Contents

Acknowledgments ix
Introducing SAS Software x
About This Book xi
What’s New xiv

Chapter 1 Getting Started Using SAS Software 1
 1.1 The SAS Language 2
 1.2 SAS Data Sets 4
 1.3 DATA and PROC Steps 6
 1.4 The DATA Step’s Built-in Loop 8
 1.5 Choosing a Mode for Submitting SAS Programs 10
 1.6 Windows and Commands in the SAS Windowing Environment 12
 1.7 Submitting a Program in the SAS Windowing Environment 14
 1.8 Reading the SAS Log 16
 1.9 Viewing Your Results 18
 1.10 SAS Data Libraries 20
 1.11 Viewing Data Sets in the Viewtable Window 22
 1.12 Viewing the Properties of Data Sets with SAS Explorer 24
 1.13 Using SAS System Options 26

Chapter 2 Getting Your Data into SAS 29
 2.1 Methods for Getting Your Data into SAS 30
 2.2 Entering Data with the Viewtable Window 32
 2.3 Reading Files with the Import Wizard 34
 2.4 Telling SAS Where to Find Your Raw Data 36
 2.5 Reading Raw Data Separated by Spaces 38
 2.6 Reading Raw Data Arranged in Columns 40
 2.7 Reading Raw Data Not in Standard Format 42
 2.8 Selected Informats 44
2.9 Mixing Input Styles 46
2.10 Reading Messy Raw Data 48
2.11 Reading Multiple Lines of Raw Data per Observation 50
2.12 Reading Multiple Observations per Line of Raw Data 52
2.13 Reading Part of a Raw Data File 54
2.14 Controlling Input with Options in the INFILE Statement 56
2.15 Reading Delimited Files with the DATA Step 58
2.16 Reading Delimited Files with the IMPORT Procedure 60
2.17 Reading Excel Files with the IMPORT Procedure 62
2.18 Temporary versus Permanent SAS Data Sets 64
2.19 Using Permanent SAS Data Sets with LIBNAME Statements 66
2.20 Using Permanent SAS Data Sets by Direct Referencing 68
2.21 Listing the Contents of a SAS Data Set 70

Chapter 3 Working with Your Data 73
3.1 Creating and Redefining Variables 74
3.2 Using SAS Functions 76
3.3 Selected SAS Character Functions 78
3.4 Selected SAS Numeric Functions 80
3.5 Using IF-THEN Statements 82
3.6 Grouping Observations with IF-THEN/ELSE Statements 84
3.7 Subsetting Your Data 86
3.8 Working with SAS Dates 88
3.9 Selected Date Informats, Functions, and Formats 90
3.10 Using the RETAIN and Sum Statements 92
3.11 Simplifying Programs with Arrays 94
3.12 Using Shortcuts for Lists of Variable Names 96

Chapter 4 Sorting, Printing, and Summarizing Your Data 99
4.1 Using SAS Procedures 100
4.2 Subsetting in Procedures with the WHERE Statement 102
4.3 Sorting Your Data with PROC SORT 104
4.4 Changing the Sort Order for Character Data 106
4.5 Printing Your Data with PROC PRINT 108
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Changing the Appearance of Printed Values with Formats</td>
<td>110</td>
</tr>
<tr>
<td>4.7 Selected Standard Formats</td>
<td>112</td>
</tr>
<tr>
<td>4.8 Creating Your Own Formats Using PROC FORMAT</td>
<td>114</td>
</tr>
<tr>
<td>4.9 Writing Simple Custom Reports</td>
<td>116</td>
</tr>
<tr>
<td>4.10 Summarizing Your Data Using PROC MEANS</td>
<td>118</td>
</tr>
<tr>
<td>4.11 Writing Summary Statistics to a SAS Data Set</td>
<td>120</td>
</tr>
<tr>
<td>4.12 Counting Your Data with PROC FREQ</td>
<td>122</td>
</tr>
<tr>
<td>4.13 Producing Tabular Reports with PROC TABULATE</td>
<td>124</td>
</tr>
<tr>
<td>4.14 Adding Statistics to PROC TABULATE Output</td>
<td>126</td>
</tr>
<tr>
<td>4.15 Enhancing the Appearance of PROC TABULATE Output</td>
<td>128</td>
</tr>
<tr>
<td>4.16 Changing Headers in PROC TABULATE Output</td>
<td>130</td>
</tr>
<tr>
<td>4.17 Specifying Multiple Formats for Data Cells in PROC TABULATE Output</td>
<td>132</td>
</tr>
<tr>
<td>4.18 Producing Simple Output with PROC REPORT</td>
<td>134</td>
</tr>
<tr>
<td>4.19 Using DEFINE Statements in PROC REPORT</td>
<td>136</td>
</tr>
<tr>
<td>4.20 Creating Summary Reports with PROC REPORT</td>
<td>138</td>
</tr>
<tr>
<td>4.21 Adding Summary Breaks to PROC REPORT Output</td>
<td>140</td>
</tr>
<tr>
<td>4.22 Adding Statistics to PROC REPORT Output</td>
<td>142</td>
</tr>
<tr>
<td>4.23 Adding Computed Variables to PROC REPORT Output</td>
<td>144</td>
</tr>
<tr>
<td>4.24 Grouping Data in Procedures with User-Defined Formats</td>
<td>146</td>
</tr>
<tr>
<td>Chapter 5 Enhancing Your Output with ODS</td>
<td>149</td>
</tr>
<tr>
<td>5.1 Concepts of the Output Delivery System</td>
<td>150</td>
</tr>
<tr>
<td>5.2 Tracing and Selecting Procedure Output</td>
<td>152</td>
</tr>
<tr>
<td>5.3 Creating SAS Data Sets from Procedure Output</td>
<td>154</td>
</tr>
<tr>
<td>5.4 Creating Text Output</td>
<td>156</td>
</tr>
<tr>
<td>5.5 Creating HTML Output</td>
<td>158</td>
</tr>
<tr>
<td>5.6 Creating RTF Output</td>
<td>160</td>
</tr>
<tr>
<td>5.7 Creating PDF Output</td>
<td>162</td>
</tr>
<tr>
<td>5.8 Customizing Titles and Footnotes</td>
<td>164</td>
</tr>
<tr>
<td>5.9 Customizing PROC PRINT with the STYLE= Option</td>
<td>166</td>
</tr>
<tr>
<td>5.10 Customizing PROC REPORT with the STYLE= Option</td>
<td>168</td>
</tr>
<tr>
<td>5.11 Customizing PROC TABULATE with the STYLE= Option</td>
<td>170</td>
</tr>
</tbody>
</table>
5.12 Adding Traffic-Lighting to Your Output 172
5.13 Selected Style Attributes 174

Chapter 6 Modifying and Combining SAS Data Sets 177
6.1 Modifying a Data Set Using the SET Statement 178
6.2 Stacking Data Sets Using the SET Statement 180
6.3 Interleaving Data Sets Using the SET Statement 182
6.4 Combining Data Sets Using a One-to-One Match Merge 184
6.5 Combining Data Sets Using a One-to-Many Match Merge 186
6.6 Merging Summary Statistics with the Original Data 188
6.7 Combining a Grand Total with the Original Data 190
6.8 Updating a Master Data Set with Transactions 192
6.9 Writing Multiple Data Sets Using the OUTPUT Statement 194
6.10 Making Several Observations from One Using the OUTPUT Statement 196
6.11 Using SAS Data Set Options 198
6.12 Tracking and Selecting Observations with the IN= Option 200
6.13 Selecting Observations with the WHERE= Option 202
6.14 Changing Observations to Variables Using PROC TRANSPOSE 204
6.15 Using SAS Automatic Variables 206

Chapter 7 Writing Flexible Code with the SAS Macro Facility 209
7.1 Macro Concepts 210
7.2 Substituting Text with Macro Variables 212
7.3 Concatenating Macro Variables with Other Text 214
7.4 Creating Modular Code with Macros 216
7.5 Adding Parameters to Macros 218
7.6 Writing Macros with Conditional Logic 220
7.7 Writing Data-Driven Programs with CALL SYMPUT 222
7.8 Debugging Macro Errors 224

Chapter 8 Visualizing Your Data 227
8.1 Concepts of ODS Graphics 228
8.2 Creating Bar Charts 230
8.3 Creating Histograms and Density Curves 232
8.4 Creating Box Plots 234
8.5 Creating Scatter Plots 236
8.6 Creating Series Plots 238
8.7 Creating Fitted Curves 240
8.8 Controlling Axes and Reference Lines 242
8.9 Controlling Legends and Insets 244
8.10 Customizing Graph Attributes 246
8.11 Creating Paneled Graphs 248
8.12 Specifying Image Properties and Saving Graphics Output 250

Chapter 9 Using Basic Statistical Procedures 253
9.1 Examining the Distribution of Data with PROC UNIVARIATE 254
9.2 Creating Statistical Graphics with PROC UNIVARIATE 256
9.3 Producing Statistics with PROC MEANS 258
9.4 Testing Means with PROC TTEST 260
9.5 Creating Statistical Graphics with PROC TTEST 262
9.6 Testing Categorical Data with PROC FREQ 264
9.7 Creating Statistical Graphics with PROC FREQ 266
9.8 Examining Correlations with PROC CORR 268
9.9 Creating Statistical Graphics with PROC CORR 270
9.10 Using PROC REG for Simple Regression Analysis 272
9.11 Creating Statistical Graphics with PROC REG 274
9.12 Using PROC ANOVA for One-Way Analysis of Variance 276
9.13 Reading the Output of PROC ANOVA 278

Chapter 10 Exporting Your Data 281
10.1 Methods for Exporting Your Data 282
10.2 Writing Files Using the Export Wizard 284
10.3 Writing Delimited Files with the EXPORT Procedure 286
10.4 Writing Microsoft Excel Files with the EXPORT Procedure 288
10.5 Writing Raw Data Files with the DATA Step 290
10.6 Writing Delimited and HTML Files Using ODS 292

Chapter 11 Debugging Your SAS Programs 295
11.1 Writing SAS Programs That Work 296
11.2 Fixing Programs That Don’t Work 298
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Searching for the Missing Semicolon</td>
<td>300</td>
</tr>
<tr>
<td>11.4</td>
<td>Note: INPUT Statement Reached Past the End of a Line</td>
<td>302</td>
</tr>
<tr>
<td>11.5</td>
<td>Note: Lost Card</td>
<td>304</td>
</tr>
<tr>
<td>11.6</td>
<td>Note: Invalid Data</td>
<td>306</td>
</tr>
<tr>
<td>11.7</td>
<td>Note: Missing Values Were Generated</td>
<td>308</td>
</tr>
<tr>
<td>11.8</td>
<td>Note: Numeric Values Have Been Converted to Character</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>(or Vice Versa)</td>
<td></td>
</tr>
<tr>
<td>11.9</td>
<td>DATA Step Produces Wrong Results but No Error Message</td>
<td>312</td>
</tr>
<tr>
<td>11.10</td>
<td>Error: Invalid Option, Error: The Option Is Not Recognized,</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>or Error: Statement Is Not Valid</td>
<td></td>
</tr>
<tr>
<td>11.11</td>
<td>Note: Variable Is Uninitialized or Error: Variable Not Found</td>
<td>316</td>
</tr>
<tr>
<td>11.12</td>
<td>SAS Truncates a Character Variable</td>
<td>318</td>
</tr>
<tr>
<td>11.13</td>
<td>SAS Stops in the Middle of a Program</td>
<td>320</td>
</tr>
<tr>
<td>11.14</td>
<td>SAS Runs Out of Memory or Disk Space</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coming to SAS from SQL</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>331</td>
</tr>
</tbody>
</table>
CHAPTER 1

Getting Started Using SAS Software

1.1 The SAS Language 2
1.2 SAS Data Sets 4
1.3 DATA and PROC Steps 6
1.4 The DATA Step’s Built-in Loop 8
1.5 Choosing a Mode for Submitting SAS Programs 10
1.6 Windows and Commands in the SAS Windowing Environment 12
1.7 Submitting a Program in the SAS Windowing Environment 14
1.8 Reading the SAS Log 16
1.9 Viewing Your Results 18
1.10 SAS Data Libraries 20
1.11 Viewing Data Sets in the Viewtable Window 22
1.12 Viewing the Properties of Data Sets with SAS Explorer 24
1.13 Using SAS System Options 26
1.1 The SAS Language

Many software applications are either menu driven, or command driven (enter a command—see the result). SAS is neither. With SAS, you use statements to write a series of instructions called a SAS program. The program communicates what you want to do and is written using the SAS language. There are some menu-driven front ends to SAS, for example SAS Enterprise Guide, which make SAS appear like a point-and-click program. However, these front ends still use the SAS language to write programs for you. You will have much more flexibility using SAS if you learn to write your own programs using the SAS language. Maybe learning a new language is the last thing you want to do, but be assured that although there are parallels between SAS and languages you know (be they English or JAVA), SAS is much easier to learn.

SAS programs A SAS program is a sequence of statements executed in order. A statement gives information or instructions to SAS and must be appropriately placed in the program. An everyday analogy to a SAS program is a trip to the bank. You enter your bank, stand in line, and when you finally reach the teller’s window, you say what you want to do. The statements you give can be written down in the form of a program:

I would like to make a withdrawal.
My account number is 0937.
I would like $200.
Give me five 20s and two 50s.

Note that you first say what you want to do, then give all the information the teller needs to carry out your request. The order of the subsequent statements may not be important, but you must start with the general statement of what you want to do. You would not, for example, go up to a bank teller and say, “Give me five 20s and two 50s.” This is not only bad form, but would probably make the teller’s heart skip a beat or two. You must also make sure that all the subsequent statements belong with the first. You would not say, “I want the largest box you have” when making a withdrawal from your checking account. That statement belongs with “I would like to open a safe deposit box.” A SAS program is an ordered set of SAS statements like the ordered set of instructions you use when you go to the bank.

SAS statements As with any language, there are a few rules to follow when writing SAS programs. Fortunately for us, the rules for writing SAS programs are much fewer and simpler than those for English.

The most important rule is

Every SAS statement ends with a semicolon.

