
SASR Forum (Japan)# Users Group Academic Session 2004   (sugiJ2004)#   PRESENTATION AID 
Sponsored by SAS Institute Japan Ltd. and SAS Institute Inc.             1430-1500, July 30, 2004 
Rm 501, 5F, Tokyo Conference Center Shinagawa               # | Revised: Finally, Feb. 04, 2007 
Session Statistical Analysis, Chaired by Prof. Dr M. IWASAKI, Seikei University 
Principles of determination of various sums of squares (SS’s) in SAS/STATR GLM procedure 
Tadao SHIBAYAMA (Retired: Nagoya Municipal Industrial Research Institute) 
 
This PRESENTATION AID consists of the MAIN chapter and the REMI(nder) chapter*. 
--------------------------------------------------------------------------------------------------------------------------- 
*An excerpt of a SUGI-J2003 Presentation Aid “sugij03aidTadaoShibayama.doc” as supplemented 
and posted in the web folder ‘ftp://ftp.sas.com/pub/webfiles/Japan/contrib/sugij03/shibayama.zip’  
by the courtesy of SAS Institute Japan Ltd. and SAS Institute Inc.  It covers the parts 0, 1, 2, 3,  
‘An example of hypothesis testing’, ‘A full estimable matrix’, ‘Restoration matrix’, and 4. 
--------------------------------------------------------------------------------------------------------------------------- 
    
    
    
 
The MAIN chapter.     Some notation should be referred to the REMI chapter. 
    
    
 
 

ARTICLE 0          SAS/STATR GLM procedure is familiar to 

SAS professions 

but may be not to           SAS beginners. 
 
as it is based on the estimability principles of modern mathematical statistics that are, as detailed in 
this presentation later, a little different from the Fisher’s classical principles of analysis of variance.  
    
    
 

ARTICLE 1          SAS/STATR GLM procedure employs  

          Estimable functions 
    
as the basis of the analysis.  That are defined by product of an 
    

   Estimable matrix Lu (full) or L (part)  and 

a true Effect elements column vector cc , 
    
as detailed in the REMI chapter (of this handout),  PARTs  0,  1  and  2 . 
 



ARTICLE 2          SAS/STATR GLM procedure provides  
          Estimable functions 

of the                  Type I, II, III and IV , 
    
as detailed in Chapter 9, vol. 1, and Chapter 24, vol. 2, both SAS/STATR User’s Guide, version 6. 
Each defined of the   # (Chapter 4, miswritten originally, revised after the presentation, to Chapter 9.) 
    

Estimable matrix  Lu  (or  L ) 

of the                  Type I, II, III and IV ,          respectively. 
    
    

ARTICLE 2A    SASR Technical Report R-101, Tests of Hypotheses in Fixed-Effects  

Linear Models, SAS Institute Inc. (1978), demonstrates by an example that an 
    

Estimable full matrix  Lu  of the  Type I 
    
is swept out, by Gauss-Jordan-Doolittle forward elimination, of  
    
the Coefficients matrix  X’X  of the normal equation.  
    
Furthermore, the SASR Technical Report R-101 advocates that an  
    

 Estimable full matrix  Lu  of the  Type II 
    
is swept out of the matrix X’X , too, if the columns somewhat rearranged, and that an 
    

  Estimable full matrix  Lu  of the  Type III  or  IV 
is available if the rows of an estimable full matrix Lu are modified by orthogonality or balance. 
    
    

ARTICLE 2B     The complete detail of the sweep or the modification for generation of 

Estimable full matrix  Lu  of the Type II , III or IV  is, however, 
not described at all.  Furthermore, many other possibilities are not excluded even for generation of that of 
    

the Type I , as found in Output 24.3-6, p. 932-936, SAS/STATR User’s Guide, version 6, 

Volume 2, as of Type I, II, III or General (as defined).  Cf. the REMI chapter of this handout, the 

PART, ‘An example of hypothesis testing by SAS/STATR GLM procedure’. 



ARTICLE 3     The detail should be left to a further study, but once an 

Estimable matrix   Lu   (or   L ) 
is found, the true value of estimable function or its estim  or evaluated as follows. ate is defined

Lu.cc   or   Lu.cv 

in terms of a true or fitted effect elements column vector  cc  or  cv .  Then, tested is the  
    

 Testable hypothesis  L.cc = 0 

by the ratio of the  sum of squares (SS)  e estimated response  of th

 SS yvP ,  i.e., (L.cv)’.[L(X’X)-L’]-1.(L.cv) , 
to the sum of squared residues  SS vy , with the numbers of freedoms taken into account. 
    

