

The correct bibliographic citation for this manual is as follows: Lafler, Kirk Paul. 2019. PROC SQL: Beyond
the Basics Using SAS®, Third Edition. Cary, NC: SAS Institute Inc.

PROC SQL: Beyond the Basics Using SAS®, Third Edition

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

978-1-64295-192-9(Hard cover)
978-1-63526-684-9 (Hardcopy)
978-1-63526-683-2 (Web PDF)
978-1-63526-681-8 (epub)
978-1-63526-682-5 (mobi)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the
prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by
the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the
permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic
editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of
others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial
computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United
States Government. Use, duplication, or disclosure of the Software by the United States Government is
subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a),
DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the
minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this
provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the
Software or documentation. The Government’s rights in Software and documentation shall be only those set
forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

March 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source
software, which is licensed under its applicable third-party software license agreement. For license
information about third-party software distributed with SAS software, refer to
http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Contents

About This Book .. vii

Chapter 1: Designing Database Tables ... 1
Introduction ... 1
Database Design .. 1
Column Names and Reserved Words .. 7
Data Integrity .. 8
Database Tables Used in This Book .. 8
Table Contents ... 11
Summary .. 20

Chapter 2: Working with Data in PROC SQL.. 21
Introduction ... 21
The SELECT Statement and Clauses .. 21
Overview of Data Types ... 23
SQL Operators, Functions, and Keywords ... 31
Dictionary Tables .. 66
Summary .. 82

Chapter 3: Formatting Output... 83
Introduction ... 83
Formatting Output .. 83
Formatting Output with the Output Delivery System ... 102
Summary .. 108

Chapter 4: Coding PROC SQL Logic .. 109
Introduction ... 109
Conditional Logic .. 109
CASE Expressions ... 114
Interfacing PROC SQL with the Macro Language .. 139
Summary .. 151

Chapter 5: Creating, Populating, and Deleting Tables 153
Introduction ... 153
Creating Tables .. 154
Populating Tables ... 160
Integrity Constraints ... 177
Deleting Rows in a Table.. 189

iv

Deleting Tables ... 190
Summary ... 193

Chapter 6: Modifying and Updating Tables and Indexes 195
Introduction ... 195
Modifying Tables ... 195
Indexes .. 207
Updating Data in a Table ... 218
Summary ... 219

Chapter 7: Coding Complex Queries ... 221
Introduction ... 222
Introducing Complex Queries .. 222
Joins .. 222
Why Joins Are Important ... 223
Cartesian Product Joins .. 229
Inner Joins ... 230
Outer Joins .. 240
Subqueries .. 246
Set Operations .. 256
Data Structure Transformations .. 265
Complex Query Applications ... 272
Summary ... 287

Chapter 8: Working with Views ... 289
Introduction ... 289
Views—Windows to Your Data ... 289
Eliminating Redundancy .. 299
Restricting Data Access—Security .. 299
Hiding Logic Complexities ... 300
Nesting Views ... 302
Updatable Views ... 304
Deleting Views .. 311
Summary ... 312

Chapter 9: Fuzzy Matching Programming .. 313
Introduction ... 313
Data Sets Used in Examples ... 314
6-Step Fuzzy Matching Process .. 316
Summary ... 342

Chapter 10: Data-driven Programming ... 343
Introduction ... 343
Programming Paradigms ... 343
SAS Metadata Sources ... 344

v

DICTIONARY Tables ... 350
CALL EXECUTE Routine ... 354
Custom-defined Formats .. 357
Macro Language .. 360
Summary .. 364

Chapter 11: Troubleshooting and Debugging .. 365

Introduction ... 365
The World of Bugs .. 365
The Debugging Process ... 366
Types of Problems ... 367
Troubleshooting and Debugging Techniques ... 368
Undocumented PROC SQL Options .. 382
Summary .. 389

Chapter 12: Tuning for Performance and Efficiency 391

Introduction ... 391
Understanding Performance Tuning ... 391
Sorting and Performance.. 392
User-Specified Sorting (SORTPGM= System Options) .. 392
Grouping and Performance .. 393
Splitting Tables ... 393
Indexes and Performance .. 394
Reviewing CONTENTS Output and System Messages ... 395
Optimizing WHERE Clause Processing with Indexes .. 398
Summary .. 404

References ... 405

About This Book

What Does This Book Cover?
PROC SQL: Beyond the Basics Using SAS, Third Edition, is a step-by-step, example-driven guide that
helps readers master the language of PROC SQL. Packed with analysis and examples illustrating an
assortment of PROC SQL options, statements, and clauses, this book covers all the basics, but also
offers extensive guidance on complex topics such as set operators and correlated subqueries.

The third edition explores new and powerful features in SAS® 9.4, including topics such as IFC and
IFN functions, nearest neighbor processing, the HAVING clause, and indexes. It also features two
completely new chapters on fuzzy matching and data-driven programming. Delving into the workings
of PROC SQL with greater analysis and discussion, PROC SQL: Beyond the Basic Using SAS, Third
Edition, examines a broad range of topics and provides greater detail about this powerful database
language using discussion and numerous real-world examples.

Is This Book for You?
The intended audience for this book includes SAS users, programmers, business analysts, application
and software developers, database analysts and administrators, help desk support staff, statisticians, IT
support staff, and other professionals who want or need application-oriented information to extend
their knowledge of PROC SQL beyond the basics.

This book offers readers under-the-hood, behind-the-scenes knowledge on how PROC SQL works and
is the perfect tool for students pursuing an undergraduate or graduate information science, computer
science, or cognitive science degree.

What Should You Know about the Examples?
This book includes tutorials for you to follow to gain hands-on experience with SAS.

Software Used to Develop the Book's Content
SAS® 9.4 was used to develop all content for this book.

Example Code and Data
You can access the example code and data for this book by linking to its author page at
https://support.sas.com/lafler. Then, look for the cover thumbnail of this book, and select Example
Code and Data to display the SAS programs that are included in this book.

https://support.sas.com/lafler

viii

SAS University Edition

 This book is compatible with SAS University Edition. If you are using SAS University Edition,
then begin here: https://support.sas.com/ue-data .

We Want to Hear from You
Do you have questions about a SAS Press book that you are reading? Contact us at saspress@sas.com.