This sounds simple enough. But while children generally outgrow the habit of forgetting the period at the end of a sentence, SAS programmers never seem to outgrow forgetting the semicolon at the end of a SAS statement. Even the most experienced SAS programmer will at least occasionally forget the semicolon. You will be two steps ahead if you remember this simple rule.
Layout of SAS programs There really aren’t any rules about how to format your SAS program. While it is helpful to have a neat looking program with each statement on a line by itself and indentions to show the various parts of the program, it isn’t necessary.

♦ SAS statements can be in upper- or lowercase.
♦ Statements can continue on the next line (as long as you don’t split words in two).
♦ Statements can be on the same line as other statements.
♦ Statements can start in any column.

So you see, SAS is so flexible that it is possible to write programs so disorganized that no one can read them, not even you. (Of course, we don’t recommend this.)

Comments To make your programs more understandable, you can insert comments into your programs. It doesn’t matter what you put in your comments—SAS doesn’t look at it. You could put your favorite cookie recipe in there if you want. However, comments are usually used to annotate the program, making it easier for someone to read your program and understand what you have done and why.

There are two styles of comments you can use: one starts with an asterisk (*) and ends with a semicolon (;). The other style starts with a slash asterisk (/*) and ends with an asterisk slash (/). The following SAS program shows the use of both of these style comments:

```
* Read animals' weights from file;
DATA animals;
  INFILE 'c:\MyRawData\Zoo.dat';
  INPUT Lions Tigers;
PROC PRINT DATA = animals;  /* Print the results */
RUN;
```

Since some operating environments interpret a slash asterisk (/*) in the first column as the end of a job, be careful when using this style of comment not to place it in the first column. For this reason, we chose the asterisk-semicolon style of comment for this book.

Programming tips People who are just starting to learn a programming language often get frustrated because their programs do not work correctly the first time they write them. Writing programs should be done in small steps. Don’t try to tackle a long complicated program all at once. If you start small, build on what works, and always check your results along the way, you will increase your programming efficiency. Sometimes programs that do not produce errors are still incorrect. This is why it is vital to check your results as you go even when there are no errors. If you do get errors, don’t worry. Most programs simply don’t work the first time, if for no other reason than you are human. You forget a semicolon, misspell a word, have your fingers in the wrong place on the keyboard. It happens. Often one small mistake can generate a whole list of errors. If you build your programs piece by piece, programs are much easier to correct when something goes wrong.
1.2 SAS Data Sets

Before you run an analysis, before you write a report, before you do anything with your data, SAS must be able to read your data. Before SAS can analyze your data, the data must be in a special form called a SAS data set. (See section 2.1 for exceptions.) Getting your data into a SAS data set is usually quite simple as SAS is very flexible and can read almost any data. Once your data have been read into a SAS data set, SAS keeps track of what is where and in what form. All you have to do is specify the name and location of the data set you want, and SAS figures out what is in it.

Variables and observations Data, of course, are the primary constituent of any data set. In traditional SAS terminology the data consist of variables and observations. Adopting the terminology of relational databases, SAS data sets are also called tables, observations are also called rows, and variables are also called columns. Below you see a rectangular table containing a small data set. Each line represents one observation, while Id, Name, Height, and Weight are variables. The data point Charlie is one of the values of the variable Name and is also part of the second observation.

<table>
<thead>
<tr>
<th>Variables (Also Called Columns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Data types Raw data come in many different forms, but SAS simplifies this. In SAS there are just two data types: numeric and character. Numeric fields are, well, numbers. They can be added and subtracted, can have any number of decimal places, and can be positive or negative. In addition to numerals, numeric fields can contain plus signs (+), minus signs (-), decimal points (.), or E for scientific notation. Character data are everything else. They may contain numerals, letters, or special characters (such as $ or !) and can be up to 32,767 characters long.

If a variable contains letters or special characters, it must be a character variable. However, if it contains only numbers, then it may be numeric or character. You should base your decision on how you will use the variable. (If disk space is a problem, you may also choose to base your decision on storage size. See section 11.14.) Sometimes data that consist solely of numerals make more sense as character data than as numeric. ZIP codes, for example, are made up of numerals, but it just doesn’t make sense to add, subtract, multiply, or divide ZIP codes. Such numbers make more sense as character data. In the previous data set, Name is obviously a character variable, and Height and Weight are numeric. Id, however, could be either numeric or character. It’s your choice.

Missing data Sometimes despite your best efforts, your data may be incomplete. The value of a particular variable may be missing for some observations. In those cases, missing character data are represented by blanks, and missing numeric data are represented by a single period (.). In the preceding data set, the value of Weight for observation 5 is missing, and its place is marked by a period. The value of Name for observation 6 is missing and is just left blank.
Size of SAS data sets Prior to SAS 9.1, SAS data sets could contain up to 32,767 variables. Beginning with SAS 9.1, the maximum number of variables in a SAS data set is limited by the resources available on your computer—but SAS data sets with more than 32,767 variables cannot be used with earlier versions of SAS. The number of observations, no matter which version of SAS you are using, is limited only by your computer's capacity to handle and store them.

Rules for names of variables and SAS data set members You make up names for the variables in your data and for the data sets themselves. It is helpful to make up names that identify what the data represent, especially for variables. While the variable names A, B, and C might seem like perfectly fine, easy-to-type names when you write your program, the names Sex, Height, and Weight will probably be more helpful when you go back to look at the program six months later. Follow these simple rules when making up names for variables and data set members:

- Names must be 32 characters or fewer in length.
- Names must start with a letter or an underscore (_).
- Names can contain only letters, numerals, or underscores (_). No %$!*&#@, please.¹
- Names can contain upper- and lowercase letters.

This last point is an important one. SAS is insensitive to case so you can use uppercase, lowercase, or mixed case—whichever looks best to you. SAS doesn't care. The data set name heightweight is the same as HEIGHTWEIGHT or HeightWeight. Likewise, the variable name BirthDate is the same as BIRTHDATE and birThDaTe. However, there is one difference for variable names. SAS remembers the case of the first occurrence of each variable name and uses that case when printing results. That is why, in this book, we use mixed case for variable names but lowercase for other SAS names.

Documentation stored in SAS data sets In addition to your actual data, SAS data sets contain information about the data set such as its name, the date that you created it, and the version of SAS you used to create it. SAS also stores information about each variable, including its name, label (if any), type (numeric or character), length (or storage size), and position within the data set. This information is sometimes called the descriptor portion of the data set, and it makes SAS data sets self-documenting.

¹ It is possible to use special characters, including spaces, in variable names if you use the system option VALIDVARNAMES=ANY and a name literal of the form 'variable-name'. Starting with SAS 9.3, some special characters are allowed in SAS data set names when not running in the SAS windowing environment.
1.3 DATA and PROC Steps

