Contents

Foreword xv

Preface xxi

Acknowledgments xxiii

Chapter 1 Introduction to Data-Driven Concepts 1
  Introduction 2
    Current Approaches 2
    Is There a Crisis in Geophysical and Petrophysical Analysis? 3
    Applying an Analytical Approach 4
    What Are Analytics and Data Science? 5
    Meanwhile, Back in the Oil Industry 8
    How Do I Do Analytics and Data Science? 10
    What Are the Constituent Parts of an Upstream Data Science Team? 13
    A Data-Driven Study Timeline 15
    What Is Data Engineering? 18
    A Workflow for Getting Started 19
    Is It Induction or Deduction? 30
    References 32

Chapter 2 Data-Driven Analytical Methods Used in E&P 34
  Introduction 35
    Spatial Datasets 36
    Temporal Datasets 37
    Soft Computing Techniques 39
      Data Mining Nomenclature 40
      Decision Trees 43
    Rules-Based Methods 44
      Regression 45
      Classification Tasks 45
      Ensemble Methodology 48
      Partial Least Squares 50
    Traditional Neural Networks: The Details 51
    Simple Neural Networks 54
CONTENTS

Random Forests  59
Gradient Boosting  60
Gradient Descent  60
Factorized Machine Learning  62
Evolutionary Computing and Genetic Algorithms  62
Artificial Intelligence: Machine and Deep Learning  64
References  65

Chapter 3  Advanced Geophysical and Petrophysical Methodologies  68
Introduction  69
Advanced Geophysical Methodologies  69
How Many Clusters?  70
Case Study: North Sea Mature Reservoir Synopsis  72
Case Study: Working with Passive Seismic Data  74
Advanced Petrophysical Methodologies  78
Well Logging and Petrophysical Data Types  78
Data Collection and Data Quality  82
What Does Well Logging Data Tell Us?  84
Stratigraphic Information  86
Integration with Stratigraphic Data  87
Extracting Useful Information from Well Reports  89
Integration with Other Well Information  90
Integration with Other Technical Domains at the Well Level  90
Fundamental Insights  92
Feature Engineering in Well Logs  95
Toward Machine Learning  98
Use Cases  98
Concluding Remarks  99
References  99

Chapter 4  Continuous Monitoring  102
Introduction  103
Continuous Monitoring in the Reservoir  104
Machine Learning Techniques for Temporal Data  105
Spatiotemporal Perspectives  106
Time Series Analysis  107
Advanced Time Series Prediction  108
Production Gap Analysis  112
Digital Signal Processing Theory  117
Hydraulic Fracture Monitoring and Mapping  117
Completions Evaluation  118
CONTENTS

Reservoir Monitoring: Real-Time Data Quality 119
Distributed Acoustic Sensing 122
Distributed Temperature Sensing 123
Case Study: Time Series to Optimize Hydraulic Fracture Strategy 129
Reservoir Characterization and Tukey Diagrams 131
References 138

Chapter 5 Seismic Reservoir Characterization 140
Introduction 141
Seismic Reservoir Characterization: Key Parameters 141
Principal Component Analysis 146
Self-Organizing Maps 146
Modular Artificial Neural Networks 147
Wavelet Analysis 148
Wavelet Scalograms 157
Spectral Decomposition 159
First Arrivals 160
Noise Suppression 161
References 171

Chapter 6 Seismic Attribute Analysis 174
Introduction 175
Types of Seismic Attributes 176
Seismic Attribute Workflows 180
SEMMA Process 181
Seismic Facies Classification 183
Seismic Facies Dataset 188
Seismic Facies Study: Preprocessing 189
Hierarchical Clustering 190
k-means Clustering 193
Self-Organizing Maps (SOMs) 194
Normal Mixtures 195
Latent Class Analysis 196
Principal Component Analysis (PCA) 198
Statistical Assessment 200
References 204

Chapter 7 Geostatistics: Integrating Seismic and Petrophysical Data 206
Introduction 207
Data Description 208
Interpretation 210
Estimation 210
xii ▶ CONTENTS

The Covariance and the Variogram 211
Case Study: Spatially Predicted Model of Anisotropic Permeability 214
What Is Anisotropy? 214
Analysis with Surface Trend Removal 215
Kriging and Co-kriging 224
Geostatistical Inversion 229
Geophysical Attribute: Acoustic Impedance 230
Petrophysical Properties: Density and Lithology 230
Knowledge Synthesis: Bayesian Maximum Entropy (BME) 231
References 237

Chapter 8  Artificial Intelligence: Machine and Deep Learning 240
Introduction 241
Data Management 243
Machine Learning Methodologies 243
Supervised Learning 244
Unsupervised Learning 245
Semi-Supervised Learning 245
Deep Learning Techniques 247
Semi-Supervised Learning 249
Supervised Learning 250
Unsupervised Learning 250
Deep Neural Network Architectures 251
Deep Forward Neural Network 251
Convolutional Deep Neural Network 253
Recurrent Deep Neural Network 260
Stacked Denoising Autoencoder 262
Seismic Feature Identification Workflow 268
Efficient Pattern Recognition Approach 268
Methods and Technologies: Decomposing Images into Patches 270
Representing Patches with a Dictionary 271
Stacked Autoencoder 272
References 274

Chapter 9  Case Studies: Deep Learning in E&P 276
Introduction 277
Reservoir Characterization 277
Case Study: Seismic Profile Analysis 280
 Supervised and Unsupervised Experiments 280
Unsupervised Results 282
CONTENTS

Case Study: Estimated Ultimate Recovery 288
  Deep Learning for Time Series Modeling 289
  Scaling Issues with Large Datasets 292
  Conclusions 292
Case Study: Deep Learning Applied to Well Data 293
  Introduction 293
  Restricted Boltzmann Machines 294
  Mathematics 297
Case Study: Geophysical Feature Extraction: Deep Neural Networks 298
  CDNN Layer Development 299
Case Study: Well Log Data-Driven Evaluation for Petrophysical Insights 302
Case Study: Functional Data Analysis in Reservoir Management 306
References 312

Glossary 314

About the Authors 320

Index 323