SAS | The Power to Know
Blue radiance
cq5dam.thumbnail.319.319
White Paper

When One Size No Longer Fits All - Electric Load Forecasting with a Geographic Hierarchy

About this paper

Utility forecasters cannot assume that one methodology will provide the best forecast from one year to the next. To improve forecast performance, reduce uncertainties and generate value in the new data-intensive environment, they must be able to decide which models, or combinations of models, are best. And they must be able to determine more indicators of the factors that affect load. This paper uses a case study to illustrate how utility forecasters can take advantage of hourly or sub-hourly data from millions of smart meters by using new types of forecasting methodologies. It investigates how a number of approaches using geographic hierarchy and weather station data can improve the predictive analytics used to determine future electric usage. It also demonstrates why utilities need to use geographic hierarchies, and why their solutions should allow them to retrain models multiple times each year.

Tentang SAS

SAS adalah pemimpin dalam ranah analitik. Melalui analitik inovatif, kecerdasan bisnis, serta layanan dan perangkat lunak pengelolaan, SAS membantu pelanggan di lebih dari 80.000 situs membuat keputusan yang lebih baik dengan lebih cepat. Sejak 1976, SAS memberi THE POWER TO KNOW® kepada pelanggan di seluruh dunia.

Have a SAS profile? To complete this form automatically Sign In

*
*
*
*
 
*
 
 
  Ya, saya ingin menerima email dari SAS Institute Inc. dan afiliasinya tentang produk dan layanan SAS. Saya mengerti bahwa saya dapat menarik persetujuan saya kapan saja dengan mengeklik tautan tolak (opt-out) dalam email.

Semua informasi pribadi akan ditangani sesuai dengan Pernyataan Privasi SAS.

 
 

Back to Top