SAS programs are constructed from two basic building blocks: DATA steps and PROC steps. A typical program starts with a DATA step to create a SAS data set and then passes the data to a PROC step for processing. Here is a simple program that converts miles to kilometers in a DATA step and prints the results with a PROC step:

```
DATA and PROC steps are made up of statements. A step may have as few as one or as many as hundreds of statements. Most statements work in only one type of step—in DATA steps but not PROC steps, or vice versa. A common mistake made by beginners is to try to use a statement in the wrong kind of step. You're not likely to make this mistake if you remember that DATA steps read and modify data while PROC steps analyze data, perform utility functions, or print reports.

DATA steps start with the DATA statement, which starts, not surprisingly, with the word DATA. This keyword is followed by a name that you make up for a SAS data set. The DATA step above produces a SAS data set named DISTANCE. In addition to reading data from external, raw data files, DATA steps can include DO loops, IF-THEN/ELSE logic, and a large assortment of numeric and character functions. DATA steps can also combine data sets in just about any way you want, including concatenation and match-merge.

Procedures, on the other hand, start with a PROC statement in which the keyword PROC is followed by the name of the procedure (PRINT, SORT, or MEANS, for example). Most SAS procedures have only a handful of possible statements. Like following a recipe, you use basically the same statements or ingredients each time. SAS procedures do everything from simple sorting and printing to analysis of variance and 3D graphics.

A step ends when SAS encounters a new step (marked by a DATA or PROC statement); a RUN, QUIT, STOP, or ABORT statement; or, if you are running in batch mode, the end of the program. RUN statements tell SAS to run all the preceding lines of the step and are among those rare, global statements that are not part of a DATA or PROC step. In the program above, SAS knows that the DATA step has ended when it reaches the PROC statement. The PROC step ends with a RUN statement, which coincides with the end of the program.
While a typical program starts with a DATA step to input or modify data and then passes the data to a PROC step, that is certainly not the only pattern for mixing DATA and PROC steps. Just as you can stack building blocks in any order, you can arrange DATA and PROC steps in any order. A program could even contain only DATA steps or only PROC steps.

To review, the table below outlines the basic differences between DATA and PROC steps:

<table>
<thead>
<tr>
<th>DATA steps</th>
<th>PROC steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin with DATA statements</td>
<td>begin with PROC statements</td>
</tr>
<tr>
<td>read and modify data</td>
<td>perform specific analysis or function</td>
</tr>
<tr>
<td>create a SAS data set</td>
<td>produce results or report</td>
</tr>
</tbody>
</table>

As you read this table, keep in mind that it is a simplification. Because SAS is so flexible, the differences between DATA and PROC steps are, in reality, more blurry. The table above is not meant to imply that PROC steps never create SAS data sets (most do), or that DATA steps never produce reports (they can). Nonetheless, you will find it much easier to write SAS programs if you understand the basic functions of DATA and PROC steps.
1.4 The DATA Step’s Built-in Loop

DATA steps read and modify data, and they do it in a way that is flexible, giving you lots of control over what happens to your data. However, DATA steps also have an underlying structure, an implicit, built-in loop. You don’t tell SAS to execute this loop: SAS does it automatically. Memorize this:

**DATA steps execute line by line and observation by observation.**

This basic concept is rarely stated explicitly. Consequently, new users often grow into old users before they figure this out on their own.

The idea that DATA steps execute line by line is fairly straightforward and easy to understand. It means that, by default, SAS executes line one of your DATA step before it executes line two, and line two before line three, and so on. That seems common sense, and yet new users frequently run into problems because they try to use a variable before they create it. If a variable named Z is the product of X and Y, then you better make sure that the statements creating X and Y come before the statements creating Z.

What is not so obvious is that while DATA steps execute line by line, they also execute observation by observation. That means SAS takes the first observation and runs it all the way through the DATA step (line by line, of course) before looping back to pick up the second observation. In this way, SAS sees only one observation at a time.

Imagine a SAS program running in slow motion: SAS reads observation number one from your input data set. Then SAS executes your DATA step using that observation. If SAS reaches the end of the DATA step without encountering any serious errors, then SAS writes the current observation to a new, output data set and returns to the beginning of the DATA step to process the next observation. After the last observation has been written to the output data set, SAS terminates the DATA step and moves on to the next step, if there is one. End of slow motion; please return to normal gigahertz.

This diagram illustrates how an observation flows through a DATA step:
SAS reads observation number one and processes it using line one of the DATA step, then line two, and so on until SAS reaches the end of the DATA step. Then SAS writes the observation in the output data set. This diagram shows the first execution of the line-by-line loop. Once SAS finishes with the first observation, it loops back to the top of the DATA step and picks up observation two. When SAS reaches the last observation, it automatically stops.

Here is an analogy. DATA step processing is a bit like voting. When you arrive at your polling place, you stand in line behind other people who have come to vote. When you reach the front of the line you are asked standard questions: “What is your name? Where do you live?” Then you sign your name, and you cast your vote. In this analogy, the people are observations, and the voting process is the DATA step. People vote one at a time (or observation by observation). Each voter’s choices are secret, and peeking at your neighbor’s ballot is definitely frowned upon. In addition, each person completes each step of the process in the same order (line by line). You cannot cast your vote before you give your name and address. Everything must be done in the proper order.

If this seems a bit too structured, SAS offers a number of ways to override the line-by-line and observation-by-observation structure. These include the RETAIN statement (discussed in section 3.10) and the OUTPUT statement (discussed in sections 6.9 and 6.10).
1.5 Choosing a Mode for Submitting SAS Programs

So far we have talked about writing SAS programs, but simply writing a program does not give you any results. Just like writing a letter to your representative in Congress does no good unless you mail it, a SAS program does nothing until you submit or execute it. You can execute a SAS program several ways, but not all methods are available for all operating environments. Check the SAS Help and Documentation for your operating environment to find out which methods are available to you. The method you choose for executing a SAS program will depend on your preferences and on what is most appropriate for your application and your environment. If you are using SAS at a large site with many users, then ask around and find out which is the most accepted method of executing SAS. If you are using SAS on your own personal computer, then choose the method that suits you.

SAS windowing environment If you type SAS at your system prompt, or click the SAS icon, you will most likely get into the SAS windowing environment (also known as Display Manager). In this interactive environment, you can write and edit SAS programs, submit programs for processing, and view and print your results. In addition, there are many SAS windows for performing different tasks such as managing SAS files, customizing the interface, accessing SAS Help and Documentation, and importing or exporting data. Exactly what your windowing environment looks like depends on the type of computer you are using, the operating environment on the computer, and what options are in effect when you start up SAS. If you are using a personal computer, then the SAS windowing environment will look similar to other programs on your computer, and many of the features will be familiar to you. The following figure shows the SAS windowing environment in Microsoft Windows.
SAS Enterprise Guide  If you have SAS Enterprise Guide software, which runs only under Windows, you may choose to submit your programs from within SAS Enterprise Guide. To do this, open a Program window where you can type in your SAS program or open an existing SAS program. The program editor in SAS Enterprise Guide (starting with version 4.3) displays automatic syntax help as you type your program, and there is a program analyzer that will generate a diagram of your program to help you visualize the parts and how they fit together. You can choose to run your code on the local machine, or on a remote server where SAS is installed. To run your SAS program on a remote server, you may need to have additional SAS software installed. Also, SAS Enterprise Guide can write SAS code for you through its extensive menu system. SAS Enterprise Guide is project based, so all your programs, results, and references to data are stored in one project file. The following figure shows a project in SAS Enterprise Guide 4.3.

Batch or background mode  With batch or background mode, your SAS program is in a file. You submit the file for processing with SAS. Your SAS program may start executing immediately, or it could be put in a queue behind other jobs. Batch processing is used a lot on mainframe computers. You can continue to work on your computer while your job is being processed, or better yet, you can go to the baseball game and let the computer work in your absence. Batch processing is usually less expensive than other methods and is especially good for large jobs which can be set up to execute during off-hours when the rates are at their lowest. When your job is complete, the results will be placed in a file or files, which you can display or print at any time.

To find out how to submit SAS programs for batch processing, check the SAS Help and Documentation for your operating environment, or check with other SAS users at your site. Even sites with the same operating environment may have different ways of submitting jobs in batch mode.
The Little SAS Book

1.6 Windows and Commands in the SAS Windowing Environment

The SAS windowing environment (also known as Display Manager) adopts the look and feel of your operating environment. This is good for you because many aspects of the SAS windowing environment will be familiar. But there are many ways in which you can customize your SAS environment if you want. This makes writing about it challenging, because we can’t tell you exactly what your SAS session will look like and how it will behave. However, there are common elements between the various operating environments, and you will probably already be familiar with those elements which are different.

The SAS Windows

There are five basic SAS windows: the Results and Explorer windows, and three programming windows: Editor, Log, and Output. In the Windows operating environment a sixth window, the Results Viewer appears if you run a program that generates printable results. Sometimes the windows are not immediately visible. For example, in the Windows operating environment, the Output window initially appears behind the Editor and Log windows. There are also many other SAS windows that you may use for tasks such as getting help, changing SAS system options, and customizing your SAS session. The following figure shows the windows for a Microsoft Windows SAS session, with pointers to the main SAS windows.

**Editor** This window is a text editor. You can use it to type in, edit, and submit SAS programs as well as edit other text files such as raw data files. In Windows operating environments, the default editor is the Enhanced Editor. The Enhanced Editor is syntax sensitive and color codes your programs making it easier to read them and find mistakes. The Enhanced Editor also allows you to collapse and expand the various steps in your program. For other operating environments, the default editor is the Program Editor whose features vary with the version of SAS and operating environment.
Log  The Log window contains notes about your SAS session, and after you submit a SAS program, any notes, errors, or warnings associated with your program as well as the program statements themselves will appear in the Log window.

Output  In the z/OS operating environment, all tabular results will appear in the Output window. By default, in the Windows and UNIX environments, nothing appears in the Output window. But if you turn on the LISTING destination (see section 5.4), then results will appear in the Output window.

Results Viewer  In the Windows operating environment, if your program generates any printable results, then the Results Viewer window will open and display the results.

Results  The Results window is like a table of contents for your Output and Results Viewer windows; the results tree lists each part of your results in an outline form.

Explorer  The Explorer window gives you easy access to your SAS files and libraries.

The SAS Commands
There are SAS commands for performing a variety of tasks. Some tasks are probably familiar, such as opening and saving files, cutting and pasting text, and accessing Help. Other commands are specific to the SAS System, such as submitting a SAS program. You may have up to three ways to issue commands: menus, the toolbar, or the SAS command bar (or command line). The following figure shows the location of these three methods of issuing SAS commands in the Windows operating environment default view.

Menus  Most operating environments will have pull-down menus located either at the top of each window, or at the top of your screen. If your menus are at the top of your screen, then the menus will change when you activate the different windows (usually by clicking on them). You may also have, for each window, context-sensitive pop-up menus that appear when you click the right or center button of your mouse.

Toolbar  The toolbar, if you have one, gives you quick access to commands that are already accessible through the pull-down menus. Not all operating environments have a toolbar.

SAS command bar  The command bar is a place that you can type in SAS commands. In some operating environments the command bar is located with the toolbar (as shown here); in other operating environments you may have a command line with each of the SAS windows (usually indicated by Command=>). Most of the commands that you can type in the command bar are also accessible through the pull-down menus or the toolbar.

Controlling your windows  The Window pull-down menu gives you choices on how the windows are placed on your screen. You can also activate any of the programming windows by selecting it from the Window pull-down menu, or by simply clicking the window.
Submitting a Program in the SAS Windowing Environment

Naturally after going to the trouble of writing SAS programs, you want to see some results. As we have already discussed, there are several ways of submitting SAS programs. If you use the SAS windowing environment, then you can edit and submit programs, and see results all within the windowing environment.

Getting your program into the editor  The first thing you need to do is get your program into the Editor window. You can either type your program into the editor, or you can bring the program into the Editor window from a file. The commands for editing in the editor and for opening files should be familiar. SAS tries to follow conventions that are common for your operating environment. For example, to open a file in the editor, you can select File ► Open from the menu bar. For some operating environments you may have an Open icon on the toolbar, and you may also have the option of pasting your file into the editor from the clipboard.

Submitting your program  Once your program appears in the editor, you execute it (either the whole program or a part you have highlighted) using the SUBMIT command. Depending on your operating environment, you have a few choices on how to execute the SUBMIT command. First click the Editor window to make it active. Then do one of the following:

Click the Submit button on the toolbar.

Enter SUBMIT in the command line area of your SAS session.

Select Run ► Submit from the menu bar.

Viewing the SAS Log and Results  In the Windows operating environment, after you submit your program, the program remains in the Enhanced Editor window and the results of your program go into the Log and Results Viewer windows. In the UNIX environment, your results go into the Log window and a separate web browser window, while in z/OS your results go into the Log and Output windows. For both UNIX and z/OS, after submitting your program it disappears from the Program Editor window. At first it may be a shock for you to see your program disappear in front of your eyes.

Don’t worry; the program you spent so long writing is not gone forever. If your program produced any output, then you will also get new entries in the Results window. The Results window is like a table of contents for your SAS output and is discussed in more detail in section 1.9. The following figure is an example of what your screen might look like after you submit a program from the Enhanced Editor in the Windows environment.
You may not see all the windows at the same time. In some operating environments, the windows are placed one on top of the other. In this figure the Explorer window is under the Results window and the Output and Log windows are beneath the Enhanced Editor and Results Viewer windows. You can bring a window to the top by clicking it or its tab, typing its name in the command line area, or selecting it from the Window menu.

**Getting your program back**  Unfortunately for most of us, our programs do not run perfectly every time. If you have an error in your program, you will most likely want to edit the program and run it again. If you are using the Enhanced Editor, then your program will remain in the window after you submit it. However, if you are using the Program Editor window, you will need to get your program back in the Program Editor window using the RECALL command. You have two choices for executing the RECALL command.

Make the Program Editor the active window, then enter RECALL in the command line area of your SAS session.

Make the Program Editor the active window, then select Run ➤ Recall Last Submit from the menu bar.

The RECALL command will bring back the last block of statements you submitted. If you use the RECALL command again, it will insert the block of statements submitted before the last one, and so on and so on, until it retrieves all the statements you submitted.
Reading the SAS Log

Every time you submit a SAS program, SAS writes messages in your log. Many SAS programmers ignore the SAS log and go straight to the output. That’s understandable, but dangerous. It is possible—and sooner or later it happens to all of us—to get bogus results that look fine in the output. The only way to know they are bad is to check the SAS log. Just because it runs doesn’t mean it’s right.

Where to find the SAS log The location of the SAS log varies depending on the operating environment you use, the mode you use (SAS windowing environment or batch), and local settings. If you submit a program in the windowing environment, you will, by default, see the SAS log in your Log window as in the following figure.

Marathon.sas, then it is a good bet that your log file will be Marathon.log.

What the log contains People tend to think of the SAS log as either a rehash of their program or as just a lot of gibberish. OK, we admit, there is some technical trivia in the SAS log, but there is also plenty of important information. Here is a simple program that converts miles to kilometers and prints the result:

```sas
* Create a SAS data set named distance;
* Convert miles to kilometers;
DATA distance;
Miles = 26.22;
Kilometers = 1.61 * Miles;
RUN;
* Print the results;
PROC PRINT DATA = distance;
RUN;
```
If you run this program, SAS will produce a log similar to this:

```
1 * Create a SAS data set named distance;
2 DATA distance;
3 Miles = 26.22;
4 Kilometers = 1.61 * Miles;
5 RUN;
6
7 * Print the results;
8 PROC PRINT DATA = distance;
9 RUN;
```

The SAS log above is a blow-by-blow account of how SAS executes the program.

1. It starts with notes about the version of SAS and your SAS site number.
2. It contains the original program statements with line numbers added on the left.
3. The DATA step is followed by a note containing the name of the SAS data set created (WORK.DISTANCE), and the number of observations (1) and variables (2). A quick glance is enough to assure you that you did not lose any observations or accidentally create a lot of unwanted variables.
4. Both DATA and PROC steps produce a note about the computer resources used. At first you probably won’t care in the least. But if you run on a multi-user system or have long jobs with large data sets, these statistics may start to pique your interest. If you ever find yourself wondering why your job takes so long to run, a glance at the SAS log will tell you which steps are the culprits.

If there were error messages, they would appear in the log, indicating where SAS got confused and what action it took. You may also find warnings and other types of notes which sometimes indicate errors and other times just provide useful information. Chapter 11 discusses several of the more common errors SAS users encounter.
1.9 Viewing Your Results

How you view your output depends on what operating environment you are using and how you submit your program.

**SAS windowing environment** If you submit your program in the SAS windowing environment under Microsoft Windows, then your output will, by default, go to the Results Viewer window and be displayed in HTML. Under UNIX, your output will also be displayed in HTML by default, but it will be displayed in a separate web browser window. Under z/OS, output will display as text in the Output window.

**Batch mode** If you submit your program in batch mode, then your output will be in a file on your computer and you would use your operating environment’s commands to view the output file (also called the listing). For example, if you execute your SAS program in batch mode on a UNIX system, then your output will be in a file with an extension .lst. To view the file, you can use either the `cat` or `more` commands.

**Results Viewer window** After submitting your program in the SAS windowing environment under Microsoft Windows, your results will go to the Results Viewer window. The Results Viewer window is automatically opened and appears on top of any of the other programming windows that are open. The following figure shows what your Results Viewer window might look like after submitting a program containing an ANOVA (Analysis of Variance) procedure. Notice that the Results Viewer window is automatically scrolled down so that you see the end of the procedure’s output.
Results window  When you have a lot of output, the Results window can be very helpful. The Results window is like a table of contents for your output. It lists each procedure that produces output, and if you open or expand the procedure in the Results tree, you can see each part of the procedure output. Expand the results tree, by clicking the plus (+) signs, or by right-clicking the result and selecting Expand All.

Double-click the output you want to see, and it will appear at the top of the Results Viewer window. The following figure shows what your Results Viewer window would look like after double-clicking the Overall ANOVA item in the Results Viewer window.
1.10 SAS Data Libraries

Before you can use a SAS data set, you have to tell SAS where to find it. You do that by setting up a SAS library. A SAS library is simply a location where SAS data sets (as well as other types of SAS files) are stored. Depending on your operating environment, a SAS library might be a folder or directory on your computer, or it might be a physical location like a hard drive, flash drive, or CD.

To set up a library, all you have to do is make up a name for your library and tell SAS where it is. There are several ways to do this including using the LIBNAME statement (covered in sections 2.18 to 2.19) and using the New Library window in the SAS windowing environment.

When you start the SAS windowing environment, you see the basic SAS windows including the SAS Explorer window on the left. (If the Explorer window is under the Results window, click its tab to bring it forward.) If you double-click the Libraries icon, Explorer will open the Active Libraries window showing all the libraries that are currently defined. To go back to the previous window within Explorer, choose View ▶ Up one level from the menu bar, or click the Explorer window to make it active, and then click the Up One Level button on the toolbar.

**Active Libraries window** When you open the Active Libraries window, you will see at least three libraries: SASHELP, SASUSER, and WORK. You may have other libraries for specific SAS products (such as the MAPS library for SAS/GRAPH software), or libraries that have been set up by you or someone you work with. The SASHELP library contains information that controls your SAS session along with sample SAS data sets. The WORK library is a temporary storage location for SAS data sets. It is also the default library. If you create a SAS data set without specifying a library, SAS will put it in the WORK library, and then delete it when you end your session. If you make changes to the default settings for the SAS windowing environment, this information will be stored in the SASUSER library. You can also store SAS data sets, SAS programs, and other SAS files in the SASUSER library. However, many people prefer to create a new library for their SAS files.
Creating a new library  You can create new SAS libraries using the New Library window. To open this window, either select Tools ▶ New Library from the menu bar, or right-click the Active Libraries window and choose New from the pop-up menu.

In the New Library window, type the name of the library you want to create. This name is called a libref, which is short for library reference. A libref must be 8 characters or fewer; start with a letter or underscore; and contain only letters, numerals, or underscores. In this window, the name BIKES has been typed in as the libref. In the Path field, enter the complete path to the folder or directory where you want your data sets to be stored, or click the Browse… button to navigate to the location. If you don’t want to define your library reference every time you start up SAS, then check the Enable at startup box. Click OK and then your new library reference will appear in the Active Libraries window.

Here is the Active Libraries window showing the newly created BIKES library.
1.11 Viewing Data Sets in the Viewtable Window

In addition to listing your current libraries and creating new libraries, you can also use SAS Explorer to open SAS data sets for viewing in Viewtable. When you are writing programs, it is always a good idea to check the data sets you create to make sure they are correct. Viewtable is one way you can look at your SAS data sets.

Start by double-clicking the Libraries icon in the Explorer window as shown in the previous section. This will open the Active Libraries window showing all the libraries that are currently defined on your system. If you double-click a library icon, SAS will open a Contents window showing you all the SAS files in that particular library.

To go back to the previous window within Explorer, choose View ► Up one level from the menu bar, or click the Explorer window to make it active, and then click the Up One Level button on the toolbar.

**Contents window**  This window shows the contents of a library. SAS data sets are represented by an icon showing a little table of data and a red ball. The library shown on the right contains three data sets named CUSTOMERS, MODELS, and ORDERS. If you double-click a data set, SAS will open a Viewtable window showing that data set. (If you don’t yet have any SAS data sets of your own, you can view sample data sets that are provided with SAS in the SASHELP library. The CLASS data set in the SASHELP library is a good one to view.)

**Viewtable window**  This window allows you to create, browse, and edit data sets. When you first open SAS data sets, the data are in browse mode so you cannot make any changes. To switch to edit mode, select Edit ► Edit Mode from the menu bar. Creating and editing data sets using Viewtable is discussed in more detail in section 2.2. This picture shows the data set named MODELS from the BIKES library.
**Changing column headings**  By default, Viewtable uses variable labels for column headings, or, if a variable does not have a label, the variable name is displayed. Sometimes you may want to see the actual variable names instead of the labels. To do this, click the Viewtable window to make it active, then select **View ▶ Column Names** from the menu bar. Here is the MODELS SAS data set showing the column (also called variable) names instead of the labels.

**Column options**  If you right-click a column heading, several options will appear in the pop-up menu. You can control colors, fonts, and view the column attributes. You can choose to sort the data by the values in the column. If you are not in edit mode, then you are given the option of creating a new data set containing the sorted data. You can also hide or hold columns. If you choose to hide a column, the data will not be visible in the current Viewtable session. To unhide a column, select **Data ▶ Hide/Unhide** from the menu bar to open the Hide/Unhide window. In this window you can change the visibility of all columns. When you choose to hold a column, it and every column to the left of it will always be visible, even when you scroll to the right.
1.12 Viewing the Properties of Data Sets with SAS Explorer

The Properties window for a SAS data set contains some very useful information, such as the date and time the data set was created, the number of observations, all the variable names, and the attributes of the variables. The Properties window contains information similar to the output produced by the CONTENTS procedure described in section 2.21.

Opening the Properties window To open the Properties window, start by double-clicking the Libraries icon in the Explorer window and then double-clicking the library containing the SAS data set. SAS will display the contents of the library in the Explorer window. Right-click the icon for the data set, and select Properties from the pop-up menu. This opens the Properties window with the General tab on top. This figure shows what the Properties window looks like in the Microsoft Windows operating environment.

**General tab** This window displays information about the data set such as the date it was created and the number of rows (or observations) and columns (or variables).
Columns tab  If you click the Columns tab, SAS displays information about the columns (or variables) in that data set. The variable name, type, and length are displayed along with any formats or informats assigned to the variable. The variable labels are also displayed in this window, but to see them you need to scroll to the right.

If you have lots of variables in your data set, using the sort and find features can make your work easier. You can sort any of these columns alphabetically by clicking the column heading. This window shows the variables sorted by name. You can find a column by typing its name in the box labeled Find column name.
1.13 Using SAS System Options

System options are parameters you can change that affect SAS—how it works, what the output looks like, how much memory is used, error handling, and a host of other things. SAS makes many assumptions about how you want it to work. This is good. You do not want to specify every little detail each time you use SAS. However, you may not always like the assumptions SAS makes. System options give you a way to change some of these assumptions.

Not all options are available for all operating environments. A list of options specific to your operating environment appears in the SAS Help and Documentation. You can see a list of system options and their current values by opening the SAS System Options window, or by using the OPTIONS procedure. To use the OPTIONS procedure, submit the following SAS program and view the results in the SAS log:

```sas
PROC OPTIONS;
RUN;
```

There are four ways to specify system options. Some options can be specified using only some of these methods. The SAS Help and Documentation for your operating environment tells you which methods are valid for each system option:

1. Create a SAS configuration file which contains settings for the system options. This file is accessed by SAS every time SAS is started. Configuration files are created by systems administrators. (This could be you if you are using a PC.)
2. Specify system options at the time you start up SAS from your system's prompt (called the invocation).
3. Change selected options in the SAS System Options window if you are using the SAS windowing environment.
4. Use the OPTIONS statement as a part of your SAS program.

The methods are listed here in order of increasing precedence; method 2 will override method 1, method 3 will override method 2, and so forth. If you are using the SAS windowing environment, methods 3 and 4, the SAS System Options window and OPTIONS statement, will override each other—so whichever was used last will be in effect. Only the last two methods are covered here. The first two methods are very system dependent; to find out more about these methods see the SAS Help and Documentation for your operating environment.

**OPTIONS statement**  The OPTIONS statement is part of a SAS program and affects all steps that follow it. It starts with the keyword OPTIONS and follows with a list of options and their values. For example

```sas
OPTIONS LEFTMARGIN = 1IN NODATE;
```

The OPTIONS statement is one of the special SAS statements which do not belong to either a PROC or a DATA step. This global statement can appear anywhere in your SAS program, but it usually makes the most sense to let it be the first line in your program. This way you can easily see which options are in effect. If the OPTIONS statement is in a DATA or PROC step, then it affects that step and the following steps. Any subsequent OPTIONS statements in a program override previous ones.
SAS System Options window
You can view and change SAS system options through the SAS System Options window. Open it either by typing OPTIONS in the command line area on your screen, or by selecting Tools ▶ Options ▶ System from the menu bar. To change the value of an option, first locate the option by clicking the appropriate category on the left side of the screen. A list of options and their current values will appear on the right side of the screen. Right-click the option itself to modify the value or set it to the default.

Options for printed results The following are some system options you might want to use that affect the appearance of results in formats meant for printing (in other words not HTML):

- **CENTER | NOCENTER**
  - controls whether output is centered or left-justified. Default is CENTER.

- **DATE | NODATE**
  - controls whether or not today’s date will appear at the top of each page of output. Default is DATE.

- **NUMBER | NONUMBER**
  - controls whether or not page numbers appear on each page of SAS output. Default is NUMBER.

- **ORIENTATION = orientation**
  - specifies the orientation for printing output, either LANDSCAPE or PORTRAIT. Default is PORTRAIT.

- **PAGENO = n**
  - starts numbering output pages with n. Default is 1.

- **RIGHTMARGIN = n**
- **LEFTMARGIN = n**
- **TOPMARGIN = n**
- **BOTTOMMARGIN = n**
  - specifies the size of the margin (such as 0.75in or 2cm) to be used for printing output. Default is 0.00in.
Index

A
ACROSS usage option 136, 138-139
ACROSS= option in KEYLEGEND statement 244
Active Libraries window 20-22
AFTER location in REPORT procedure 140-141
age, calculating 88-89
AGREE option in FREQ procedure 264, 266
AGREEMENTPLOT option in TTEST procedure 262
AGREEPLOT option in FREQ procedure 266
ALL keyword in TABULATE procedure 126
ALL option in TTEST procedure 262
ALPHA= option
fitted curves 240
MEANS procedure 258-259
TTEST procedure 260
VBAR or HBAR statement 230
analysis of variance 276-279
ANALYSIS usage option 136-137
AND operator 82-83, 102
annotation in graphics 244-245
ANOVA procedure 276-279
ANYALNUM function 78-79
ANYALPHA function 78-79
ANYDIGIT function 78-79
ANYDTDTEw. informat 44-45, 90-91
ANYSPACE function 78-79
arithmetic operators 74-75
ARRAY statement 94-95
arrays
SAS arrays 94-95
ASCII files 36
ASCII sort order 106
assignment statements 74-75
dates 88-89
functions 76-79
ATTRIB statement 318
attributes, style
PRINT procedure 166-167
REPORT procedure 168-169
table of 174-175
TABULATE procedure 170-171
autocall library, macro 217
automatic variables
_ERROR_ 206
_N_ 206-207
FIRST.byvariable 206-207
LAST.byvariable 206-207
macro 214-215
axes, controlling in graphs 242-243
AXIS= option in REFLINE statement 242

B
BACKGROUND style attribute 174-175
BACKGROUNDIMAGE style attribute 174-175
bar charts 230-231, 266-267
BARWIDTH= option in VBAR or HBAR statement 230
batch mode 11
BCOLOR= option in TITLE statement 164-165
BEFORE location in REPORT procedure 140
BESTw. format 112-113
BETA option for distribution plots 256
BETWEEN AND operator 102
BINSTART= option in HISTOGRAM statement 232
BINWIDTH= option in HISTOGRAM statement 232-233
BMP image format 250-251
BODY= option in ODS HTML statement 158-159
BODYTITLE option in ODS RTF statement 160-161
BOLD option in TITLE statement 164-165
bolding in graphics 246-247
BON option in ANOVA procedure 276
Bonferroni t tests 276
BORDER option in INSET option 244
BOTTOMMARGIN= system option 27
Bowker’s test 264
box plots 234-235, 276-277
BOX= option in TABULATE procedure 128-129
BOXPLOT option in TTEST procedure 262
BREAK statement in REPORT procedure 140-141
BY groups, definition 104
BY statement 100
  compared to PANELBY 249
  FIRST.byvariable 206-207
  ID statement with BY 189
  LAST.byvariable 206-207
  MEANS procedure 118-119
  MERGE statement 184-187
  PRINT procedure 108-109
  SET statement 182-183
  SORT procedure 104-107
  TRANPOSE procedure 204-205
  UPDATE statement 192-193
BY variables
  definition 104
  FIRST. and LAST. 206-207
  sorting 104-107

C
CALL SYMPUT 222-223
capitalization in SAS programs xiii, 5
CARDS statement 36
CAT function 78-79
CATEGORY= option
  HBOX or VBOX statement 234-235
CATS function 78-79
CATX function 78-79
CDFPLOT statement in UNIVARIATE procedure 256
CENTER system option 27
CHAR option in REPORT procedure 144-145
character data
  converting to numeric 310-311
  definition 4
  formats 112-113
  functions 78-79
  informats 44-45
  length 318-319
  sorting 106-107
  truncation error 318-319
character-values-converted note 310-311
charts, bar 230-231
chi-square statistic with FREQ procedure 264-266
CHISQ option in FREQ procedure 264-266
CHTML destination 292
CI= option in TTEST procedure 260
CLASS statement
  ANOVA procedure 276-279
  MEANS procedure 118
  STYLE= option in TABULATE procedure 170
  TABULATE procedure 124-133
  TTEST procedure 260
CLASSLEV statement in TABULATE procedure 172
CLM option in fitted curves 240-241
CLM option in MEANS procedure 258-259
CLMTRANSPARENCY= option in fitted curves 240
CLOSE option
  ODS HTML statement 158-159
  ODS LISTING statement 156-157
  ODS PDF statement 162-163
  ODS RTF statement 160-161
Cochran-Armitage test 264
Cochran-Mantel-Haenszel statistics 264
Cochran’s Q test 264
coded data, custom formats 114-115
coefficient of variation
  ANOVA procedure 278-279
  MEANS procedure 258
  REG procedure 272
COLAXIS statement 248
collating sequence 106
colon informat modifier 48-49
color
  graph attributes 246
  PRINT procedure 166-167
  REPORT procedure 168-169
  style attributes 174-175
  style templates 151
  TABULATE procedure 170-171
COLOR= option for graph attributes 246
COLOR= option in TITLE statement 164
Column Attributes window 32
COLUMN location in STYLE= option 168-169
column pointers
@'character' 48-49
n 46-47, 290-291
+n 43
COLUMN statement in REPORT procedure 134-143
column-style input 40-41
columns of data
definition 4
Viewtable window 32-33
COLUMNS= option
ODS PDF statement 162
ODS RTF statement 160-161
PANELBY statement 248
combining SAS data sets
concatenating data sets 180-181
grand total with original data 190-191
interleaving data sets 182-183
merging summary statistics 188-189
one observation with many 190-191
one-to-many match merge 186-189
one-to-one match merge 184-185
selecting observations during a merge 200-201
stacking data sets 180-181
updating a master data set 192-193
command bar in SAS windowing environment 13
commas
reading comma-delimited data 58-61
reading numbers containing commas 42, 44-45
writing comma-delimited data 284-287, 292-293
writing numbers containing commas 112-113
COMMAw.d format 112-113
COMMAw. informat 44-45
COMMAXw. informat 44-45
comments
* ; 3
*/ */ 3
*/ */ in z/OS 320
unmatched 320-321
comparison operators 82-83, 102-103
compile and execute phases 222
COMPRESS function 78-79
COMPRESS= data set option 323
COMPUTE statement in REPORT procedure 144-145
COMPUTED usage option 136, 144-145
concatenating SAS data sets 180-181
concatenation
function 78-79
operator, | 79
conditional statements
macro 220-221
standard 82-87
confidence limits 258-264
plotting 240-241
CONFIDENCE option in CORR procedure 270
constants
ASCII 58
character 74
date 88-89
hexadecimal 58
name 5
numeric 74
CONTAINS operator 102
CONTENTS procedure 70-71
debugging programs 317
POSITION option 96
Contents window 22
CONTENTS= option in ODS HTML statement 158-159
converting character to numeric and vice versa 310-311
COOKSD option in REG procedure 274
CORR procedure 268-271
correlations 268-269
counts, frequency 122-123, 126-127, 142-143, 146-147
CREATE statement in SQL procedure 326
cross-tabulations 122-123, 126-127, 146-147
CSS option in MEANS procedure 258
CSV destination 292-293
CSV files
  reading 58-61
  writing 284-287, 292-293
CSV value in the DBMS= option
  EXPORT procedure 286
  IMPORT procedure 60
CSVALL destination 292
CUMFREQPLOT option in FREQ procedure 266
cumulative distribution function plots 256
cumulative totals
  FREQ procedure 123
  sum statement in DATA step 92-93
CURVELABEL= option
  fitted curves 240
  SERIES statement 238
custom formats, FORMAT procedure 114-115
CV option in MEANS procedure 258

D
DATA _NULL_
  writing custom reports 116-117
  writing raw data files 290-291
data dictionary 70-71
data engines 31
data entry with Viewtable window 32-33
DATA location in STYLE= option 166-167
data set options
  compared to statement options 198-199
  compared to system options 198-199
  COMPRESS= 323
  DROP= 198-199, 323
  FIRSTOBS= 198-199, 297
  IN= 198-201
  KEEP= 198-199, 323
  LABEL= 70-71
  OBS= 198-199, 297
  RENAME= 198-199
data sets, SAS
  changing observations to variables 204-205
  combining a grand total with data 190-191
  combining one observation with many 190-191
  compressing 323
  concatenating 180-181
  contents of 22-25, 70-71
  creating from procedure output 154-155
  definition 4
  interleaving data sets 182-183
  inverting, TRANSPOSE procedure 204-205
  LABEL= data set option 198-199
  merging summary statistics 188-191
  merging, one-to-many 186-189
  merging, one-to-one 184-185
  modifying a single data set 178-179
  names 5
  options 70-71, 198-203, 329-330
  permanent 64-69
  permanent, examples 103, 178-179, 192-193, 289
  printing 108-109
  properties of 24-25
  reading a single data set 178-179
  saving 64-69
  saving summary statistics to 120-121, 154-155
  selecting observations during a merge 200-201
  size 5
  sorting 104-107
  stacking data sets 180-181
  subsetting IF statement 86-87
  subsetting OUTPUT statement 194-195
  subsetting WHERE statement 102-103, 328-330
  subsetting WHERE= data set option 198, 202-203, 329-330
  temporary versus permanent 64-65
  updating a master data set 192-193
  Viewtable window 22-23, 32-33
  WORK library 20, 64-65
  writing multiple data sets 194-195
Index 335

DATA statement  6-7
_DATA_ data set name  116-117, 290-291
multiple data sets  194-195
permanent data sets  64-69
DATA step  6-9
built-in loop  8-9
combining SAS data sets  180-201
creating and modifying variables  74-97
definition  6
reading a single SAS data set  178-179
reading raw data files  30-31, 36-59
writing raw data files  290-291
wrong results, no message  312-313
data types  4
assignment statements  74-75
converting, character to numeric  310-311
converting, numeric to character  310-311
data, reading  30-31, 34-63
column style  40-41
c comma-separated values  58-61
delimited data  58-61
internal  36
messy data  48-49
methods for getting into SAS  30-31