The sum of squares  SS yvP  is of the Type I , II , III or IV  according to 

the type of the estimable function   L.cc   (or   L.cv )   as employed. 
    

ARTICLE 3A     The sum of squares SS yvP of the Type I and II  

is defined, sometimes, by Reduction of the sum of squares  SS yvP  , as 
    

denoted often in terms of the  R( ) notation  .  As fitted, for example, 
    

 R(M) ,  R(M,A) ,  R(M,A,B),  …  for Type I  case,  and 
    

 R(A|B,C) ,  R(B|A,C) ,  R(C|A,B)  for Type II  case. 
    
The Reduction of the sum of squares is from that of the measured response, as to be remarked. 
    

ARTICLE 3B     The definitions by the Reductions clarify meanings of those sums of  

squares of the Type I and II somehow, but it does not cover many other detail as mentioned 

above partly.  Furthermore, it does not matter with those of the Type III or IV . 

For beginners, some elementary consideration of estimable functions and hypotheses or of reduction  
may be helpful, such that covering detail of the estimable full and part matrices, and if possible, detail  
of solution of observation (and normal) equations on an actual arrangement in general. 



ARTICLE 4   A restoration matrix(#) and.an estimable full matrix, derived of a design matrix. 

                              
|                 | |                 | |                 | |                 | |                 | 
|                 | 
|                 | 
|    X  := J.Lu    | 
|                 | |                 |  | |                                                                  
| ||                 |                   
|    Lu := K.X    |  |                 ||                  |
 
 

 
 
 
 
The design matrix  X  may be reduced to 
an estimable full matrix  Lu  by operation 
of a contraction matrix  K . 
 
 
The design matrix  X  may be restored 
from an estimable full matrix  Lu  by 
operation of a restoration matrix  J . 
 
 
 
 
 
 
 

                                       
   |     | |                 |     |     |  |                 | =   |     |  |        Lu       |     |     |  |                 |

 |   |     |                   |
   |     | 
   |     | 
   |     | 
   |  J   | 
   |     |     |     |    |     |    |     |    |     |    |     |    |     |     |     |   |       |
 
 
 
 

 
 In the conseqence, the design matrix  X  
is factorized to a restoration matrix  J 
and an estimable full matrix  Lu . 
Any estimable full matrix  Lu  of Type I, 
II, III or IV shall be interpreted to be typical 
examples of estimable functions. 
There are infinitely many possibilities of 
the estimable functions, not limited to 
those of the Type I, II, III or IV.  
Those are only typical examples, any other 
possibilities should be never excluded. 



ARTICLE 4A     The sum of squared fitted response SS yv is equal to 

                      (Lu.cv)’.J’J.(Lu.cv)       as equivalent 
to        (Lu.cv)’.[Lu(X’X)-Lu’]-1.(Lu.cv) . 
The columns of the matrix  J  may be orthogonalized to each other and normalized if a regular 

matrix  GO  is operated on the estimable full matrix  Lu  from the left side and the inverse 

matrix  GO*  is operated on the restoration matrix  J  on the right side so that 

   JO = J.GO* ,  LuO = GO.Lu  and  X = JO.LuO . 

Then, the sum of squared fitted response SS yv is equal to 

                 (LuO.cv)’.JO’JO.(LuO.cv)   
  = (LuO.cv)’.(LuO.cv)    because     JO’JO = 1  . 
 

ARTICLE 4B     In singlet expressions eqns (14d) and (17b) in the Official Paper, 

   EOYV(qqJO) = <LuO(qqJO: ).cv( )> 
= <JO(qqJO: ).y( )>  for  qqJO < lpLuO  for the measured response. 

The inner product  <LuO(qqJO: ).cv( )>  is to be estimated in terms of 

the other inner product  <JO(qqJO: ).y( )> of the measured response.   

The estimate is compared to the fluctuations in eqn (17b),   EOVY(qqJO)  
= <JO(qqJO: ).y( )>  for  qqJO > lpLuO  for fluctuations. 

Once the columns of the matrix  J  are orthogonalized to each other and normalized, giving the 

estimability full matrix LuO and the restoration matrix JO , these may be transformed to another 

pair LuW and JW by an arbitrary orthogonal matrix GW and the inverse GW* .   

Under the transformation, is kept ever the equality  <JW(qqJW: ).y( )> =  

<LuW(qqJW: ).cv( )>  exactly equivalent, any indeterminacy of 

the solution  cv( )  , too, if it is caused of any redundancy of the parametrization. 