SAS Press books are written by SAS Users for SAS Users. Please visit sas.com/books to sign up to
request information on how to become a SAS Press author.

We welcome your participation in the development of new books and your feedback on SAS Press
books that you are using. Please visit sas.com/books to sign up to review a book

Learn about new books and exclusive discounts. Sign up for our new books mailing list today at
https://support.sas.com/en/books/subscribe-books.html.

Learn more about this author by visiting his author page at http://support.sas.com/lafler. There you can
download free book excerpts, access example code and data, read the latest reviews, get updates, and
more.

Acknowledgments
This book was made possible because of the support and encouragement of many people. I would like
to extend my sincerest thanks to each person who encouraged me to write this book. For, as G. B.
Stern once said, “Silent gratitude isn’t very much use to anyone.” So from me to you, I want to thank
everyone who had a hand in helping to make the first, second, and third editions possible.

To Sian Roberts for supporting my desire to introduce and develop new topics for the third edition. It
was a distinct pleasure working with Sian where her encouragement, support, and coordination of the
entire development process made this project possible.

To Suzanne Morgen, Development Editor, SAS Press for her guidance, feedback, and support, and for
bringing clarity throughout the writing process.

To the technical reviewers who provided valuable feedback, suggestions, and technical accuracy on the
new and revised chapters including the SAS code. Special thanks to Stephen Sloan, Vince DelGobbo,
Leonid Batkhan, and Lewis Church for performing technical reviews of the third edition.

To the copy editors who made a difficult job look easy. A heart-felt thank you to Catherine Connolly
who performed her magic identifying typos, and turning words, run-on sentences and, sometimes,
long-winded paragraphs into coherent prose.

To Julie Palmieri, former Editor-in-Chief of SAS Press, for supporting my desire to develop a more
comprehensive second edition. Her encouragement and support gave me the inspiration to see this
project to completion.

https://support.sas.com/ue-data
mailto:saspress@sas.com
http://www.sas.com/books
http://www.sas.com/books
https://support.sas.com/en/books/subscribe-books.html
http://support.sas.com/lafle

ix

To Stacey Hamilton at SAS Institute Inc. for her editorial assistance and coordinating the technical
review process while I developed the second edition.

To Paul Kent at SAS Institute Inc. for his contagious enthusiasm, great examples, clear explanations,
and mentorship with some of the fine points of PROC SQL and its capabilities over the years.

To David Baggett at SAS Institute Inc. for encouraging the idea of a book on PROC SQL and
accepting the original first edition manuscript many years ago. His encouragement and support over
the years has meant a great deal to me.

To Stephenie Joyner at SAS Institute Inc. for her support and encouragement during the development
of the first edition and for coordinating the technical review process.

To Charles Edwin Shipp, Michael Raithel, Mary Rosenbloom, Richard La Valley, Clark Roberts,
Roger Glaser, Stephen Sloan, Josh Horstman, MaryAnne DePesquo, Charu Shankar, Vince DelGobbo,
Clarence Wm Jackson, Pablo Nogueras, Michael Johnston, Karen Walker, John Xu, Richann Watson,
Deanna Schreiber-Gregory, Lex Jansen, Cynthia Zender, John Cohen, Sanjay Matange, Rick Langston,
Sunil Gupta, Ron Cody, Russell Lavery, Mira Shapiro, Troy Martin Hughes, Ronald Fehd, Andrew
Kuligowski, Russell Holmes, Peter Eberhardt, William Benjamin, Wei Cheng, Tyler Smith, and Toby
Dunn for their friendship, support, and encouragement through the years.

To Art Carpenter of California Occidental Consultants for believing that a “beyond the basics” type of
book on PROC SQL would be useful to SAS users.

To the many people at SAS Institute Inc. with whom I have developed so many friendships over the
years. I’d like to express my thanks to each of you as well as all the knowledgeable people in SAS
Technical Support. Thank you for developing and supporting a great product and enabling me to have
a rewarding and enjoyable career for all these years.

To the SAS user group community around the world: You are the greatest group of professionals
anywhere.

To the many teachers I have had in my life. Special thanks go to Lawrence Delk (6th grade); Mr.
Almeida (12th grade); Professor Carl Kromp (Industrial Engineering); Joseph J. Moder, Ph.D.
(Management Science); Charles N. Kurucz, Ph.D. (Management Science); John F. Stewart, Ph.D.
(Computer Information Systems); Earl Wiener, Ph.D. (Management Science); Howard Seth Gitlow,
Ph.D. (Management Science); Dean Paul K. Sugrue, Ph.D. (University of Miami School of Business);
Edward K. Baker III, Ph.D. (Management Science); Robert T. Grauer, Ph.D. (Computer Information
Systems); and Ulu (Rydacom) for sharing your knowledge and enthusiasm.

To the countless people I have worked with and the companies I have worked for – the experiences
and memories have been invaluable.

To my mother, father, and brother for sharing life’s many lessons, experiences, and memories. Your
love and encouragement through the years fueled my desire to learn, work hard, and experience life to
the fullest.

Finally, to my wife, Darlynn, and son, Ryan, for your love, support, and sense of balance between
family and work. I love you both so very much.

Thank you!

x

Chapter 4: Coding PROC SQL Logic
Introduction ..109
Conditional Logic ..109

WHERE versus ON Clause .. 110
WHERE versus HAVING Clause .. 110
Conditional Logic with Predicates (Operators) ... 113

CASE Expressions ...114
Simple CASE Expression .. 115
Searched CASE Expression .. 126
Case Logic versus COALESCE Expression ... 131
Assigning Labels and Grouping Data ... 133
Logic and Nulls .. 135
IFC and IFN Functions ... 137

Interfacing PROC SQL with the Macro Language ..139
Exploring Macro Variables and Values .. 139
Creating Multiple Macro Variables ... 143
Using Automatic Macro Variables to Control Processing.. 146
Building Macro Tools and Applications ... 148
Creating Simple Macro Tools ... 148
Cross-Referencing Columns .. 148
Determining the Number of Rows in a Table .. 149
Identifying Duplicate Rows in a Table .. 150

Summary ..151

Introduction
Expressions in the SQL procedure can be simple or complex and are represented by a
combination of columns, symbols, operators, functions, constants, and literals. Specified in
SQL statements and clauses, expressions are typically used in conditional logic constructs to
test or compare a value against another value. The application of an expression in a CASE
expression allows individual rows of data to be processed and grouped using one or more
expressions. In particular, data can be recoded and reshaped to expand the data analysis and
processing perspective.