missing data at end of line  57
mixing input styles  46-47
multiple lines of data per observation  50-51
multiple observations per line of data  52-53, 197
non-standard format  42-43
part of a data file  54-55, 297
PC files  34-35, 62-63
skipping lines of raw data  50-51, 56
skipping over variables  40-41
space-delimited  38-39
variable length records  57
variable length values  48-49
data, writing  282-293
delimited  284-287, 290-293
methods  282-283
PC files  284, 288-289
raw data  284-287, 290-293
DATA= option  100, 198-199
DATAFILE= option in IMPORT procedure  60-63
DATALABEL= option
SCATTER statement  236
SERIES statement  238
VBAR or HBAR statement  230
DATALINES statement  36
DATAROWS= statement in the IMPORT procedure  60
DATASTMTCHECK= system option  301
DATE system option  27
DATEJUL function  80-81, 90-91
dates  88-91
automatic macro variables  214-215
constants  88-89
converting dates  80-81, 88-89
definition of a SAS date  88
formats, table of  90-91, 112-113
functions, table of  80-81, 90-91
informs, table of  44-45, 90-91
Julian dates  90-91
printing current date on output  27
reading raw data with  42-43
setting default century  88
today’s date  80-81, 88-91
DATETIMEw. informat  44-45
DATETIMEw.d format  112-113
DATEw. format  90-91, 112-113
DATEw. informat  44-45, 90-91
DAY function  80-81, 90-91
dBase files
reading  34-35
writing  284
DBMS= option
EXPORT procedure  286-289
IMPORT procedure  60-63
DDMMYYw. informat  44-45, 90-91
debugging SAS programs  296-323
avoiding errors  296-297
fixing errors  298-299
INPUT reached past end of line  302-303, 305
invalid data  305-307
invalid option  314-315
debugging SAS programs  (continued)
  lost card  304-305
  macros  224-225
  missing semicolon  300-301
  missing values were generated  308-309
  option not recognized  314-315
  out of memory or disk space  322-323
  SAS stops in middle of job  320-321
  statement not valid  314-315
  truncation of character data  318-319
  values have been converted  310-311
  variable not found  316-317
  variable uninitialized  316-317
  wrong results, no message  312-313
decimal places
  printing data  110-111
  reading data  42-43
DEFINE statement in REPORT procedure  136-139, 144-145
DELETE statement  86-87
deleting
  observations  86-87
  variables  198-199
delimited data
  reading  58-61
  writing  284-287, 292-293
DELIMITER= option
  FILE statements  290
  INFILE statements  58-59
DELIMITER= statement in IMPORT procedure  60-61
density curves  232-233
DENSITY statement in SGPLOT procedure  232-233
DESCENDING option in SORT procedure  104-105
descriptive statistics  118-143, 254-259
destinations, output
  CSV  150
  DOCUMENT  150
  for graphics  229, 250-251
  HTML  150-151, 158-159
  LISTING  150, 156-157, 229
  MARKUP  150
  OUTPUT  150
  PDF  150, 162-163
  PRINTER  150-151
  PS  150
  RTF  150-151, 160-161
  XML  150
DEVIA TIONPLOT option in FREQ procedure  266
DIAGNOSTICS option in REG procedure  274-275
dictionary, data  70-71
dimensions in TABULATE procedure  124-127
dimensions of graph images  250
DISCRETE option in XAXIS or YAXIS statement  242-243
DISCRETEOFFSET= option in VBAR or HBAR statement  230
disk space, running out of  322-323
Display Manager  10-23
DISPLAY usage option  136
dividing
  data file  54-55
  SAS data set  194-195, 202-203, 329-330
DLM value in the DBMS= option
  EXPORT procedure  286
  IMPORT procedure  60
DLM= option
  FILE statements  290
  INFILE statements  58-59
DLMSTR= option in INFILE statements  58
DO statement  82-83
  arrays  94-95
  with OUTPUT statement  196
DOCUMENT destination  150
documenting
  data sets  70-71, 198-199
  programs  3
dollar signs
  printing data  112-113
  reading data  42, 44-45
DOLLARw.d format  112-113
DOWN= option in KEYLEGEND statement  244
DPI= option in ODS statement 251
DROP= data set option 198-199, 323
DSD option
  FILE statements 290
  INFILE statements 58-59
DTDATETw. format 112-113
DTRESE T option in ODS RTF statement 161
DUNCAN option in ANOVA procedure 276
Duncan’s multiple range test 276
duplicate observations, eliminating 104-105
DUPOUT= option in SORT procedure 104

E
EBCDIC sort order 106
editing data with Viewtable window 32-33
editing graphs 229
editor 12, 14-15
  RECALL command 15
  SUBMIT command 14
Syntax Sensitive 297
ELLIPSE= option in CORR procedure 270
ELSE statement 84-85
END statement 82-83
ENDCOMP statement in REPORT procedure 144-145
engines, data 31
Enhanced Editor 12, 14-15
entering data with Viewtable window 32-33
EQ comparison operator 82, 102
equations
  assignment statements 74-75
generating data 196
errors
  avoiding errors 296-297
  fixing errors 298-299
INPUT reached past end of line 302-303, 305
invalid data 306-307
invalid option 314-315
lost card 304-305
missing semicolon 300-301
missing values were generated 308-309
option not recognized 314-315
out of memory or disk space 322-323
SAS stops in middle of job 320-321
statement not valid 314-315
truncation of character data 318-319
values have been converted 310-311
variable not found 316-317
variable uninitialized 316-317
wrong results, no message 312-313
EURDFDDw. format 90-91, 112-113
EUROXw.d format 112-113
Ew. format 112-113
EXACT option in FREQ procedure 264
EXCEL engine 31
Excel files
  reading 34-35, 62-63
  writing 284, 288-289
excluding output objects 153
executing SAS programs
  methods 10-11
  SAS windowing environment 14-15
Explorer window 12-13, 20-22
EXPONENTIAL option in distribution plots 256
EXPORT procedure
  delimited files 286-287
  Excel files 288-289
  WHERE= data set option 202-203
Export Wizard 284-285
exporting data 282-293
  delimited files 284-287, 290-293
  methods 282-283
  PC files 284, 288-289
  raw data files 284-287, 290-293
to other software 284, 288
expressions
  mathematical 74-75
  using dates 88-89
  using functions 76-77
external data 36-37
EXTREME option in HBOX or VBOX statement 234
F

F value
  ANOVA procedure 278-279
  REG procedure 272

FILE statement
  DLM= option 290
  DSD option 290
  PRINT option 116-117
  writing raw data files 290-291
  writing reports 116-117

FILE= option
  for graphics 250
  ODS HTML statement 158-159
  ODS LISTING statement 156-157
  ODS PDF statement 162-163, 250
  ODS RTF statement 160-161, 250

FILLATTRS= option for graph attributes 246
FIRST.byvariable 206-207
FIRSTOBS= option
  data set option 198-199, 297
  INFILE statement 56, 297

Fisher’s exact test 264

fit plots 274-275
FITPLOT option in REG procedure 274-275

fitted curves 240-241

flat files 30, 36

FLYOVER style attribute 174-175

font
  graph attributes 246-247
  style attributes 174-175

FONT_FACe style attribute 174-175

FONT_SIZE style attribute 174-175

FONT_STYLE style attribute 174-175

FONT_WEIGHT style attribute 174-175

FONT= option in TITLE statement 164-165

FOOTNOTE statement 100-101, 164-165

FOREGROUND style attribute 174-175

FORMAT procedure 114-115
  grouping with 146-147
  with SGPLOT procedure 231, 267
  with TABULATE procedure 130-131

FORMAT statement 70-71, 110-111
  DATA step compared to PROC step 110

FORMAT= option in TABULATE procedure 128-129, 132-133

formats
  ATTRIB statement 318
  dates 89-91
  FORMAT statement 70-71, 110-111
  grouping with 146-147
  input formats 42-45
  table of 112-113
  use 110-111
  user-defined 114-115, 146-147

formatted style input 42-43

FRAME= option in ODS HTML statement 158-159

free formatted style input 38-39

FREQ procedure 122-123, 264-267

FREQPLOT option in FREQ procedure 266-267

frequency tables 122-127, 142-143, 264-265

functions
  dates 88-91
  INPUT function 311
  PUT function 311
  table of 78-81, 90-91
  use 76-77

G

gamma 264

GAMMA option in distribution plots 256

GE comparison operator 82, 102

generating data
  DO and OUTPUT statements 196

GETNAMES= statement 60-61

GIF image format 250

global macro variables 210-211

GPATH= option in ODS statement 251

GRANDTOTAL location in STYLE= option 166

graphics, ODS 228-229
  ANOVA procedure 276-277
  CORR procedure 270-271
  FREQ procedure 266-267
  image formats 250
  image properties 250-251
  insets 244-245
Index 339

- legends 244-245
- REG procedure 274-275
- saving graphs 250-251
- SGPANEL procedure 248-249
- SGPLOT procedure 230-241
- style attributes 246-247
- TTEST procedure 262-263
- UNIVARIATE procedure 256-257
- GRID option in XAXIS or YAXIS statement 242
- GROUP usage option 136, 138-139
- GROUP= option
  - fitted curves 240
  - HBOX or VBOX statement 234
  - SCATTER statement 236-237
  - SERIES statement 238
  - VBAR statement 230
- GROUPDISPLAY= option in VBAR or HBAR statement 230-231
- GROUPHORIZONTAL option in FREQ procedure 266-267
- grouping observations
  - BY statement 100
  - FREQ procedure 122-123
  - IF-THEN/ELSE statements 84-85
  - MEANS procedure 118-119
  - REPORT procedure 136-139
  - SORT procedure 104-107
  - TABULATE procedure 124-125
  - traffic-lighting 172-173
  - user-defined format 146-147, 172-173
- GT comparison operator 82, 102
- GUESSINGROWS= statement in the IMPORT procedure 61

H
- H0= option in TTEST procedure 260
- HBAR statement in SGPLOT procedure 230
- HBOX statement 234
- HEADER location in STYLE= option 166-168
- headers
  - changing in TABULATE output 130-131
  - reading raw data 56
  - specifying style for 166-171
- HEIGHT= option
  - ODS GRAPHICS statement 250-251
  - TITLE statement 164-165
- hexadecimal data
  - constants 58
- HIGH keyword in FORMAT procedure 114-115
- HISTOGRAM option
  - CORR procedure 270
  - TTEST procedure 262
- HISTOGRAM statement
  - SGPLOT procedure 232-233
  - UNIVARIATE procedure 256-257
  - histograms 232-233, 256-257, 262, 270
  - HOEFFDING option in CORR procedure 268
- HTML data files, writing 292-293
- HTML output 150-151, 158-159
- hypertext links, style attribute 174-175
- HyperText Markup Language 150-151, 158-159

I
- ID statement
  - BY statement with ID 189
  - PRINT procedure 108
  - TRANSPOSE procedure 204-205
- IF statement, subsetting 86-87
- IF-THEN statements 84-85
- IF-THEN/ELSE statements 82-83
- IMAGE_DPI= option in ODS statement 84-85
- IMAGENAME= option in ODS GRAPHICS statement 251
- importing data
  - delimited files 60-61
  - PC files 62-63
  - WHERE= data set option 202-203
- Import Wizard 34-35
- images
  - inserting in output 174-175
  - saving 250-251
- IMPORT procedure
  - delimited files 60-61
  - PC files 62-63
  - WHERE= data set option 202-203
- importing data
  - delimited 34-35, 60-61
  - from other software 34-35, 62-63
- methods 30-31
- PC files 34-35, 62-63
IN operator 102
in-stream data 36
IN= data set option 198-201
indention in SAS programs 3
INDEX function 78-79
INFILE statement 36-37
   DELIMITER= option 58-59
   DLM= option 58-59
   DSD option 58-59
   examples by operating environment 36-37
   FIRSTOBS= option 56, 297
   LRECL= option 37
   MISSOVER option 57, 303
   OBS= option 56, 297
   TRUNCOVER option 57, 303
INFORMAT statement 70-71
   ATTRIB statement 318
   colon modifier 48-49
   dates 88-91
   INFORMAT statement 70-71
   invalid data 306-307
   table of 44-45
   use 42-43
input formats 42-47
INPUT function 310-311
INPUT statement
   column style 40-41
   data with embedded blanks 40-41
   delimited data 58-59
   formatted style 42-45
   free formatted 38-39
   list style 38-39
   mixing input styles 46-47
   multiple INPUT statements 54-55, 197
   multiple lines per observation 50-51
   multiple observations per line 52-53
   reading blanks as missing 40-41
   reading non-standard data 42-43
   reading part of a raw data file 54-55
   skipping lines of raw data 50-51
   skipping over variables 40-41
   space-delimited 38-39
   INSERT statement in SQL procedure 326-328
   INSET statement 244-245
   INT function 80-81
   integer data
      data types 4
      truncating decimal places 80-81
   interleaving SAS data sets 182-183
   internal data 36
   internet browser, creating files for 158-159
   INTERVALPLOT option in TTEST procedure 262
   invalid data message in log 306-307
      lost card note 305
   invalid option message in log 314-315
   inverting data sets 204-205
   IS NOT MISSING operator 102
   ITALIC option in TITLE statement 164-165
   italics, explanation of usage xiii
   iterative logic 94-95
J
JMP files
   reading 34
   writing 284
JPEG image format 250
Julian dates 90-91
JULIANw. format 90-91, 112-113
JULIANw. informat 44-45, 90-91
JUST style attribute 169, 171, 174-175
justification
   character variables 78-79
   output 27
      style attributes 169, 171, 174-175
   titles and footnotes 164-165
JUSTIFY= option in TITLE statement 164-165
K
kappa statistics 264