ARTICLE 5     In evaluation of SAS sums of squares SSI, SSII, SSIII and SSIV, also of the 

reductions of sums of squares, and of the estimable functions E1, E2, E3 and E4, consequently, in  

ordinary SAS analysis o nd in ordinary hypothesis testing, the expression  f variances or responses, a

[Lu(X’X)-Lu’]-1  is employed, often, instead of  J’J  , but the latter 

proves very legible for beginners, particularly if orthonormalized to  JO’JO  .  Furthermore, 

it gives an interpretation very classic, just consistent to Fisher’s original analysis of variance. 

The analysis on the basis of the latter expression may be called detached analysis (say), 

contrasted to more modern entailed analysis (say) in professions employing the inverse of a 

general inverse that seemingly can meet problems without any artificial additional assumptions.  Of 

course, a detached analysis may be convenient for removing some overcomplication. 
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The REMI chapter  -  Attached below: 
 
An excerpt of a SUGI-J2003 presentation aid “sugij03aidTadaoShibayama.doc” as supplemented and 
posted in the web folder ‘ftp://ftp.sas.com/pub/webfiles/Japan/contrib/sugij03/shibayama.zip’  
by the courtesy of SAS Institute Japan Ltd. and SAS Institute Inc.  It covers the  
 
PART 0 Structure, observation and normal equations. 
PART 1 Design, estimable, contraction and restoration matrices. 
PART 2 Estimable functions. 
PART 3 Sum of squared fitted responses. 
PART An example of hypothesis testing by SAS/STATR GLM procedure, Version 6. 
PART A full estimable matrix in SAS/STATR User’s Guide, Version 6.  
PART Restoration matrix for the full estimable matrix above. 
PART 4 Another expression  [Lu(X’X)-Lu’]-1  for the matrix product  J’J. 
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FORMULAS:   PART 0 
    (A1)   y = X.cc + vv = yy + vv   
                 provided that   yy = X.cc  

    (A2)   y = X.cv + vy = yv + vy   
                 provided that   yv = X.cv  

    (A3)   X’X.cv = X’.y      so 
             a solution  cv = (X’X)-.X’.y 
 

PART 1 
                                |                 |      |                 |      |                 | 

(A4)      |                 |  
     |                 |      |                |   Lu = K X  Lu = K.X X     |        X        |       |                 |      |                 |      |                 | 
                                                      

(A5)      |                 |       |                 | 
 J.Lu = X      |       Lu        |  

      |                 |
     |                  |
 



PART 2 
  (A6) 
     Lu

 
o = Lu 1.Lu

 
1 + Lu 2.Lu 2 + 

                     ...  + Lu qu.Lu qu 

  (A7) 
                    Lu

 
o.cc 

                Lu o.cv 

 (A’1)  y = Xp.ccP + vvP = yyP + vvP 
              provided that   yyP = Xp.ccP 

 (A’2)  y = Xp.cvP + vyP = yvP + vyP 
              provided that   yvP = Xp.cvP  

 (A’3)  Xp’Xp.cvP = Xp’.y      so 
          a solution  cvP = (Xp’Xp)-.Xp’.y 
 
 

PART 3 
 (A8)  SS yv = yv’.yv = cv’.X’X.cv 
               = (Lu.cv)’.J’J.(Lu.cv) 
 

(A’8) SS yvP = yvP’.yvP = cvP’.Xp’Xp.cvP 
               = (L.cvP)’.J’J.(L.cvP) 
 



An example of hypothesis testing by SAS/STATR GLM procedure. 
Cf. SAS/STATR User’s Guide, version 6, Volume 2, Chap. 24, p. 932-936,  
and Volume 1, Chap. 9, p. 109-110, and around as it may concern. 
****************************************************************************** 
The structure equation of a model.      y = yy + vv = X.cc + vv 
The response column vector, with the element for the treatment-run    AaBb.r   of  
the r-th run of the level a of the factor A and the level b of the factor B such as follows 
  A1B1.1  A1B1.2  A1B2  A2B1  A2B2.1  A2B2.2  A3B1.1  A3B1.2  A3B2.1  A3B2.2 : 
-  as observed         y = ( y1,  y2,  y3,  y4,  y5,  y6,  y7,  y8,  y9,  y10)’ 
-  of the true values   yy = (yy1, yy2, yy3, yy4, yy5, yy6, yy7, yy8, yy9, yy10)’ 
The error column vector 
  of the true samples   vv = (vv1, vv2, vv3, vv4, vv5, vv6, vv7, vv8, vv9, vv10)’ 
The effect elements column vector, of the true values,   cc := (ccM, ccA1, ccA2, ccA3, 
          ccB1, ccB2, ccAB11, ccAB12, ccAB21, ccAB22, ccAB31, ccAB32)’ 
The design matrix. 
             - ccM   ccA1,2,3    ccB1,2      ccAB11, 12, 21, 22, 31, 32    - X =    A1B1.1 |   1     1   0   0     1   0      1     0     0     0     0     0   | 
   2   A1B1. |   1     1   0   0     1   0      1     0     0     0     0     0   | 
   A1B2      |   1     1   0   0     0   1      0     1     0     0     0     0   | 
  A2B1       |   1     0   1   0     1   0      0     0     1     0     0     0   | 
  A2B2.1     |   1     0   1   0     0   1      0     0     0     1     0     0   | 
   A2B2.2    |   1     0   1   0     0   1      0     0     0     1     0     0   | 
  A3B1.1    |   1     0   0   1     1   0      0     0     0     0     1     0   | 
  A3B1.2    |   1     0   0   1     1   0      0     0     0     0     1     0   | 
  A3B2.1    |  1     0   0   1     0   1      0     0     0     0     0     1  | 
   A3B2.2 |  1     0   0   1     0   1      0     0     0     0     0     1   