Conditional Logic
As experienced PROC SQL programmers know, it is often necessary to test and evaluate
conditions as true or false. From a programming perspective, the evaluation of a condition
determines which of the alternate paths a program will follow. Conditional logic for selecting
rows in one or more tables in the SQL procedure is most frequently specified using a
WHERE or ON clause, or a WHERE or HAVING clause, to reference constants and

110 PROC SQL: Beyond the Basics Using SAS, Third Edition

relationships among columns, values, or aggregates. Essentially, a WHERE, ON, or
HAVING clause along with its associated expression defines a condition for selecting rows or
aggregates from one or more tables.

The SQL procedure also allows the identification and assignment of data values in a SELECT
statement using CASE expressions (which are described in the next section). To show how
constants and relationships are referenced in a WHERE clause, a number of examples will be
presented including a single column (variable) name or constant, a SAS function, a predicate,
and a compound expression consisting of a series of simple expressions.

WHERE versus ON Clause
Conversations frequently arise about whether a WHERE clause or an ON clause should be
specified when a query performs a join on two or more tables. Here is a brief and simple
explanation of what happens when a WHERE clause is specified versus an ON clause in a
join query.

A join query containing a WHERE clause results in SAS performing the filtering operation
after the tables have been joined. For example, when a conventional inner join operation
containing a WHERE clause is executed the tables are first joined, and then filtered, followed
by the results being produced. You are asked to contrast these operations with a join query
that contains an ON clause. A join query containing an ON clause results in one or both of the
tables being filtered prior to being joined. As a result, the flow of operations when a WHERE
clause is specified differs from when an ON clause is specified in a join query.

WHERE versus HAVING Clause
When specified, the optional WHERE and HAVING clause applies subsetting conditions on
the rows selected from the table(s) specified in the FROM clause. A WHERE clause is
specified to process rows of data using any valid SAS expression, the specification of an
aggregate (e.g., COUNT, MIN, MAX, etc.) is not allowed. To process aggregated data, a
HAVING clause is specified in place of a WHERE clause. Note: As was described in Chapter
2, “Working with Data in PROC SQL,” a WHERE clause is specified before a GROUP BY
clause (pre-filter), and a HAVING clause is specified after a GROUP BY clause (post-filter).

The next example shows a WHERE clause subsetting products from the PRODUCTS table
that cost less than $400.00. During execution, the expression evaluates to true when the value
of PRODCOST is less than $400.00. Otherwise, when the value of PRODCOST is greater
than or equal to $400.00, the expression evaluates to false. This is an important concept
because data rows are only selected when the WHERE clause expression evaluates to true.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 WHERE PRODCOST < 400.00;
QUIT;

In the next example, the following relation evaluates whether the cost of a product
(PRODCOST) is greater than $400.00. When the WHERE clause expression evaluates to

Chapter 4: Coding PROC SQL Logic 111

true, which means that PRODCOST is greater than $400.00, then the rows of data are
selected. Otherwise, when the value is less than or equal to $400.00, the expression evaluates
to false.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 WHERE PRODCOST > 400.00;
QUIT;

A relation can also be used with nonnumeric literals and nonnumeric columns. In the next
example, a case-sensitive expression is constructed to represent the type of product
(PRODTYPE) made by a manufacturer. When evaluated, a condition of true or false is
produced depending on whether the current value of PRODTYPE is identical (character-by-
character) to the literal value “Software”. When a condition of true occurs, then the rows of
data satisfying the expression are selected; otherwise, they are not selected.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 WHERE PRODTYPE = “Software”;
QUIT;

To ensure a character-by-character match of a character value, the previous expression could
be specified in a WHERE clause with the UPCASE function as follows.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 WHERE UPCASE(PRODTYPE) = “SOFTWARE”;
QUIT;

The previous query’s conditional expression could also be specified in a HAVING clause
with the UPCASE function as follows.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 HAVING UPCASE(PRODTYPE) = “SOFTWARE”;
QUIT;

When the relations < and > are defined for nonnumeric values, the issue of implementation-
dependent collating sequence for characters comes into play. For example, “A” < “B” is true,
“Y” < “Z” is “true”, “B” < “A” is “false”, and so on. For more information about character
collating sequences, refer to your specific operating system documentation.

112 PROC SQL: Beyond the Basics Using SAS, Third Edition

To continue contrasting the differences between a WHERE clause and a HAVING clause, the
next example specifies a WHERE clause to count and subset the product types from the
PRODUCTS table so that product types containing four or more products are displayed. As
can be seen in the SAS log results, unfortunately, the SAS System stopped processing this
query because the use of summary functions in a WHERE clause is not permitted.

SQL Code
PROC SQL;
 SELECT PRODNAME
 ,PRODTYPE
 ,PRODCOST
 FROM PRODUCTS
 WHERE COUNT(PRODTYPE) > 3
 GROUP BY PRODTYPE
 ORDER BY PRODNAME;
QUIT;

SAS Log Results
 PROC SQL;
 SELECT PRODNAME
 ,PRODTYPE
 ,PRODCOST
 FROM PRODUCTS
 WHERE COUNT(PRODTYPE) > 3
 GROUP BY PRODTYPE
 ORDER BY PRODNAME;
ERROR: Summary functions are restricted to the SELECT and HAVING
clauses only.
NOTE: PROC SQL set option NOEXEC and will continue to check the syntax
of statements.

 QUIT;
 NOTE: The SAS System stopped processing this step because of errors.

To successfully count and subset products containing four or more product types, the next
query replaces the WHERE clause in the previous example with a HAVING clause to avoid
the restrictions noted earlier. As shown in the results, the products matching the post-filtering
operation performed by the HAVING clause are selected and displayed without error.