KAPPA PLOT option in FREQ procedure 266
KEEP= data set option 198-199, 323
KENDALL option in CORR procedure 268
Kendall’s tau-b 264, 268
kernel density plot 232-233
KERNEL option in DENSITY statement 232-233
KEYLEGEND statement 244-245
kurtosis
  MEANS procedure 258
  UNIVARIATE procedure 254-255
KURTOSIS option in MEANS procedure 258

LABEL option in PRINT procedure 108
LABEL statement 70-71, 101
  SGPLOT procedure 231
  TABULATE procedure 130
LABEL= option
  data set option 198-199
  REFLINE statement 242-243
  XAXIS or YAXIS statement 242-243
LABELATTRS= option for graph attributes 246-247
labels
  ATTRIB statement 318
  data set 70-71, 198-199
  value 114-115
  variable 70-71, 101
  variable in Viewtable 23
lambda 264
LAST.byvariable 206-207
LCLM option in MEANS procedure 258
LEFT function 78-79
LEFTMARGIN= system option 27
legends for graphs 244-245
length of a variable 71, 318-319, 322-323
LENGTH statement
  character data 318-319, 322-323
  numeric data 322-323
LENGTH= option in REPORT procedure 144-145
LIBNAME statement 66-67
library, SAS data 20-22, 64-69
libref 21, 64-69
LIMITSTAT= option in VBAR or HBAR statement 230
line plots 238-239
line pointers
  / 50-51, 290
  #n 50-51, 290
line-hold specifiers
  @ compared to @@ 55
  @, trailing 54-55, 290
  @@, double trailing 52-53
line, graph attributes 246-247
LINEAR option in XAXIS or YAXIS statement 242
LINEATTRS= option for graph attributes 246-247
LINGUISTIC sort option 106-107
links, style attributes for hypertext 174-175
LIST option in FREQ procedure 122
list style input 38-39
LISTING output 150, 156-157, 229, 250
lists, variable names 96-97
local macro variables 210-211
LOCATION= option in KEYLEGEND statement 244-245
locations in STYLE= option 166-169
loess curves 240-241
LOESS statement in SGPLOT procedure 240-241
LOG function 80-81
LOG option in XAXIS or YAXIS statement 242
Log window
  SAS windowing environment 12-13, 14-15
log, SAS 16-17
  errors, warnings, and notes 298-299
  notes when reading raw data 37
  notes when writing raw data files 291
  writing in with PUT statements 312-313
LOG10 function 80-81
logarithmic functions 80-81
logical operators 82-83, 102-103
logical record length of raw data files 37
LOGNORMAL option in distribution plots 256
loop
  DATA step, built-in 8-9
  DO loop 94-95
lost card note in log 304-305
LOW keyword in FORMAT procedure 114
LRECL= option in INFILE statements 37
LT comparison operator 82, 102

M
MACRO system option 211
macros 210-225
   &SYSDATE macro variable 214-215
   &SYSDAY macro variable 214
   &SYSNOBS macro variable 214
   %DO statements 220-221
   %ELSE statement 220-221
   %END statement 220-221
   %IF-%THEN statements 220-221
   %LET statement 212-215
   %MACRO statement 216-219
   %MEND statement 216-217
   %THEN statement 220-221
   autocall libraries 217
   automatic macro variables 214-215
   CALL SYMPUT 222-223
   concepts 210-211
deedging errors 224-225
   invoking 216
   local versus global variables 210-211
   MACRO system option 211
   macro variables, definition 210
   MERROR system option 224-225
   MLOGIC system option 224-225
   MPRINT system option 224-225
   parameters 218-219
   quotation marks 224
   SAS macro processor 210-211
   SERROR system option 224-225
   SYMBOLGEN system option 224-225
MARKERATTRS= option for graph attributes 246-247
MARKERS option in SERIES statement 238-239
MARKUP destination 150
master data set definition 192
match merging
   IN= data set option 198-201
   one-to-many match merge 186-189
   one-to-one match merge 184-185
   summary statistics 188-191
   mathematical expressions 74-75
   MATRIX option in CORR procedure 270-271
   MAX function 80-81
   MAX keyword
      REPORT procedure 142
      TABULATE procedure 126
   MAX option in MEANS procedure 118
   MAXDEC= option in MEANS procedure 118-119
maximum value
   across observations 80-81
   across variables 92-93, 118-119, 206-207
   FIRST, and LAST, byvariable 206-207
   HBOX or VBOX statement 234-235
   MAX function 80-81
   MEANS procedure 118-119
   REPORT procedure 142
   RETAIN statement 92-93
   TABULATE procedure 126
   UNIVARIATE procedure 255
McNemar’s test 264
MDY function 80-81, 90-91
MEAN function 80-81
   missing data 309
   MEAN keyword
      REPORT procedure 142-143
      TABULATE procedure 126-127
   MEAN option in MEANS procedure 118
   mean square
      ANOVA procedure 278-279
      REG procedure 272
means
   HBOX or VBOX statement 234-235
   MEAN function 80-81
   MEANS procedure 118-119
   multiple comparisons 276-279
   pairwise comparisons 260-263
   REPORT procedure 142-143
   TABULATE procedure 126-127
testing 260-263
   UNIVARIATE procedure 255
MEANS procedure 118-121, 188-191, 258-259
MEANS statement, ANOVA procedure 276-279
MEASURES option in FREQ procedure 264, 266
median
HBOX or VBOX statement 234-235
MEANS procedure 118, 258-259
REPORT procedure 142
TABULATE procedure 126
UNIVARIATE procedure 254-255
MEDIAN option in MEANS procedure 118, 258-259
memory, running out 322-323
menus, pull-down and pop-up 13
MERGE statement 184-189
BY statement 184-189
IN= data set option 198-201
one-to-many match merge 186-189
one-to-one match merge 184-185
summary statistics 188-189
MERROR system option 224-225
messy raw data, reading 48-49
Microsoft Excel files
reading 34, 62-63
writing 284, 288-289
MIN function 80-81
MIN keyword
REPORT procedure 142
TABULATE procedure 126
MIN option in MEANS procedure 118
minimum value
across observations 80-81
across variables 92-93, 118-119, 206-207
FIRST. and LAST. byvariable 206-207
HBOX or VBOX statement 234-235
MEANS procedure 118-119
MIN function 80-81
REPORT procedure 142
RETAIN statement 92-93
TABULATE procedure 126
UNIVARIATE procedure 255
missing data values 5
assignment statements 75, 308-309
end of raw data line 57
finding number 118-119, 122-123
IF-THEN statements 84-85
match merge 185
MEANS procedure 118
reading blanks as 40-41
REPORT procedure 136-137
SET statement 181
SORT procedure 104-105
TABULATE statement 124
UPDATE statement 192-193
MISSING option
FREQ procedure 122
HBOX or VBOX statement 234
MEANS procedure 118
PANELBY statement 248
REPORT procedure 136-137
TABULATE procedure 124
VAR or HBAR statement 230
missing semicolon 300-301
missing values generated note 75, 308-309
MISSOVER option in INFILE statements 57, 303
MISSPRINT option in FREQ procedure 122
MISSTEXT= option in TABULATE procedure 128-129
MIXED= statement in the IMPORT procedure 62
MLOGIC system option 224-225
MMDDYYw. format 90-91, 112-113
MMDDYYw. informat 44-45, 90-91
mode of a variable
MEANS procedure 118, 258
REPORT procedure 142
TABULATE procedure 126
UNIVARIATE procedure 254-255
MODEL statement
ANOVA procedure 276-278
REG procedure 272-273
modes of running SAS 10-11
modifying SAS data sets
MERGE statement 184-189
SET statement 178-182, 190-191
UPDATE statement 192-193
MONTH function 80-81, 90-91
MPRINT system option 224-225
multiple comparisons 276-279
multiple lines per observation, reading 50-51
multiple observations per line, reading 52-53

N
N function 80-81
N keyword
  REPORT procedure 142-143
  TABULATE procedure 126
N option in MEANS procedure 118, 258-259
NAME= option in graphics statements 244
names for
  data sets 5, 64
  formats 114
  librefs 21, 64-69
  macro variables 212
  macros 216
  variable lists 96-97
  variables 5
NBINS= option in HISTOGRAM statement 232
NE comparison operator 82, 102
New Library window 65
NMISS function 80-81
NMISS keyword
  REPORT procedure 142
  TABULATE procedure 126
NMISS option in MEANS procedure 118
NOBORDER option in KEYLEGEND statement 244
NOBYVAR option in TTEST procedure 260
NOCENTER system option 27
NOCOL option in FREQ procedure 122
NODATE system option 27
NODUPKEY option in SORT procedure 104-105
NOLEGCLII option in fitted curves 240
NOLEGCLLM option in fitted curves 240-241
NOLEGFIT option in fitted curves 240
NOMARKERS option in fitted curves 240-241
NOMISSINGGROUP option
  SCATTER statement 236
  SERIES statement 238
NONE option
  CORR procedure 270
  TTEST procedure 262
NONNUMBER system option 27
NOOBS option in PRINT procedure 108
NOPERCENT option in FREQ procedure 122
NOPRINT option
  MEANS procedure 120-121
  REPORT procedure 145
  SQL procedure 326
NPROCTITLE, ODS statement 156-163
normal density plot 232-233
NORMAL option
  CDFPLOT statement 256
  DENSITY statement 232-233
  HISTOGRAM statement 256-257
  UNIVARIATE procedure 254
  normality test 254
NOROW option in FREQ procedure 122
notes in SAS log 16-17, 298-299
INPUT reached past end line 37, 302-303, 305
invalid data 306-307
lost card 304-305
missing values were generated 75, 308-309
values have been converted 310-311
variable uninitialized 316-317
NOVARNAME option in PANELBY statement 248-249
NOWINDOWS option in REPORT procedure 134-135
NUMBER system option 27
numbering observations, _N_ variable 206-207
numeric data
  commas, reading 42, 44-45
  commas, writing 112-113
  converting to character 310-311
definition 4
  formats 112-113
  functions 80-81
  informats 44-45
length 322-323
reading non-standard 42-43
reading standard 38-41
numeric values converted note 310-311
NUMERIC_COLLATION= suboption in SORT procedure 106-107

O
OBS location in STYLE= option 166
OBS= option
data set option 198-199, 297
INFILE statements 56, 297
observations
changing to variables 204-205
combining single observation with many 190-191
creating a numbering variable 206-207
definition 4
deleting 86-87
duplicate, eliminating 104-105
grouping in procedures 146-147
grouping with IF-THEN/ELSE 84-85
interleaving 182-183
making several from one 196-197
merging 184-187
printing 108-109
reading multiple lines per observation 50-51
reading multiple observations per line 52-53
sorting 104-107
subsetting DELETE statements 86-87
subsetting FIRSTOBS= option 198-199
subsetting IF statement 86-87
subsetting IN= data set option 198-201
subsetting OBS= option 198-199
subsetting OUTPUT statements 194-195
subsetting WHERE statements 102-103, 328-330
subsetting WHERE= data set option 198, 202-203, 329-330
tracking with IN= data set option 198-201
updating 192-193
OBSERVEDBYPREDICTED option in REG procedure 274
OBSHEADER location in STYLE= option 166
odds ratios 264-265
ODDSRATIO PLOT option in FREQ procedure 266
ODS 150-175, 228-257, 266-267, 270-277
ODS CSV statement 292-293
ODS EXCLUDE statement 153
ODS Graphics 228-229
ANOVA procedure 276-277
CORR procedure 270-271
FREQ procedure 266-267
image properties 250-251
insets 244-245
legends 244-245
REG procedure 274-275
saving graphs 250-251
SGPANEL procedure 248-249
SGPLOT procedure 230-241
style attributes 246-247
TTEST procedure 262-263
UNIVARIATE procedure 256-257
ODS Graphics Editor 229
ODS GRAPHICS statement 228, 250-251
ODS HTML statement 158-159, 250, 292-293
ODS LISTING statement 229, 250
ODS NOPROCTITLE statement 158-163
ODS OUTPUT statement 154-155
ODS PDF statement 162-163, 250
ODS RTF statement 160-161, 250
ODS SELECT statement 153
ODS TRACE statement 152-153
one-to-many match merge 186-189
one-to-one match merge 184-185
one-way frequency table 122-123
opening a table in Viewtable window 33
operators
arithmetic 74-75
comparison 82-83, 102-103
logical 82-83, 102-103
option not recognized error in log 314-315
options
comparison of types of options 198-199
data set 70-71, 198-203, 329-330
system 26-27
Index

OPTIONS procedure 26
   OPTION= option 211
OPTIONS statement 26-27
   macro debugging options 224-225
Options window in SAS windowing environment 27
OR operator 82-83, 102
ORDER usage option 136-137
ordering observations 104-107
ORIENTATION= system option 27
OTHER keyword FORMAT procedure 114
out of disk space message 322-323
out of memory message 322-323
out of time, job runs 321
OUT= option
   FREQ procedure 122
   IMPORT procedure 60-63
   MEANS procedure 120-121
   SORT procedure 104-105
OUTFILE= option in EXPORT procedure 286-289
outliers 234-235, 254-255
output 27
   centering 27
   changing appearance of data in 89-91, 110-115
   creating SAS data sets from 154-155
   customizing with STYLE= option 150-175
   footnotes 100-101, 164-165
   graphics 228-229
   HTML 158-159, 229
   labels 101
   LISTING 156-157, 229
   location for 15, 18-19
   PDF 162-163, 229
   RTF 160-161, 229
   text 156-157
   titles 100-101, 164-165
   titles, removing 100-101, 156-163
Output Delivery System 150-175, 228-257, 266-267, 270-277
OUTPUT destination 150, 154-155
OUTPUT statement
   DATA step 194-197
   DO statement 196
   MEANS procedure 120-121
   multiple observations from one 196-197
   writing multiple data sets 194-195