   
   |

             -                                                                     - 
The arid design matrix (X* of p.110, The Volume 1), with the duplicate rows deleted: 
       -                                                                   - XX =     |   1     1   0   0     1   0      1     0     0     0     0     0   | 1 
      |   1     1   0   0     0   1      0     1     0     0     0     0   | 2 
      |   1     0   1   0     1   0      0     0     1     0     0     0   | 3 
      |   1     0   1   0     0   1      0     0     0     1     0     0   | 4 
      |   1     0   0   1     1   0      0     0     0     0     1     0  | 5 
       1     0   0   1     0   1      0     0     0     0     0     1   6 

  |  |
     -                                                                     - 
The full estimable matrix, with the linearly independent rows arbitrarily extracted: 
       -                                                                   - Lu =     |   1     0   0   1     0   1      0     0     0     0     0     1   | 6 
      |   0     1   0  -1     0   0      0     1     0     0     0    -1   | 2-6 
      |   0     0   1  -1     1   0      0     0     0     1     0    -1   | 4-6 
      |   0     0   0   0     1  -1      0     0     0     0     1    -1   | 5-6 
      |   0     0   0   0     0   0      1    -1     0     0    -1     1  | 1-2-5+6 
       0     0   0   0     0   0      0     0     1    -1    -1     1   3-4-5+6 

  |  |
     -                                                                      - 
****************************************************************************** 
     -                                                      - J =       |      -1       1       0      -1       1       0    | 
      |      -1       1       0      -1       1       0     | 
      |      -1       1       0       0       0       0     | 
      |       1       0       1       1       0       1     | 
      |       1       0       1       0       0       0     | 
      |       1       0       1       0       0       0     | 
      |       1       0       0       1       0       0     | 
      The restoration matrix.    |       1       0       0       1       0       0     |
        |       1       0       0       0       0       0   | 
           1       0       0       0       0       0               X = J.Lu 

  |  |
     -                                                      - 
****************************************************************************** 



A full estimable matrix, LuI, LuII, LuIII or Lu (above), each in SAS/STATR User’s Guide, 
version 6, Volume 2, p. 932-936, Output 24.3-6, as of Type I, II, III, or General, respectively, 

e sweep operator (LL’s) such that LuI=LLI.Lu, LuII=LLII.Lu or LuIII=LLIII.Lu. and th    
****************************************************************************** 
                                                                            - Lu =  -I     |   1   0  0  1     0     1       0     0     0     0     0     1   |  
        |   0   1  0 -1    1/6 -1/6     2/3   1/3    0     0   -1/2  -1/2  |  
        |   0   0  1 -1   -1/6  1/6      0     0    1/3   2/3 -1/2  -1/2  |  
        |   0   0  0  0     1    -1      2/7 -2/7   2/7 -2/7   3/7  -3/7  |  
         |   0   0  0  0     0     0       1    -1     0     0    -1     1 |  
   

   
      |   0   0  0  0     0     0       0     0     1    -1    -1     1   | 

  -      -                                                                     
                                                                              - Lu  =  -II   |   1   0  0  1    0  1       0      0      0      0       0      1   |  
        |   0   1  0 -1    0  0    13/21   8/21 -1/21   1/21  -4/7   -3/7  |  
        |   0   0  1 -1    0  0      1/21 -1/21   8/21 13/21  -3/7   -4/7  |  
        |   0   0  0  0    1 -1      2/7   -2/7    2/7   -2/7     3/7   -3/7  |  
         |   0   0  0  0    0  0       1     -1      0      0      -1      1 |  
   

