y|X \) 297–298
prediction intervals for \(Y|X \) 298
response combinations, to bivariate data 64
response surface 384
response surface designs 397–400
row states 14–17
Rsquare \((r^2) \) 77
Run Chart 362, 409
Rydén, Jesper 275

S
sales lift 397
sample mean, sampling distribution of 156–158
sample proportion, sampling distribution of 150–154
sampling and sampling distributions
about 22–23, 23–24, 145, 174–175
applications 164–168
Central Limit Theorem (CLT) 158–161
clustering 161–163
cross-sectional sampling 27
defined 2
methods of sampling 146–147
non-random 26
reasons for sampling 145–146
of sample mean 156–158
simple random sampling (SRS) 24–26, 146–147, 147–150
from simulation to generalization 154–155
stratification 161–163
time series sampling 23, 27
using JMP to select simple random samples 147–150
variability across samples 150–163
sampling error 23
sampling frame 24, 147
sampling variability, ordinary and extraordinary 174–178
sampling weights, comparing two means with JMP 231–232
saving 18
scatterplot 74–75, 78–79
screening 383
script 150
seasonal pattern 362
selected rows 15
session script, saving 18
shadowgrams 52–53, 128
shape, of distributions 47, 48
Shewhart, Walter 426n1
Shewhart Charts
See control charts
shortest half bracket 57
sidereal period of orbit 347–348
significance testing
about 182
conducting with JMP 183–187, 198–205
simple exponential smoothing 367–369
Simple Moving Average 365–366
simple random sampling (SRS) 24–26, 146–147, 147–150
simple regression model 269–271
simulating
to generalization 154–155
random variation with JMP 116–118
smoothing methods
about 365
linear exponential smoothing (Holt's Method) 369–370
simple exponential smoothing 367–369
Simple Moving Average 365–366
Winters' Method 370–371
solving
cumulative probability problems 130–134
in inverse cumulative problems 134–136
split plot experiment 207
SRS (simple random sampling) 24–26, 146–147, 147–150
standard deviation 56
standard error 159
Standard Normal Distribution 128–129
starting JMP 4–5
stationary time-series 364
statistics
See descriptive statistics
stratification 161–163
study design 27–34
Subjective method, of assigning probabilities 108
summary data 34–36, 190
Summary of Fit 272–273
summary statistics, for single variables 55–56
survey data 31–34

T
t-distributions 159–161, 170–172
Table variable note 7
tables, linked 51
See also data tables
tails, in continuous distributions 132
Test Means command 205
testing, for slopes other than zero 275–278
theoretical discrete distribution 111
time series sampling 23, 27
time-series data 88
transforming the variable 312
treatment effect 242
trend analysis 371–373
trend pattern 362
t-tests 274
Tukey's HSD (Honestly Significant Difference) 249, 251–252
two-sample inference, for continuous variables 227–240
two-way analysis of variance 252–259
two-way table 68–71
Type I error 191
Type II error 191
U
unequal variances, compared with equal variances 232
uniform scaling option 51
union of two events 106
univariate descriptions 90–92
univariate inference
about 305–306, 306–307
life expectancy by GDP per capita 312–314
life expectancy by income group 307–311
research context 306
unusual observations, of distributions 47, 48–51
upper fences 57
V
values
assigning probability 107–108
frequency of 47
variability, across samples 150–163
variables
See also bivariate data
See also categorical variables
See also continuous variables
about 39
applications 79–83
defined 3
descriptive statistics 89
dichotomous dependent 343–346
dichotomous independent 340–342
distributions of 40–41
dummy 340–342
indicator 340–342
quantitative 47–57
summary statistics for single 55–56
transforming 312
types of 40–41

variance
heterogeneity of 292–293
homogeneity of 292–293
variances, comparing two with JMP 235–236
variation, in quality improvement 408
visualizing
multiple regression 316–319
multiple relationships 100–101

W
WDI (World Development Indicators) 86–87
websites
data sources 427–429
importing data directly from 440–441
weighting 161
Welch's test 246
whiskers 57
whole model test 346
Wilcoxon Signed Rank Test 205
Wilson Estimator 189
Winters, Peter 370
Winters' Method 370–371
word-processor documents, exporting JMP
results to 17–18
World Development Indicators (WDI) 86–87

Y
Y-hat 297
Y|X, confidence intervals for 297–298
Y|X, prediction intervals for 298

Z
z-scores 128–129
About The Author

Robert Carver is Professor of Business Administration at Stonehill College in Easton, Massachusetts, and Adjunct Professor at the International Business School at Brandeis University in Waltham, Massachusetts. At both institutions, he teaches courses on business analytics in addition to general management courses, and has won teaching awards at both schools. His primary research interest is statistics education. A JMP user since 2006, Carver holds an A.B. in political science from Amherst College in Amherst, Massachusetts and an M.P.P. and Ph.D. in public policy from the University of Michigan at Ann Arbor.

Learn more about this author by visiting his author page at http://support.sas.com/publishing/authors/carver.html. There you can download free book excerpts, access example code and data, read the latest reviews, get updates, and more.
Gain Greater Insight into Your JMP® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore for additional books and resources.