Output window 12-13, 15, 156-157
OUTPUTFMT= option in ODS GRAPHICS statement 250-251

P
P1 option in MEANS procedure 258
P10 option in MEANS procedure 258
P25 option in MEANS procedure 258
P5 option in MEANS procedure 258
P50 option in MEANS procedure 258
P75 option in MEANS procedure 258
P90 option in MEANS procedure 258
P95 option in MEANS procedure 258
P99 option in MEANS procedure 258
page breaks
   ODS output 160-163
   PUT statement 116-117
PAGE option in REPORT procedure 140
PAGE= option in ODS HTML statement 158-159
PAGENO= system option 27
PAIRED statement in TTEST procedure 260-261
pairwise t test 260-263
PANELBY statement 248-249
parameter estimates 273
parameters, macro 218-219
PATTERN= option for graph attributes 246
PBSPLINE statement in SGPLOT procedure 240
PC files
   reading 34, 62
   writing 284, 288-289
PC Files Server 288
PCTN keyword
   REPORT procedure 142
   TABULATE procedure 126
PCTSUM keyword
   REPORT procedure 142
   TABULATE procedure 126
PDF image format  250
PDF output  150, 162-163
Pearson coefficient  264, 268-269
percentages
  calculating in DATA step  188-189
  FREQ procedure  122-123
  REPORT procedure  142
  TABULATE procedure  126
percentiles
  HBOX or VBOX statement  234-235
  MEANS procedure  258
  REPORT procedure  142
  UNIVARIATE procedure  255
PERCENTw. informat  44-45
PERCENTw.d format  112-113
permanent SAS data sets  64-69
  examples  103, 178-179, 192-193, 289
plots  228-257, 266-267, 270-277
PLOTS= option
  CORR procedure  270-271
  FREQ procedure  266-267
  REG procedure  274-275
  TTEST procedure  262-263
PNG image format  250
pointers
  @’character’ column pointer  48-49
  @n column pointer  46-47, 290-291
  / line pointer  50-51, 116-117, 290
  #n line pointer  50-51, 290
  +n column pointer  42-43
  INPUT statements  42-43, 46-49, 50-51
  PUT statements  116-117, 290-291
POSITION= option in CONTENTS procedure  96
POSITION= option in INSET or KEYLEGEND statement  244-245
POSTIMAGE style attribute  174-175
PostScript output  150, 250
POSTTEXT style attribute  174-177
PLOT statement in UNIVARIATE procedure  256
precedence, mathematical rules  74
predicted values in regression  272-273
Preferences window  156-157
PREIMAGE style attribute  174-175
PRETEXT style attribute  174-175
PRIMARY option in SORT procedure  106-107
print formats  110-115
  user-defined  114-115
PRINT option in FILE statements  116-117
PRINT procedure  108-109
  BY and ID together  189
  STYLE= option  166-167
printed values, changing appearance  110-111
PRINTER
  output  150-151
  style template  151, 162-163
probability plot  256-257
probability-probability plot  256
PROBPLOT statement in UNIVARIATE procedure  256-257
PROBT option in MEANS procedure  258
PROC ANOVA  276-279
PROC CONTENTS  70-71
  for debugging programs  317
  POSITION option  96
PROC CORR  268-271
PROC EXPORT
  delimited files  286-287
  PC files  288-289
  WHERE= data set option  202-203
PROC FORMAT  114-115
  with SGPLOT procedure  231, 267
  with TABULATE procedure  130-131
PROC FREQ  122-123, 264-267
PROC IMPORT
  delimited files  60-61
  PC files  62-63
  WHERE= data set option  202-203
PROC MEANS  118-121, 188-189, 258-259
PROC OPTIONS  26
  OPTION= option  211
PROC PRINT  108-109
  BY and ID together  189
  STYLE= option  166-167
PROC REG  272-275
PROC REPORT 134-145
    STYLE= option 168-169
PROC SGPANEL 228, 248-249
PROC SGPLOT 228, 230-247
PROC SORT 104-107
PROC SQL 325-328
PROC statement 6-7, 100
    DATA= option 100
PROC step
    common statements and options 100-101
    definition 6-7
PROC SUMMARY 121
PROC TABULATE 124-133
    CLASSLEV statement 170
    STYLE= option 170-171
PROC TRANSPOSE 204-205
PROC TTEST 260-263
PROC UNIVARIATE 254-257
procedures
    common statements and options 100-101
    definition 6-7
    title, removing 156-163
PROFILESPLOT option in TTEST procedure 262
Program Editor 12, 14-15
    RECALL command 15
    SUBMIT command 14
PROPCASE function 78-79
Properties window 24-25
PS destination 150-151
PS image format 250
PUT function 310-311
PUT statement
    _ALL_ variable name list 312-313
    _PAGE_ keyword 116-117
debugging with 312-313
    formats 110-113
    writing a raw data file 290-291
writing in SAS log 312-313
    writing reports 116-117
PUTLOG statement 312-313

Q
Q1 option in MEANS procedure 258
Q3 option in MEANS procedure 258
QQPLOT option
    REG procedure 274
    TTEST procedure 262-263
QQPLOT statement in UNIVARIATE procedure 256
QTR function 80-81, 90-91
quantile-quantile plot 256, 262-263
quantiles 234-235, 254-258
question mark informat modifier, double 307
QUIT statement 7
quotation marks
    FOOTNOTE statements 100-101
    in macros 212
    reading delimited data with 58-61
    TITLE statements 100-101
    unmatched 320

R
R-square
    ANOVA procedure 278-279
    REG procedure 272-273
RANGE option in MEANS procedure 118, 258
RANGE= statement in the IMPORT procedure 62
RBREAK statement in REPORT procedure 140-141
reading data 30-31, 34-63
column style 40-41
delimited data 58-61
missing data at end of line 57
mixing input styles 46-47
multiple lines of data per observation 50-51
multiple observations per line of data 52-53, 197
non-standard format 42-43
part of a data file 54-55, 297
PC files 34, 62
skipping lines of raw data 50-51, 56
skipping over variables 40-41
space-delimited 38-39
variable length records 57
variable length values 48-49
reading SAS data sets
a single data set 178-179
concatenating data sets 180-181
interleaving data sets 182-183
merging summary statistics 188-191
one-to-many match merge 186-189
one-to-one match merge 184-185
stacking data sets 180-181
updating a master data set 192-193
RECALL Program Editor command 15
record length of raw data files 37
RELINE statement 242-243
REG procedure 272-275
REG statement in SGPLOT procedure 240-241
regression 272-273
lines, plotting 240-241
relative risk measures 264
RELRISK option in FREQ procedure 264, 266
RELRISKPLOT option in FREQ procedure 266
RENANE= data set option 198-199
REPLACE option
EXPORT procedure 286-289
IMPORT procedure 60-63
REPORT procedure 134-145
STYLE= option 168-169
reports
controlling style of 150-151, 166-175
PRINT procedure 108-115
REPORT procedure 134-145
TABULATE procedure 124-133
writing custom 116-117
RESET option in ODS GRAPHICS statement 250-251
RESIDUALHISTOGRAM option in REG procedure 274
RESIDUALS option in REG procedure 274
RESPONSE= option in VBAR statement 230
results
centering 27
changing appearance of data in 89-91, 110-115
creating SAS data sets from 154-155
customizing with STYLE= option 150-175
footnotes 100-101, 164-165
graphics 228-229
HTML 158-159, 229
labels 101
LISTING 156-157, 229
location for 15, 18-19
PDF 162-163, 229
RTF 160-161, 229
titles 100-101, 164-165
titles, removing 100-101, 158-163
Results Viewer window 12-13, 18-19
Results window 12-13, 15, 18-19
for graphics 229
RETAIN statement 92-93
RFPLOT option in REG procedure 274
RIGHTMARGIN= system option 27
risk ratios 264
RISKDIFFPLOT option in FREQ procedure 266
ROUND function 80-81
ROW=FLOAT option in TABULATE procedure 130-131
ROWAXIS statement 248
rows of data
definition 4
Viewtable window 32-33
ROWS= option in PANELBY statement 248
RSTUDENTBYLEVERAGE option in REG procedure 274
RSTUDENTBYPREDICTED option in REG procedure 274
RTF
output 150-151, 160-161
style template 151, 160-161
RULE, invalid data message 306-307
RUN statement 6-7
CALL SYMPUT 222-223
missing 321
running SAS programs
methods 10-11
SAS windowing environment 14-15

S
SAS automatic variables
  _ERROR_ 206
  _N_ 206-207
  FIRST.byvariable 206-207
  LAST.byvariable 206-207
  macro 214-215
SAS data library 20-22, 64-69
SAS data sets
  changing observations to variables 204-205
  combining a grand total with data 190-191
  combining one observation with many
       190-191
  compressing 323
  concatenating 180-181
  contents of 22-25, 70-71
  creating from procedure output 154-155
  definition 4
  interleaving data sets 182-183
  inverting, TRANSPOSE procedure 204-205
  LABEL= data set option 198-199
  merging summary statistics 188-191
  merging, one-to-many 186-189
  merging, one-to-one 184-185
  modifying a single data set 178-179
  names 5
  options 70-71, 198-203, 329-330
  permanent 64-69
  permanent, examples 103, 178-179, 192-193, 289
  printing 108-109
  properties of 24-25
  reading a single data set 178-179
  saving 64-69
  saving summary statistics to 120-121, 154-155
  selecting observations during a merge 200-201
  size 5
  sorting 104-107
  stacking data sets 180-181
  subsetting IF statement 86-87
  subsetting OUTPUT statement 194-195
  subsetting WHERE statement 102-103, 328-330
  subsetting WHERE= data set option 198, 202-203, 329-330
  temporary versus permanent 64-65
  updating a master data set 192-193
  Viewtable window 22-23, 32-33
  WORK library 20, 64-65
  writing multiple data sets 194-195

SAS dates 88-91
  automatic macro variables 214-215
  constants 88-89
  converting dates 80-81, 88-91
  definition of a SAS date 88
  formats, table of 90-91, 112-113
  functions, table of 80-81, 90-91
  informats, table of 44-45, 90-91
  Julian dates 90-91
  printing current date on output 27
  reading raw data with 42-43
  setting default century 88
  today’s date 80-81, 88-91
SAS Enterprise Guide 11, 30
SAS Explorer 20-22
SAS functions
  dates 88-91
  INPUT function 311
  PUT function 311
  table 78-81
  use 76-77
SAS Institute x
SAS language rules 2-3
SAS listing 150, 156-157, 229, 250
SAS log 16-17
  errors, warnings, and notes 298-299
  notes when reading raw data 37
  notes when writing raw data files 291
  writing in log with PUT statements 312-313
SAS macro processor 210-211
SAS names, rules for  5
SAS programs
  capitalization  xiii, 5
  comments  3
  compared to SQL  325-330
  data driven  222-223
  debugging  296-323
  definition  2
  documenting  3
  finding missing semicolons  300-301
  fixing  298-299
  indentation  xiii, 3
  major parts  6-7
  recalling in Program Editor  15
  submitting  10-11, 14-15
  testing  296-297, 299
SAS windowing environment  10-25
  command bar  13
  editor  12, 14-15
  executing programs from  14-15
  Options window  27
  Output window  12-13, 15, 156-157
  RECALL command  15
  running programs  14-15
  SUBMIT command  14-15
SAS, modes of running  10-11
SAS/ACCESS  31, 34, 62-63
SASDATE option in ODS RTF statement  160
SASHELP library  20-21
  in the Viewtable window  33
  saving SAS data sets  64-69
saving images  250-251
Scalable Vector Graphics image format  250
SCALE = option in HISTOGRAM statement  232-233
SCATTER option in CORR procedure  270-271
scatter plots  236-237, 270-271
SCATTER statement in SGPLOT procedure  236-237
SCHEFFE option in ANOVA procedure  276-279
Scheffe’s multiple-comparisons  276-279
scientific notation
  format for writing  112-113
  reading data with  40, 42
SELECT statement in SQL procedure  326-328
selecting observations
  DELETE statements  86-87
  IF statements  86-87
  IN= data set option  200-201
  INPUT statements  54-55
  OUTPUT statement  194-195
  reading raw data file  54-55
  saving memory and disk space  323
  WHERE statement  102-103, 328-330
  WHERE= data set option  202-203, 329-330
selecting output objects  153
semicolon  2
  missing  300-301
sequential files  36
series plots  238-239
SERIES statement in SGPLOT procedure  238-239
SERROR system option  224-225
SET statement
  BY statement  182-183
  combining grand total with data  190-191
  combining one observation with many  190-191
  concatenating data sets  180-181
  interleaving data sets  182-183
  modifying single data set  178-179
  multiple SET statements  190-191
  reading single data set  178-179
  stacking data sets  180-181
SGPANEL procedure  228, 248-249
SGPLOT procedure  228, 230-247
sharing data with other software  30-31
SHEET= statement in the IMPORT procedure  62
SHOWBINS option in HISTOGRAM statement  232-233
SIDES= option in TTEST procedure  260
size
  data sets  5, 70-71
  footnotes  164-165
size (continued)
  graphics images 250
titles 164-165
variables 5, 24-25, 70-71, 318-319, 322-323
SIZE= option for graph attributes 246-247
skewness
  MEANS procedure 258
  UNIVARIATE procedure 255
SKEWNESS option in MEANS procedure 258
skipping over variables at input 40-41
Somer’s D 264
SORT procedure 104-107
sorting data in Viewtable 23
SORTSEQ= option in SORT procedure 106-107
space-delimited raw data
  reading 34-35, 60-61
  writing 284-287
SPACING= option in PANELBY statement 248-249
SPANROWS option in REPORT procedure 168-169
Spearman coefficient 264, 268
SPEARMAN option in CORR procedure 268