   
      |   0   0  0  0    0  0       0      0      1     -1      -1      1   | 

        -                                                                      - 
                                                                              - Lu  =  -III   |   1   0  0  1    0  1       0      0      0      0       0      1   |  
        |   0   1  0 -1    0  0     1/2     1/2     0      0     -1/2   -1/2  |  
        |   0   0  1 -1    0  0       0      0     1/2   1/2    -1/2   -1/2  |  
        |   0   0  0  0    1 -1      1/3    -1/3    1/3  -1/3    1/3   -1/3  |  
         |   0   0  0  0    0  0       1     -1      0      0      -1      1 |  
   

   
      |   0   0  0  0    0  0       0      0      1     -1      -1      1  | 

        -                                                                      - 
****************************************************************************** 
          -                                                     - LL =    I      |       1       0       0       0       0       0    | 
            |       0       1       0      1/6    2/3      0   | 
           |       0       0       1     -1/6      0      1/3   | 
            |       0       0       0       1      2/7     2/7   | 
            |       0       0       0       0       1       0   | 
   

  
       |       0       0       0       0       0       1      | 

         -                                                      - 
                                                               - LL =      -II     |       1       0       0       0       0       0  | 
          |       0       1       0       0     13/21  -1/21    | 
          |       0       0       1       0      1/21    8/21    | 
            |       0       0       0       1      2/7     2/7    | 
            |       0       0       0       0       1       0   | 
  

  
       |       0       0       0       0       0       1      | 

         -                                                      - 
                                                               - LL  =    -III   |       1       0       0       0       0       0    | 
          |       0       1       0       0      1/2      0     | 
          |       0       0       1       0       0      1/2    | 
            |       0       0       0       1      1/3     1/3    | 
            |       0       0       0       0       1       0   | 
  

  
       |       0       0       0       0       0       1      | 

         -                                                      - 
* ****************************************************************************
-1. The sweep operators should be derived on the basis of descriptions of Chap. 9, Volume 1, 
*  

p.109-124, though explicit and complete descriptions of the steps are often not so popular. 
-2. Construction of rows of any particular full or part estimable matrix (Lu or L) for estimation 
of Type I, II, III etc., respectively, from that of Type General is important. It is, perhaps, done 
by part estimable matrices (L) built of the full matrix (Lu) with rows zeroed. And, if necessary, 
done by ‘curt’ estimable matrices (Lv), too, built of the full matrix (Lu) with columns zeroed. 
-3. Many estimable functions are formed arbitrarily (by linear transformation or so) of rows of 
the full estimable matrix (Lu) yet all governed by the linear independence and the estimability.  
It secures general applicability of the scheme but with complication by the indeterminacy of 
the effect elements, to be relieved perhaps by the usual constraints on the basis of isolability. 
****************************************************************************** 



Restoration matrix, JI, JII or JIII, for the full estimable matrix (above), LuI, LuII or LuIII, 
of Type I, II or III, respectively, such as built of the restoration matrix J of the General type by 
the inverse sweep operator (KK’s) such that JI=J.KKI, JII=J.KKII or JIII=J.KKIII. 
****************************************************************************** 
        -                                                - =   JI      |    -1      1      0    -7/6     2/21   3/7   | 
         |    -1      1      0    -7/6     2/21   3/7   | 
          |    -1      1      0    -1/6  -13/21   1/21  | 
         |     1      0      1     1/6   -1/3     1/3   | 
         |     1      0      1     1/6  -13/21  -8/21  | 
         |     1      0      1     1/6  -13/21  -8/21  | 
        |     1      0      0      1      2/7   -2/7     | 
         The restoration matrix.    |     1      0      0      1      2/7   -2/7    |

        |     1      0      0      0       0       0   | 
         X = JI.LLI 

  
      |     1      0      0      0       0       0      | 

        -                                                - 
                                                        -  -JII   =  |    -1      1      0     -1     2/3      0      | 
         |    -1      1      0     -1     2/3    1/3    | 
         |    -1      1      0      0   -13/21   1/21   | 
         |     1      0      1      1    -1/3     1/3    | 
         |     1      0      1      0    -1/21  -8/21  | 
         |     1      0      1      0    -1/21  -8/21  | 
          |     1      0      0      1    -2/7   -2/7   | 
       The restoration matrix.       |     1      0      0      1    -2/7   -2/7   |
           |     1      0      0      0       0       0   | 
         X = JII.LLII 

  
      |     1      0      0      0       0       0      | 

        -                                                - 
                                                        -    -JIII  =  |    -1      1      0     -1     5/6      0   | 

         |    -1      1      0     -1     5/6      0    | 
          |    -1      1      0      0    -1/2      0   | 