SQL Code
PROC SQL;
 SELECT PRODNAME
 ,PRODTYPE
 ,PRODCOST
 FROM PRODUCTS
 GROUP BY PRODTYPE
 HAVING COUNT(PRODTYPE) > 3
 ORDER BY PRODNAME;
QUIT;

Chapter 4: Coding PROC SQL Logic 113

Results

Conditional Logic with Predicates (Operators)
Conditional logic and the use of predicates (e.g., IN, BETWEEN, and CONTAINS) provide
WHERE and HAVING clauses with added value and flexibility. In Hermansen and Legum
(2008), the authors describe using predicates to perform complex table look-up, subsetting,
and other operations. Predicates are used in WHERE and HAVING clauses when a Boolean
value is necessary. From fully bounded range conditions, and operators such as IN,
BETWEEN, and CONTAINS, predicates provide users with a way to streamline WHERE
and HAVING clause expressions.

In the next example, a WHERE clause with an UPCASE function and an OR logical operator
is constructed to select rows matching the literal value “LAPTOP” or “WORKSTATION”.
When a condition of true occurs for either value, then the rows of data satisfying the
expression are selected; otherwise, they are not selected.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 WHERE UPCASE(PRODTYPE) = “LAPTOP” OR UPCASE(PRODTYPE) =
“WORKSTATION”;
QUIT;

However, an easier and more convenient way of specifying the WHERE clause in the
previous example is to use an IN operator to select product types from the PRODUCTS table
that match the list of character values, as follows.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 WHERE UPCASE(PRODTYPE) IN (“LAPTOP”, “WORKSTATION”);
QUIT;

In the next example, a WHERE clause specifies a fully bounded range condition that selects
and orders products that cost between $200 and $400.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS

114 PROC SQL: Beyond the Basics Using SAS, Third Edition

 WHERE 200 <= PRODCOST <= 400
 ORDER BY PRODCOST, PRODNAME;
QUIT;

However, a more convenient way of specifying the WHERE clause in the previous example
is to use a BETWEEN operator which selects and orders products from the PRODUCTS
table that cost between $200 and $400, as follows.

SQL Code
PROC SQL;
 SELECT *
 FROM PRODUCTS
 WHERE PRODCOST BETWEEN 200 AND 400
 ORDER BY PRODCOST, PRODNAME;
QUIT;

Another handy operator to use in a WHERE or HAVING clause is CONTAINS. The
CONTAINS operator selects rows by searching for a specified set of characters contained in a
character variable. The next example selects the company names from the CUSTOMERS
table that contain the characters “TECH” in the customer name, as follows.

SQL Code
PROC SQL;
 SELECT *
 FROM CUSTOMERS
 WHERE UPCASE(CUSTNAME) CONTAINS “TECH”
 ORDER BY CUSTNAME;
QUIT;

The next example shows how a NOT logical operator can be specified to select the company
names from the CUSTOMERS table that do not contain the characters “TECH” in the
customer name, as follows.

SQL Code
PROC SQL;
 SELECT *
 FROM CUSTOMERS
 WHERE UPCASE(CUSTNAME) NOT CONTAINS “TECH”
 ORDER BY CUSTNAME;
QUIT;

CASE Expressions
In the SQL procedure, a CASE expression provides a way of determining what the resulting
value will be from all the rows in a table (or view). Similar to a DATA step SELECT
statement (or IF-THEN/ELSE statement), a CASE expression is based on some condition and
the condition uses a WHEN-THEN clause to determine what the resulting value will be. An
optional ELSE expression can be specified to handle an alternative action if none of the
expression(s) identified in the WHEN condition(s) is satisfied.

Chapter 4: Coding PROC SQL Logic 115

The SQL procedure supports two forms of CASE expressions: simple and searched. CASE
expressions can be specified in a SELECT clause, a WHERE clause, an ORDER BY clause,
a HAVING clause, a join construct, and anywhere an expression can be used. A CASE
expression must be a valid PROC SQL expression and conform to syntax rules similar to
DATA step SELECT-WHEN statements. Before specific CASE expression examples are
shown, it’s important to illustrate the basic syntax, which is shown below.

CASE <column-name>
 WHEN when-condition THEN result-expression
 <WHEN when-condition THEN result-expression> …
 <ELSE result-expression>
END

The CASE syntax contains everything from CASE to END. A column-name can optionally
be specified as part of the CASE expression. If present, it is automatically made available to
each WHEN condition. When it is not specified, the column name must be coded in each
WHEN condition. Let’s examine how a CASE expression works.

One or more WHEN conditions can be specified in a CASE expression and are evaluated in
the order listed. If a WHEN condition is satisfied by a row in a table (or view), then it is
considered “true” and the result expression following the THEN keyword is processed. The
remaining WHEN conditions in the CASE expression are skipped. If a WHEN condition is
“false,” the next WHEN condition is evaluated. SQL evaluates each WHEN condition until a
“true” condition is found. Or, in the event that all WHEN conditions are “false,” it then
executes the ELSE expression and assigns its value to the CASE expression’s result. A
missing value is assigned to a CASE expression when an ELSE expression is not specified
and each WHEN condition is “false.”

Simple CASE Expression
As its name implies, a simple CASE expression provides a useful way to perform the
simplest type of comparisons. The syntax requires a column name from an underlying table to
be specified as part of the CASE expression. This not only eliminates having to continually
repeat the column name in each WHEN condition, it also reduces the number of keystrokes,
making the code easier to read (and support). Simple CASE expressions possess the
following features:

● Allows only equality checks.
● Evaluates the specified WHEN conditions in the order specified.
● Evaluates the input-expression for each WHEN condition.
● Returns the result-expression of the first input-expression that evaluates to “true.”
● If no input-expressions evaluate to “true,” then the ELSE condition is processed.
● When an ELSE condition isn’t specified, a NULL value is assigned.

Simple CASE Expression in a SELECT Clause
To best show how a simple CASE expression works, an example in a SELECT clause is
illustrated. The objective calls for the value assignment of “East” to manufacturers in Florida,
“Central” to manufacturers in Texas, “West” to manufacturers in California, or “Unknown”
to manufacturers not residing in Florida, Texas, and California. The manufacturer’s state of

116 PROC SQL: Beyond the Basics Using SAS, Third Edition

residence (MANUSTAT) column is specified in the CASE expression along with its
associated WHEN conditions with assigned values. Finally, a column heading of Region is
assigned to the derived output column using the AS keyword.