splitting
data file 54-55
  SAS data set 194-195, 202-203, 329-330
SPSS files
  data engine 31
  reading 34
  writing 284
SQL compared to SAS 325-330
SQL procedure 325-328
STACKED option in FREQ procedure 266
stacking SAS data sets 180-181
standard deviation
  MEANS procedure 118-119, 258
  REPORT procedure 142
  TABULATE procedure 126
  UNIVARIATE procedure 254-255
standard error
  MEANS procedure 258
  REG procedure 273
STARTPAGE= option
  ODS PDF statement 162-163
  ODS RTF statement 160-161
  STAT= option in VBAR statement 230
Stata files
  reading 34
  writing 284
statement not valid error in log 314-315
statement options
  compared to data set options 198-199
statistics
  analysis of variance 276-279
categorical data 264-265
correlations 268-269
descriptive 118-143, 254-259
  multiple comparisons 276-279
output data set, MEANS procedure 120-121
  regression 272-273
t test 260-263, 276
STD keyword in REPORT procedure 142
STDDEV option
  MEANS procedure 118, 258
  TABULATE procedure 126
STDERR option in MEANS procedure 258
STIMER.
  informat 44-45
STOP statement 7, 223
STRENGTH= suboption in SORT procedure 106-107
strings, character 4, 74-75
Stuart’s tau-c 264
student’s t 258
style attributes
  for graphics 246-247
  PRINT procedure 166-167
  REPORT procedure 168-169
  table of 174-175
  TABULATE procedure 170-171
style templates 150-151
  for graphics 229, 246-247, 251
STYLE= option
  graph attributes 246
  graphics 251
  ODS HTML statement 158-159
  ODS LISTING statement 229, 251
ODS PDF statement 162-163
ODS RTF statement 160-161
PRINT procedure 166-167
REPORT procedure 168-169
TABULATE procedure 170-171
traffic-lighting 172-173
user-defined formats 172-173
SUBMIT SAS windowing environment command 14-15
submitting SAS programs methods 10-11
SAS windowing environment 14-15
subsetting observations
  DELETE statements 86-87
  IF statements 86-87
  IN= data set option 200-201
  INPUT statements 54-55
  OUTPUT statement 194-195
  reading raw data file 54-55
  saving memory and disk space 323
  WHERE statement 102-103, 328-330
  WHERE= data set option 202-203, 329-330
SUBSTR function 78-79
subtotals
  PRINT procedure 108-109
  REPORT procedure 140-141
  SUM function 80-81, 309
SUM keyword
  REPORT procedure 142
  TABULATE procedure 126
sum of squares
  ANOVA procedure 278-279
  MEANS procedure 258
  REG procedure 272
SUM option in MEANS procedure 118, 258
SUM statement in PRINT procedure 108-109
sum statements, DATA step 92-93
SUMMARIZE option in REPORT procedure 140-141
SUMMARY location in STYLE= option 168
SUMMARY procedure 121
summary statistics
  MEANS procedure 118-119, 258-259
merging with original data 188-191
REPORT procedure 134-143
saving in SAS data set 120-121
TABULATE procedure 124-127
UNIVARIATE procedure 254-255
SUMMARYPLOT option in TTEST procedure 262-263
sums
  across observations 92-93, 108-109, 118-121, 126-133
  across variables 74-75, 80-81, 309
  combining with data 188-191
  controlling style in PRINT procedure 166
  MEANS procedure 118-121
  REPORT procedure 134-145
  SUM function 80-81, 309
  SUM keyword in TABULATE procedure 126
  SUM option in MEANS procedure 118, 258
  sum statement in DATA step 92-93
  SUM statement in PRINT procedure 108-109
  TABULATE procedure 126-133
SUMWGT option in MEANS procedure 258
SVG image format 250
SYMBOL= option for graph attributes 246-247
SYMBOLGEN system option 224-225
SYMPUT, CALL 222-223
syntax of SAS programs 2
syntax-sensitive editor 12, 297
syntax, checking 299
system options 26-27
  BOTTOMMARGIN= 27
  CENTER/NOCENTER 27
  compared to data set options 198-199
  DATASTMTCHK= 301
  DATE/NODATE 27
  LEFTMARGIN= 27
  MACRO 211
  MERROR 224-225
  MLOGIC 224-225
  MPRINT 224-225
  NUMBER/NONNUMBER 27
system options (continued)

**ORIENTATION=** 27
**PAGENO=** 27
**RIGHTMARGIN=** 27
**SERROR** 224-225
**SYMBOLGEN** 224-225
**TOPMARGIN=** 27
**VALIDVARNAMES=** 5
**YEARCUTOFF=** 88

### T

**T** option
- ANOVA procedure 276
- MEANS procedure 258

**t** tests
- MEANS procedure 258
- ANOVA procedure 276
- **TTEST** procedure 260-263

**TAB** value in the **DBMS=** option
- **EXPORT** procedure 286
- **IMPORT** procedure 60

**tab-delimited data**
- reading 34-35, 58-61
- writing 284-287

**Table Editor** 32

**TABLE** statement in **TABULATE** procedure 124-133
- **STYLE=** option 170-171

**table templates** 150-151

**tables of data**
- definition 4
- **Viewtable window** 32-33

**TABLES** statement in **FREQ** procedure 122-123, 264-265

**TABULATE** procedure 124-133
- **CLASSLEV** statement 170
- **STYLE=** option 170-171

**templates** 150-151

**temporary SAS data sets** 64-65

**text files**
- reading 36
- writing 150, 156-157

**text, adding to graphs** 244-245

**THEN** keyword 82-85

**THICKNESS=** option for graph attributes 246-247

**TIFF** image format 250

**time data**
- formats 112-113
- informats 44-45

**TIME** option in **XAXIS** or **YAXIS** statement 242

**TIMEw. informat** 44-45

**TIMEw.d format** 112-113

**title**
- default 39
- removing procedure name 156-163

**TITLE** statement 100-101, 164-165

**TODAY** function 80-81, 88-91

**toolbar** in SAS windowing environment 13

**TOPMARGIN**= system option 27

**TOTAL** location in **STYLE=** option 166

**totals**
- across observations 92-93, 108-109, 118-121, 126-133
- across variables 74-75, 80-81, 309
- combining with data 188-191
- controlling style in **PRINT** procedure 166
- **MEANS** procedure 118-121
- **REPORT** procedure 134-145
- **SUM** function 80-81, 309
- **SUM** keyword in **TABULATE** procedure 126
- **SUM** option in **MEANS** procedure 118, 258
- **sum statement** in **DATA** step 92-93
- **sum statement** in **PRINT** procedure 108-109
- **TABULATE** procedure 126-133

**tracing output objects** 152-153

**tracking observations**
- **IN=** data set option 200-201
- **traffic-lighting** 172-173
- trailing @ 54-55, 290
- trailing @@ 52-53
- transaction-oriented data 192-193

**TRANSLATE** function 78-79

**TRANSPARENCY=** option
Index 355

DENSITY statement 232
HBOX or VBOX statement 234
HISTOGRAM statement 232
REFLINE statement 242-243
SCATTER statement 236
SERIES statement 238
VBAR statement 230
TRANSPOSE procedure 204-205
transposing data with OUTPUT statement 196-197
TRANWRD function 78-79
TREND option in FREQ procedure 264
TRIM function 78-79
truncation of character data 318-319
TRUNCOVER option on INFILE statement 57
TTTEST procedure 260-263
TUKEY option in ANOVA procedure 276
Tukey’s studentized range test 276
two-way frequency table 122-123, 264-265
TWOWAY= option in FREQ procedure 266-267
type of variable 4, 71
TYPE= option
  DENSITY statement 232-233
  XAXIS or YAXIS statement 242-243

U
UCLM option in MEANS procedure 258
uninitialized variables 316-317
UNISCALE= option in PANELBY statement 248
UNIVARIATE procedure 254-257
UNIX
  direct referencing of SAS data sets 68
  INFILE statement 37
  LIBNAME statement 66
UPCASE function 78-79
UPDATE statement 192-193
URL style attribute 174-175
usage options in REPORT procedure 136-137
user-defined formats 114-115
grouping with 146-147
traffic-lighting 172-173
with TABULATE procedure 130-131

V
VALIDVARNAMES= system option 5
VALUE statement FORMAT procedure 114-115
VALUEATTRS= option for graph attributes 246
VALUES= option in XAXIS or YAXIS statement 242
VAR option in MEANS procedure 258
VAR statement
  CORR procedure 268-269
  MEANS procedure 118-119, 258-259
  PRINT procedure 108-109
  STYLE = option in TABULATE procedure 170
  STYLE= option in PRINT procedure 166-167
  TABULATE procedure 126-133
  TRANSPOSE procedure 204-205
  TTEST procedure 260
  UNIVARIATE procedure 254
variable length records, reading 57
variable length values, reading 48-49
variable name lists
  _ALL_ 96-97, 312-313
  _CHARACTER_ 96-97
  _NUMERIC_ 96-97
  name prefix 96
  name ranges 96-97
  numbered ranges 96-97
variable not found error in log 316-317
variable uninitialized note in log 316-317
variables
  arrays 94-95
  automatic 206-207
  automatic macro 214-215
  changing to observations 204-205
  creating a grouping variable 84-85
  creating in REPORT procedure 144-145
  creating with assignment statements 74-75
definition 4
dropping 198-199
keeping 198-199
labels 70-71, 101
variables (continued)
  length  70-71, 318-319, 322-323
  lists  96-97
  means  118-119
  names  5
  printing  108-109
  renaming  198-199
  retaining values between observations  92-93
  skipping when reading raw data  40
  type  4, 71
  uninitialized  316-317

  variance with MEANS procedure  258
  VBAR statement in SGPLOT procedure  230-231
  VBOX statement  234-235
  vector graphics, scalable  250
  views with SQL procedure  325-326
  Viewtable window  22-23, 32-33

W
  w.d format  112-113
  w.d informat  44-45
  warnings in SAS log  298
  Web, creating files for  158-159
  WEEKDATEw. format  90-91, 112-113
  WEEKDAY function  80-81, 90-91
  WEIBULL option in distribution plots  256
  WEIGHT= option for graph attributes  246-247
  WHERE statement
    compared to subsetting IF  328-330
    DATA steps  328-330
    procedures  102-103, 328-330
  WHERE= data set option  198, 202-203, 329-330
  WIDTH= option in ODS GRAPHICS statement  250-251

  windowing environment, SAS  12-25, 156-157
  Windows operating environment
    direct referencing of SAS data sets  68
    INFILE statement  37
    LIBNAME statement  66
  WITH statement in CORR procedure  268-269

W
  wizard
    Export  284-285

Import  34-35
  WORDDATEw. format  90-91, 112-113
  WORK library  20-21, 64-65
  writing data  282-293
    delimited  284-287, 290-293
    methods  282-283
    PC files  282-289
    raw data  284-287, 290-293
  writing SAS data sets
    DATA step  6-7
    multiple data sets  194-195
    permanent data sets  64-69
  WTKAPPAPLOT option in FREQ procedure  266

X
  XAXIS statement  242-243
  XML output  150, 282

Y
  YAXIS statement  242-243
  YEAR function  80-81, 90-91
  YEARCUTOFF= system option  88
  YRDIF function  80-81, 88-91

Z
  z/OS
    comments  321
    direct referencing of SAS data sets  68
    INFILE statement  37
    LIBNAME statement  66

Special Characters
  ^= comparison operator  82, 102
  _ALL_ variable name list  96
    in PUT statements  312-313
  _CHARACTER_ variable name list  96-97
  _ERROR_ automatic variable  206
    invalid data message  306-307
  _FREQ_ variable in MEANS procedure  120-121
  _N_ automatic variable  206-207
    invalid data message  306-307
Index 357

_INDEX_ variable  
TRANSPOSE procedure 204-205
_NULL_ data set name 116-117, 290-291
_NUMERIC_ variable name list 96-97
_PAGE_ keyword in PUT statements 116-117
_TYPE_ variable, MEANS procedure 120-121
; semicolon 2
    missing 300-301
: colon modifier 48-49
! comparison operator 83, 102
?? informat modifier 307
@ line-hold specifier 54-55, 290
    compared to @@ 55
@'character' column pointer 48-49
@@ line-hold specifier 52-53
    compared to @ 55
@n column pointer 46-47, 290-291
* ; comments 3
/ line pointer 50-51, 290
/* */ comments 3
    in z/OS 320
& comparison operator 83, 102
& macro variable prefix 210
&SYSDATE macro variable 214-215
&SYSDAY macro variable 214
&SYSNOBS macro variable 214
#n line pointer 50-51, 290
% macro prefix 210
%DO statements 220-221
%ELSE statement 220-221
%END statement 220-221
%IF-%THEN statements 220-221
%LET statement 212-215
%MACRO statement 216-219
%MEND statement 216-217
+n column pointer 42-43
< comparison operator 82-83, 102
<= comparison operator 82, 102
= comparison operator 82-83, 102-103
> comparison operator 82-83, 102
>= comparison operator 82, 102
¬ = comparison operator 82, 102
| | concatenation operator 79
- = comparison operator 82, 102
$CHARw. informat 44-45
$UPCASEw. format 112-113
$UPCASEw. informat 44-45
$w. format 112-113
$w. informat 44-45
About These Authors

With over 25 years of experience, Lora D. Delwiche enjoys teaching people about SAS software and likes solving challenging problems using SAS. She has spent most of her career at the University of California, Davis, using SAS in support of teaching and research.

Susan J. Slaughter discovered SAS software in graduate school over 25 years ago. Since then, she has used SAS in a variety of business and academic settings. She now works as a consultant through her company, Avocet Solutions.

Learn more about these authors by visiting their author pages, where you can download free chapters, access example code and data, read the latest reviews, get updates, and more:
http://support.sas.com/delwiche
http://support.sas.com/slaughter
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.