          |     1      0      1      1    -1/3      1    | 
         |     1      0      1      0       0      1/6   | 
          |     1      0      1      0       0      1/6   | 
         |     1      0      0      1    -1/3    -1/2   | 
        The restoration matrix.      |     1      0      0      1    -1/3    -1/2  |
           |     1      0      0      0       0       0   | 
            1      0      0      0       0       0             X = JIII.LLIII 

  |  |
        -                                                - 
****************************************************************************** 
          -                                              - KK =  I     |     1      0      0      0       0       0      | 
        |     0      1      0    -1/6  -13/21   1/21    | 
        |     0      0      1     1/6   -1/21  -8/21    | 
           |     0      0      0      1    -2/7   -2/7   | 
           |     0      0      0      0       1       0   | 
   

  
      |     0      0      0      0       0       1      | 

        -                                                - 
                                                        - KK  =   -II   |     1      0      0      0       0       0     | 
          |     0      1      0      0   -13/21   1/21  | 
         |     0      0      1      0    -1/21  -8/21   | 
           |     0      0      0      1    -2/7    -2/7   | 
           |     0      0      0      0       1       0  | 
   

  
      |     0      0      0      0       0       1     | 

   -                                                     - 
                                                         - KK  =  -III   |     1      0      0      0       0       0     | 
          |     0      1      0      0     -1/2      0   | 
         |     0      0      1      0       0     -1/2   | 
           |     0      0      0      1     -1/3   -1/3   | 
           |     0      0      0      0       1       0  | 
   

  
      |     0      0      0      0       0       1     | 

       - -                                                  
                                                                   
****************************************************************************** 



PART 4            Cf. PART 3 
Another expression of eqn (A8) or (A’8) 
   SS yv = yv’.yv = cv’.X’X.cv 
          = (Lu.cv)’.J’J.(Lu.cv)   (A8) 
 

(A14)  X’X.cv = X’.y = (J.Lu)’.y : 
 cv = (X’X)-.(J.Lu)’.y = (X’X)-Lu’.J’y 
(A15)  Lu.cv = Lu(X’X)-Lu’.J’y 
(A16)  J’y  = (Lu(X’X)-Lu’)-1.(Lu.cv) 
(A17)  (Lu.cv)’.J’y = (J.Lu.cv)’.y 
= (Lu.cv)’.(Lu(X’X) Lu’) .(Lu.cv) 

.cv 
- -1

= (X.cv)’.y = cv’.X’y = cv’.(X’X)
 (X.cv)’(X.cv) = yv’.yv = SS = yv  
 (A18) SS yv 
    = (Lu.cv)’.[Lu(X’X)-Lu’]-1.(Lu.cv) 
(A’18) SS yvP  similarly with  eqn (A’8) 
   = (L.cvP)’.[L(Xp’Xp)-L’]-1.(L.cvP) 
 
****************************************************************************** 
-4. The equation (A18) or (A’18) is identical with that at the end of the section ESTIMABILITY 
in Chap. 9, Volume 1, p.109-110, the last line of the section just around the middle of p.110. 
-5. The matrix [Lu(X’X)-Lu]-1 in eqn (A18) or [L(Xp’Xp)-L’]-1 in eqn (A’18) may be 
replaced consistently by the matrix J’J in eqn (A11) or (A’11) in PART B as shown. 
-6. The full estimable matrix LuI, LuII or LuIII and the sweep operator LLI, LLII or LLIII 
reflect the procedure of solution of the normal equation by Type I, II or III estimation, 
respectively. A ‘full’ estimable matrix may be linearly transformed to another, so an estimable 
function Lu

 
o.cvP (cf. expn (A7)) may be generated in a ‘part’ estimable matrix arbitrarily. 