SQL Code
PROC SQL;
 SELECT MANUNAME,
 MANUSTAT,
 CASE MANUSTAT
 WHEN 'CA' THEN 'West'
 WHEN 'FL' THEN 'East'
 WHEN 'TX' THEN 'Central'
 ELSE 'Unknown'
 END AS Region
 FROM MANUFACTURERS;
QUIT;

Results

The next example illustrates the process of classifying products with a simple CASE
expression in a SELECT clause. The PRODTYPE column from the PRODUCTS table is
used to assign a character value of “Hardware,” “Software,” or “Unknown” to each product
type (e.g., Laptop, Phone, Software, and Workstation). Similar to the assignment process in
the FORMAT procedure, new data values are associated with values in the PRODTYPE
column. The WHEN-THEN conditions equate “Laptop” to “Hardware,” “Phone” to
“Hardware,” “Software” to “Software,” and “Workstation” to “Hardware.” A value of
“Unknown” is assigned to products not matching any of the WHEN-THEN logic conditions.
Finally, a column heading of Product_Classification is assigned to the new column with the
AS keyword.

SQL Code
PROC SQL;
 SELECT PRODNAME,
 CASE PRODTYPE
 WHEN ‘Laptop’ THEN ‘Hardware’

Chapter 4: Coding PROC SQL Logic 117

 WHEN ‘Phone’ THEN ‘Hardware’
 WHEN ‘Software’ THEN ‘Software’
 WHEN ‘Workstation’ THEN ‘Hardware’
 ELSE ‘Unknown’
 END AS Product_Classification
 FROM PRODUCTS;
QUIT;

Results

The next example classifies products (e.g., Laptop/Workstation, Phone, and Software) in the
PRODUCTS table using a simple CASE expression. A PUT function converts the numeric-
defined PRODNUM column to a character value, and the SUBSTR function then extrapolates
the first position in the PRODNUM column for classification purposes in the WHEN-THEN
logic conditions. Finally, a column heading is assigned to the output column with the AS
keyword.

SQL Code
PROC SQL;
 SELECT PRODNAME,
 PRODNUM,
 CASE SUBSTR(PUT(PRODNUM,4.),1,1)
 WHEN ‘1’ THEN ‘Laptop/Workstation’
 WHEN ‘2’ THEN ‘Phone’
 WHEN ‘5’ THEN ‘Software’
 ELSE ‘Unknown’
 END AS Product_Classification
 FROM PRODUCTS
 ORDER BY PRODNUM;
QUIT;

118 PROC SQL: Beyond the Basics Using SAS, Third Edition

Results

The next example applies a subquery (for more information, see the “Subqueries” section in
Chapter 7, “Coding Complex Queries”) to subset software products from the
Product_Classification results created in the previous example.

SQL Code
PROC SQL;
 SELECT *
 FROM
 (SELECT PRODNAME,
 PRODNUM,
 CASE SUBSTR(PUT(PRODNUM,4.),1,1)
 WHEN ‘1’ THEN ‘Laptop/Workstation’
 WHEN ‘2’ THEN ‘Phone’
 WHEN ‘5’ THEN ‘Software’
 ELSE ‘Unknown’
 END AS Product_Classification
 FROM PRODUCTS
)
 WHERE Product_Classification = ‘Software’;
QUIT;

Chapter 4: Coding PROC SQL Logic 119

Results

Simple CASE Expression in a WHERE Clause
In the previous section, we examined the syntax and application of simple CASE expressions
in a SELECT clause. In this section, we’ll explore the syntax and application of simple CASE
expressions in a WHERE clause. Because the SQL procedure supports the use of a CASE
expression anywhere an expression can be used, we’ll learn that a query can benefit from the
capabilities of passing a result value from a CASE expression directly to a WHERE clause in
place of a hardcoded value.

SQL Code
PROC SQL;
 SELECT MANUNAME,
 MANUSTAT
 FROM MANUFACTURERS
 WHERE CASE MANUSTAT
 WHEN 'CA' THEN 1
 ELSE 0
 END;
QUIT;

Results

Creating a Customized List with a Simple CASE Expression
A customized display and order can be coded using a simple CASE expression in a SELECT
and ORDER BY clause. The following example illustrates a unique way to create a list of
products and availability by coding individual Case logic for each product in the PRODUCTS

120 PROC SQL: Beyond the Basics Using SAS, Third Edition

table. The resulting output displays a value of “1” to indicate that it contributed to the output
list, or a value of “0” to indicate that it didn’t contribute to the output list.

SQL Code
OPTIONS LS=120;

PROC SQL;

 SELECT PRODNAME,

 PRODCOST,

 CASE PRODTYPE WHEN 'Laptop' THEN 1 ELSE 0 END

 AS LaptopRequest,

 CASE PRODTYPE WHEN 'Workstation' THEN 1 ELSE 0 END

 AS WorkstationRequest,

 CASE PRODTYPE WHEN 'Phone' THEN 1 ELSE 0 END

 AS PhoneRequest,

 CASE PRODTYPE WHEN 'Software' THEN 1 ELSE 0 END

 AS SoftwareRequest

 FROM PRODUCTS

 ORDER BY CASE PRODTYPE WHEN 'Laptop' THEN 1 ELSE 0 END,

 CASE PRODTYPE WHEN 'Workstation' THEN 1 ELSE 0 END,

 CASE PRODTYPE WHEN 'Phone' THEN 1 ELSE 0 END,

 CASE PRODTYPE WHEN 'Software' THEN 1 ELSE 0 END;

QUIT;

Chapter 4: Coding PROC SQL Logic 121

Results

Simple CASE Expression in a HAVING Clause
A HAVING clause is used in an SQL query to filter out aggregates specified in a GROUP
BY clause. In this example, the SELECT clause returns the names of the manufacturers along
with their state of residence from the MANUFACTURERS table. The CASE expression in
the HAVING clause restricts what is returned by the SELECT clause to only the
manufacturers residing in the state of California.

SQL Code
PROC SQL;
 SELECT MANUNAME,
 MANUSTAT
 FROM MANUFACTURERS
 HAVING CASE MANUSTAT
 WHEN 'CA' THEN 1
 ELSE 0
 END;
QUIT;

Results

122 PROC SQL: Beyond the Basics Using SAS, Third Edition

In the next example, the SELECT clause returns the most expensive product(s) from the
PRODUCTS table, and the CASE expression in the HAVING clause restricts the results to
software products costing more than $300.00.

SQL Code
PROC SQL;
 SELECT PRODNAME,
 PRODTYPE,
 MAX(PRODCOST) AS Product_Cost FORMAT=DOLLAR10.2
 FROM PRODUCTS
 HAVING CASE PRODTYPE
 WHEN 'Software' THEN PRODCOST
 ELSE 0
 END > 300;
QUIT;

Results

Simple CASE Expression in a Join Construct
A CASE expression can be specified in a JOIN construct to filter out aggregates specified in
a GROUP BY clause. In this example, the SELECT clause returns the names of the
manufacturers along with their state of residence from the MANUFACTURERS table. The
CASE expression in the HAVING clause restricts what is returned by the SELECT clause to
just the manufacturers residing in the state of California.

SQL Code
PROC SQL;
 SELECT PRODNAME,
 PRODTYPE,
 MANUNAME
 FROM PRODUCTS P,
 MANUFACTURERS M
 WHERE P.MANUNUM = M.MANUNUM AND
 CASE PRODTYPE
 WHEN 'Software' THEN 1
 ELSE 0
 END;
QUIT;

Chapter 4: Coding PROC SQL Logic 123

Results

Preventing Division by Zero with a Simple CASE Expression
Division by zero errors can cause many problems for a query, including severe performance
degradation. In the next example, a simple CASE expression in a SELECT clause is specified
to prevent division by zero errors. Using the INVENTORY table, a CASE expression tells
SAS to ignore performing any computations for products containing an INVENQTY value of
zero (by assigning a Boolean value of false). Otherwise, the equation INVENCST /
INVENQTY is computed and products costing more than $1,000.00 are selected by the
WHERE clause. A column heading called, Average_Cost is assigned to the new column with
the AS keyword.

SQL Code
PROC SQL;
 SELECT PRODNUM,
 INVENQTY,
 INVENCST,
 CASE INVENQTY
 WHEN 0 THEN 0
 ELSE INVENCST / INVENQTY
 END AS Average_Cost FORMAT=DOLLAR10.2
 FROM INVENTORY
 WHERE INVENCST / INVENQTY > 1000;
QUIT;

Results

In the next example, a simple CASE expression is implemented in a WHERE clause to
prevent division by zero errors. As before, the CASE expression’s WHEN condition tells
SAS to ignore performing any computations for products containing an INVENQTY value of
zero (by assigning a Boolean value of false). Otherwise, the equation INVENCST /

124 PROC SQL: Beyond the Basics Using SAS, Third Edition

INVENQTY is computed and products costing more than $1,000.00 are selected by the
WHERE clause.

SQL Code
PROC SQL;
 SELECT PRODNUM,
 INVENQTY,
 INVENCST
 FROM INVENTORY
 WHERE CASE INVENQTY
 WHEN 0 THEN 0
 ELSE INVENCST / INVENQTY
 END > 1000;
QUIT;

Results

Nesting Simple CASE Expressions
Much has been written on the techniques associated with software construction, particularly
about aspects related to program and/or code design. When discussions of program
complexity arise, it is widely accepted that a program’s degree of complexity can often be
reduced by dividing its solution into smaller pieces or parts. This rule of thinking is perhaps
best discussed in Steve McConnell’s book, Code Complete: A Practical Handbook of
Software Construction, Second Edition (2004), “Humans tend to have an easier time
comprehending several simple pieces of information than one complicated piece.”

Although many design strategies exist to improve the process of program design, one strategy
frequently mentioned is the process of nesting. Nesting involves converting complex and/or
cumbersome logic scenarios into two (or more) simpler logic conditions. The primary
objective is to improve a program’s maintainability and readability. This rule of thought is
further reinforced by the SQL procedure’s support for nesting using a CASE expression
construct.

Nesting can be a useful technique because it provides SQL users with an effective way to
handle complex code. But, unnecessary nesting or nesting just for the sake of nesting can
actually make code more difficult to comprehend and maintain. It’s been my experience that
nesting should never exceed three or four levels deep. Anything more than that and the degree
of complexity can increase significantly. The general rule is to develop code that’s not only
easy to understand, but hopefully contains fewer errors. To illustrate the process of nesting, a
simple CASE expression is nested two levels deep for identifying software products in the
PRODUCTS table that cost less than $300.00.

Chapter 4: Coding PROC SQL Logic 125

SQL Code
PROC SQL;
 SELECT PRODNAME,
 PRODTYPE,
 PRODCOST,
 CASE PRODTYPE
 WHEN ‘Software’ THEN
 CASE
 WHEN PRODCOST < 300 THEN ‘Match’
 ELSE ‘No Match’
 END
 ELSE ‘Not Software’
 END AS Product_Type_Cost
 FROM PRODUCTS;
QUIT;

Results

Conditionally Updating a Table with a Simple CASE Expression
A CASE expression can be specified to conditionally update the contents of a table. For more
information about updating data in a table, see Chapter 6, “Modifying and Updating Tables
and Indexes.” The example illustrates the process of conditionally updating data in a table
using an UPDATE statement and a simple CASE expression to add $10.00 the unit cost
(UNITCOST) for a “Chair” in the PURCHASES table from $179.00 to $189.00.

Note: A table must be open in update mode to be able to update its contents.

SQL Code
PROC SQL;
 TITLE1 ‘Before Update Operation’;
 SELECT *
 FROM PURCHASES2;

126 PROC SQL: Beyond the Basics Using SAS, Third Edition

 UPDATE PURCHASES2
 SET UNITCOST = UNITCOST +
 CASE ITEM
 WHEN ‘Chair’ THEN 10.00
 ELSE 0
 END;
 TITLE1 ‘After Update Operation’;
 SELECT *
 FROM PURCHASES2;
QUIT;

Results

Searched CASE Expression
A searched CASE expression provides SQL users with the capability to perform more
complex comparisons. Although the number of keystrokes can be more than with a simple

Chapter 4: Coding PROC SQL Logic 127

CASE expression, the searched CASE expression offers the greatest flexibility and is the
primary form used by SQL programmers. The noticeable absence of a column name as part of
the CASE expression permits any number of columns to be specified from the underlying
table(s) in the WHEN-THEN/ELSE logic scenarios.