-7. Each sum of squares SS yvP shall be tesed of a null hypothesis.  If necessary, columns 
of the restoration matrix J should be orthogonalized to each other by an inverse sweep 
operator KK, with rows of the estimable matrix transformed by a sweep operator LL (=KK-1).  
Such the test might be an approximation only, without the orthogonality of the columns. 
-8. Often the effect components are too much flexible under the conception of estimability and 
reduction.  A more specific formulation may be preferable and possible, sometimes.  
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Prof. Dr Iwasaki,M. (Chair):  In the scheme, linear algebra plays an important role on the one hand, 
though loaded heavy by matrices.  On the other hand, theory of samples of normal population. 
Shibayama,T. (Presenter):  Yes, really.  Thanks.  (And, after the conference, wrote: ) 
PARAGRAPH  1. --- Consequently, at the inception of the scheme, the responses y as measured 
are generally looked as if to be samples of a normal population with the population mean mm (=0) and 
the population standard deviation ss, as the basis and control in spite of the actual nature.   
2. --- On the other hand, each response y is related to each row of the design matrix X, one by one, 
identified by the identification number ppX (=1,…,lpX) of the row of the design matrix X from 1 to the 
total number of the rows lpX.  The responses y(ppX) as identified build a column vector 
(R1)                         y> = y(-ppX-)> = y(ppX)> 
as denoted by a Dirac ket > (and a row vector <y by a Dirac bra < ).  Two short hyphens (that may 
be omitted) emphasize that the variable in between is an indefinite element floating and running.   
3. --- A response y as measured is assumed generally to be a sum of the true response yy and a 
true sample vv of fluctuation, and the true response vector yy> is defined by the design matrix X 
that is operated on the true effect vector cc(-qqX-)> .  So, the structure equation follows  
(R2)             y> = yy> + vv> = yy(-ppX-)> + vv(-ppX-)>      
(R2a)                 yy(-ppX-)> = X.cc(-qqX-)> 
The true effect vector cc(-qqX-)> is built of the true effect elements cc(qqX), each related to each 
column of the design matrix X, one by one, and identified by the identification number ppX (=1,…,lpX) 
of the column of the design matrix X running from 1 to the total number of the columns lpX.   
3a. --- In a form similar to the equations (R2) and (R2a), the observation equation is to follow 
(R3)             y> = yv> + vy> = yv(-ppX-)> + vy(-ppX-)>      
(R3a)                  yv(-ppX-)> = X.cv(-qqX-)> 
The measured response vector y> is decomposed to a sum of the fitted response vector yv> and the 
fitted residue vector vy> both to make the sum of squared residues <vy.vy> least so that  
(R3b)       X’.yv(-ppX-)> = X’X.cv(-qqX-)> = X’.y(-ppX-)>     and  
(R3c)        X’.vy(-ppX-)> = 0                 ---   the normal equation. 
4. --- As mentioned in the section ESTIMABILITY of SAS/STATR User’s Guide, version 6, 
Volume 1, Chap. 9, p.109-110, and in the subsection General Form of an Estimable Function as it 
follows, and sketched in p.110-124 and in SASR Technical Reports R101 and R106, a set of linearly 
independent rows of the design matrix X may be extracted arbitrarily by the procedures such as  
  Type I procedure    by Gauss-Jordan-Doolittle forward (sequential) elimination,  
  Type II procedure    by Gauss-Jordan-Doolittle forward (partial) elimination, 
  Type III procedure   by Type I, II or other procedure and adjustment by orthogonality of rows, 
  Type IV procedure   by Type I, II or other procedure and adjustment by balance of rows, 
or by other possible procedures, each detailed precisely or not, to form an estimable full matrix Lu.   
To be regretted, any the procedure is complicate, not to be described so concisely, and hardly tractable 
even in the well readable SAS/STATR User’s Guide.  Furthermore, if some different conceptions are 
amalgamated in a software, the internal consistency may be established only to a limited extent. 
4a. --- Though an estimable full matrix Lu is extracted by any procedure, any row of the original 
design matrix X is to be a linear combination of the rows of the estimable full matrix Lu.  Consequently, 
the design matrix X is to be decomposed to a product of a restoration matrix J and the estimable full 
matrix Lu.  The restoration matrix J is operated on the estimable full matrix Lu from the left:   
(R4)(R4a)              X = J.Lu ,    as the inverse of     Lu = K.X 
that mentioned in the section ESTIMABILITY of SAS/STATR User’s Guide, version 6, Volume 1, 
Chap. 9, p.109-110, and in the section ESTIMABILITY of SASR Technical Report R101.  
A row of the restoration matrix J is related to a row of the design matrix X, one by one, and identified 
by the identification number ppJ (=1, …,lpX) just like the rows of the design matrix X.  On the other 



hand, a column is related to a row of the estimable full matrix Lu, and identified by the identification 
number qqJ (=1,…,lpLu) that is related to the rows of the estimable full matrix Lu, therefore running 
from 1 to the total number lpLu of the rows of the estimable full matrix Lu.   
4b. --- All of infinitely many possible pairs of the estimable full matrices Lu (‘’s) and the restoration 
matrix J are exhausted by eqn (R4), as an identity matrix I/ of size lpLu may be inserted in between 
the matrices J and Lu and factorized to a product of a regular matrix G and the inverse G* so that 
(R4b)(R4c)           I/ = G*.G     and therefore     X = J.Lu = J.G*.G.Lu 
Any estimable full matrix LuB is got as equal to the product G.LuA from any original estimable full 
matrix LuA, and the restoration matrix JB is got as equal to the product JA.G* from the original JA. 
5. --- From the observation and the normal equations, eqns (R3),(R3a),(R3b) and (R3c), it follows 
that sum of the squared measured response SS_y (=<y.y>) is composed of i) sum of the squared fitted 
response SS_yv (=<yv.yv>) and ii) sum of the squared fitted response SS_vy (=<vy.vy>). 
The sum of the squared fitted response SS_yv is represented as follows 
(R5)               SS_yv = <yv.yv> = <cv.X’X.cv> = <cv.Lu’.J’J.Lu.cv> 
If an estimable full matrix Lu is transformed to another matrix LuO appropriately by eqn (R4c), the 
restoration matrix J can be transformed to the other JO such that the columns are orthogonal to each 
other and normalized.  Then, the sum of squares SS_yv is represented as follows: 
(R5a)              SS_yv = <cv.LuO’.LuO.cv>      because      J’J = I/  
The expression is reduced very simple by the orthonormalized columns of the restoration matrix JO.  
5a. --- Each of the orthonormalized columns of a restoration matrix JO may be identified by the 
identification number qqJO (=1,…,lpLuO) and interpreted as a column vector JO(qqJO:-ppJO-)> as 
denoted.  The running variable ppJO is the identification number of the elements and also of rows of 
the restoration matrix JO.  That is running from 1 to the total number of the rows, lpJO (=lpX). 
So, a new set of orthonormal column vectors JO(qqJO:-ppJO-)> may be defined arbitrarily as to be 
identified by the identification number qqJO (=lpLuO+1, …, lpX) so that each is orthogonal to each 
other and to each of the orthonormal column vectors JO(qqJO:-ppJO-)> (qqJO =1,…,lpLuO).   
5b. --- The newly defined orthonormal column vectors JO(qqJO:-ppJO-)> (qqJO =lpLuO+1, …, lpX) 
build a complementary matrix JV for the restoration matrix JO.  The restoration matrix JO and the 
complementary matrix JV, if joined directly, form an orthonormal matrix J-O such that 
(R5b)        I = J J-O’. J-O =  J-O.J J-O’ = IO + IV ,   IO = JO.JO’ ,   IV = JV.JV’ ; 
             I/ = JO’.JO ,     I/V = JV’.JV ,     JO’.JV = 0 ,    JV’.JO = 0 ; 
  I ,  I/ ,  I/V :  an identity matrix of size  lpX ,  lpLu  or  lpV (=lpX-lpLu) ,  respectively. 
6. --- Columns of the design matrix X may be replaced by that of the restoration matrix JO, and the 
product JO’.JO (= I/) omitted, the normal equation (eqns (R3b) and (R3c)) is rewritten as follows: 
(R6)(R6a)      LuO.cv(-qqX-)> = JO’.y(-ppX-)>     and      JO’.vy(-ppX-)> = 0 . 
Each row of the estimable full matrix LuO may be looked as a row vector <LuO(ppLuO:-qqLuO-) that 
corresponding to the column vector JO(qqJO:-ppJO-)> (qqJO =1,…,lpLuO), with the identification 
number ppLuO of that replaced by qqJO, i.e., that of the column vector JO(qqJO:-ppJO-)>.  Then,  
(R6b)  <LuO(qqJO:).cv> = <JO(qqJO:).y>  provided that  <JO(qqJO:) = (JO(qqJO:)>)’  
6a. --- An estimable function <LuO(qqJO:).cv> is equal to a contrast <JO(qqJO:).y> related to 
a column of the restoration matrix JO, defining the elements cv with some algebraic indeterminacy.  
Each contrast <JO(qqJO:).y> is a true sample of the normal population (PAR. 1.), if the true 
response yy> is zero.  (Basis for chi-square tests of hypotheses and of the significance of effects.) 
6b. --- The pair of the restoration matrix JO and the estimable full matrix LuO may be transformed 
by any orthonormal matrix GW and the inverse GW* (=GW’) to another pair (PAR. 4b.) but the normal 
equation and the solution are essentially invariant, and the algebraic indeterminacy as well. 
7. --- If a design matrix X is factorized to a restoration matrix J and an estimable full matrix Lu, 
and if columns of the restoration matrix are orthonormalized, the estimable functions of the fitted 
effect elements are detached simple and defined uniquely.  Sums of squares, etc., too, of course. 
If the columns not orthonormalized, the matrix product J’.J entails non-diagonal elements to the equations 
as to be tractable necessarily by many-sided means of analysis of various ‘Type’(s) as known.   