The searched CASE expression evaluates one or more WHEN conditions until it encounters
one that evaluates to “true.” It then assigns the corresponding result expression specified
following the THEN keyword. If none of the WHEN conditions evaluates to “true,” then the
result following the specified ELSE keyword is returned. If none of the WHEN conditions
evaluates to “true” and an ELSE condition is not specified, then the searched CASE
expression returns a null value. Searched CASE expressions possess the following features:

● Allow arithmetic operators (i.e., =, <, <=, >, >=, etc.).
● Use logical operators (i.e., AND, OR, and NOT) for combining any number of

expressions.
● Evaluate compound expressions in the following default order: NOT, AND, or OR,

unless parentheses are specified to control the order of evaluation.
● Evaluate the specified WHEN conditions in the order specified.
● Evaluate the input-expression for each WHEN condition.
● Return the result-expression of the first input-expression that evaluates to “true.”
● Process the ELSE condition if no input-expressions evaluate to “true.”
● Assign a NULL value when an ELSE condition isn’t specified.

Searched CASE Expression in a SELECT Clause
To illustrate how a searched CASE expression works, consider an example that uses a
calculated dollar amount from the UNITS and UNITCOST columns to assign a value of
“Small Purchase” for purchases less than $1,000, “Average Purchase” for purchases between
$1,000 and $7,500, “Large Purchase” for purchases greater than $7,500, and “Unknown
Purchase” for all other values in the PURCHASES table. Using the calculated amount,
Purchase_Amount, from the UNITS and UNITCOST columns, a CASE expression is
constructed to assign the desired value in each row of data. Finally, a column heading of
Type_of_Purchase is assigned to the calculated column with the AS keyword. Note: The
CALCULATED keyword must be specified with any column created in a SELECT clause
that does not exist in the table referenced in the FROM clause.

128 PROC SQL: Beyond the Basics Using SAS, Third Edition

SQL Code
PROC SQL;
 SELECT
 PRODNUM
 UNITS,
 UNITCOST,
 UNITS * UNITCOST
 AS Purchase_Amount
 FORMAT=DOLLAR12.2,
 CASE
 WHEN CALCULATED
Purchase_Amount < 1000 THEN 'Small Purchase'
 WHEN CALCULATED
Purchase_Amount BETWEEN 1000 AND 7500 THEN 'Average Purchase'
 WHEN CALCULATED
Purchase_Amount > 7500 THEN 'Large Purchase'
 ELSE 'Unknown Purchase'
 END AS Type_of_Purchase
 FROM PURCHASES
 ORDER BY CALCULATED
Purchase_Amount DESC;
QUIT:

Results

Chapter 4: Coding PROC SQL Logic 129

Complex Comparisons with Searched CASE Expressions
As described earlier, searched CASE expressions provide SQL users with the capability to
perform more complex comparisons. Combined with logical and comparison operators,
CASE expressions along with their WHERE clause counterparts provide the capabilities to
construct complex logic scenarios. In the next example, a listing of manufacturers and their
products are displayed using a searched CASE expression to assign a value of “East” to
manufacturers in Florida, “Central” to manufacturers in Texas, “West” to manufacturers in
California, and “Unknown” to all other manufacturers in the MANUFACTURERS table.
Using the manufacturer’s state of residence (MANUSTAT) column, a CASE expression is
constructed to assign the desired value in each row of data. Finally, a column heading of
Region is assigned to the new column with the AS keyword.

SQL Code
PROC SQL;
 SELECT MANUNAME,
 CASE
 WHEN MANUSTAT IN ('FL','TX','CA') THEN
 CASE
 WHEN PRODTYPE IN ('Laptop', 'Workstation') THEN
 "Computer Hardware Manufacturer"
 ELSE "Not a Computer Manufacturer"
 END
 ELSE "Unknown Manufacturer"
 END AS ManufacturerType,
 PRODNAME,
 PRODCOST
 FROM MANUFACTURERS M,
 PRODUCTS P
 WHERE M.MANUNUM = P.MANUNUM;
QUIT;

Results

130 PROC SQL: Beyond the Basics Using SAS, Third Edition

Creating a Customized List with a Searched CASE Expression
Similar to the simple CASE expression illustrated earlier, a customized display can be
specified using a searched CASE expression in a SELECT clause. The following example
illustrates a unique way to create a list of products and availability by coding individual Case
logic conditions for each product in the PRODUCTS table. The resulting output displays a
value of “1” to indicate that it contributed to the output list, or a value of “0” to indicate that it
didn’t contribute to the output list.

SQL Code
OPTIONS LS=120;
PROC SQL;
 SELECT PRODNAME,
 PRODCOST,
 CASE WHEN PRODTYPE='Laptop' AND
 PRODCOST < 1000 THEN 1
 ELSE 0
 END AS InexpensiveLaptop,
 CASE WHEN PRODTYPE='Laptop' AND
 PRODCOST BETWEEN 1000 AND 2500 THEN 1
 ELSE 0
 END AS MediumPricedLaptop,
 CASE WHEN PRODTYPE='Laptop' AND
 PRODCOST > 2500 THEN 1
 ELSE 0
 END AS ExpensiveLaptop
 FROM PRODUCTS
 WHERE PRODTYPE='Laptop'
 ORDER BY PRODCOST;
 ELSE 0
 END;
QUIT;

Results

Another Customized List with a Searched CASE Expression
Extending the features from the previous searched CASE expression example, a customized
list is created. In this example, a unique approach is used to create a list of products with their
respective inventory quantities. The query performs an equijoin on the PRODUCTS and
INVENTORY tables with Case logic conditions nested two levels deep to capture the
inventory quantities for each product in the PRODUCTS table.

SQL Code
PROC SQL;
 SELECT PRODNAME,
 P.PRODNUM,
 CASE WHEN SUBSTR(PUT(P.PRODNUM,4.),1,1) = '1' THEN

Chapter 4: Coding PROC SQL Logic 131

 CASE WHEN INVENQTY > 0 THEN INVENQTY
 END
 END AS ComputerHardware,
 CASE WHEN SUBSTR(PUT(P.PRODNUM,4.),1,1) = '2' THEN
 CASE WHEN INVENQTY > 0 THEN INVENQTY
 END
 END AS OfficeEquipment,
 CASE WHEN SUBSTR(PUT(P.PRODNUM,4.),1,1) = '5' THEN
 CASE WHEN INVENQTY > 0 THEN INVENQTY
 END
 END AS ComputerSoftware
 FROM PRODUCTS P,
 INVENTORY I
 WHERE P.PRODNUM = I.PRODNUM
 ORDER BY PRODNAME;
QUIT;

Results

Case Logic versus COALESCE Expression
A popular convention among SQL programmers is to specify a COALESCE function in an
expression to perform Case logic. As described in Chapter 2, “Working with Data in PROC
SQL,” the COALESCE function permits a new value to be substituted for one or more
missing column values. By specifying COALESCE in an expression, PROC SQL evaluates
each argument from left to right for the occurrence of a non-missing value. The first non-
missing value found in the list of arguments is returned; otherwise, a missing value, or
assigned value, is returned. This approach not only saves programming time, it makes coding
constructs simpler to maintain.

Expressing logical expressions in one or more WHEN-THEN/ELSE conditions are frequently
easy to code, understand, and maintain. But as the complexities associated with Case logic
increase, the amount of coding also increases. In the following example, a simple CASE
expression is presented to illustrate how a value of “Unknown” is assigned and displayed
when CUSTCITY is missing.

132 PROC SQL: Beyond the Basics Using SAS, Third Edition

SQL Code
PROC SQL;
 SELECT CUSTNAME,
 CASE
 WHEN CUSTCTY IS NOT NULL THEN CUSTCITY
 ELSE ‘Unknown’
 END AS Customer_City
 FROM CUSTOMER;
QUIT;

To illustrate the usefulness of the COALESCE function as an alternative to Case logic, the
same query can be modified to achieve the same results as before. By replacing the Case
logic with a COALESCE expression as follows, the value of CUSTCITY is automatically
displayed unless it is missing. In cases of character data, a value of “Unknown” is displayed.
This technique makes the COALESCE function a very useful and is a shorthand approach
indeed.

SQL Code
PROC SQL;
 SELECT CUSTNAME,
 COALESCE(CUSTCTY,‘Unknown’)
 AS Customer_City
 FROM CUSTOMER;
QUIT;

In cases where a COALESCE expression is used with numeric data, the value assigned or
displayed must be of the same type as the expression. The next example shows a value of “0”
(zero) being assigned and displayed when units (UNITS) from the PURCHASES table are
processed.

SQL Code
PROC SQL;
 SELECT ITEM,
 COALESCE(UNITS, 0)AS Units
 FROM PURCHASES2;
QUIT;

Chapter 4: Coding PROC SQL Logic 133

Results

Assigning Labels and Grouping Data
The ability to assign data values and group data based on the existence of distinct values for
specified table columns is a popular and frequently useful operation. Suppose that you want
to assign a specific data value and then group the output based on this assigned value. As a
savvy SAS user, you are probably thinking, “Hey, this is easy—I’ll just create a user-defined
format and use it in the PRINT or REPORT procedure.”

In the next example, the FORMAT procedure is used to assign temporary formatted values
based on a range of values for INVENQTY. The result from executing this simple three-step
(non-SQL procedure) program shows that the actual INVENQTY value is temporarily
replaced with the “matched” value in the user-defined format. The FORMAT statement
performs a look-up process to determine how the data should be displayed. The actual data
value being looked up is not changed (or altered) during the process, but a determination is
made as to how its value should be displayed. The BY statement specifies how BY-group
processing is to be constructed. The displayed results show the product numbers in relation to
their respective inventory quantity status.

Non-SQL Code
PROC FORMAT;
 VALUE INVQTY
 0 – 5 = ‘Low on Stock – Reorder’
 6 – 10 = ‘Stock Levels OK’
 11 – 99 = ‘Plenty of Stock’
 100 - 999 = ‘Excessive Quantities’;
RUN;

PROC SORT DATA=INVENTORY;
 BY INVENQTY;
RUN;

PROC PRINT DATA=INVENTORY(KEEP=PRODNUM INVENQTY) NOOBS;
 FORMAT INVENQTY INVQTY.;
RUN;

134 PROC SQL: Beyond the Basics Using SAS, Third Edition

Results

The same results can also be derived using a CASE expression in the SQL procedure. In the
next example, a CASE expression is constructed using the INVENTORY table to assign
values to the user-defined column Inventory_Status. The biggest difference between the
FORMAT procedure approach and a CASE expression is that the latter uses one step and
does not replace the actual data value with the recoded result. Instead, it creates a new column
that contains the result of the CASE expression.

SQL Code
PROC SQL;
 SELECT PRODNUM,
 CASE
 WHEN INVENQTY LE 5
 THEN ‘Low on Stock - Reorder’
 WHEN 6 LE INVENQTY LE 10
 THEN ‘Stock Levels OK’
 WHEN 11 LE INVENQTY LE 99
 THEN ‘Plenty of Stock’
 ELSE ‘Excessive Quantities’
 END AS Inventory_Status
 FROM INVENTORY
 ORDER BY INVENQTY;
QUIT;

Chapter 4: Coding PROC SQL Logic 135

Results

Logic and Nulls
The existence of null values frequently introduces complexities for programmers. Instead of
coding two-valued logic conditions, such as “True” and “False,” logic conditions must be
designed to handle three-valued logic: “True,” “False,” and “Unknown.” When developing
logic conditions, programmers need to be ready to deal with the possibility of having null
values. Program logic should test whether the current value of an expression contains a value
or is empty (null).

Let’s examine a CASE expression that is meant to handle the possibility of having missing
values in a table. Returning to an example presented earlier in this chapter, suppose that you
want to assign a value of “South East,” “Central,” “South West,” “Missing,” or “Unknown”
to each of the manufacturers based on their state of residence.

SQL Code
PROC SQL;
 SELECT MANUNAME,
 MANUSTAT,
 CASE
 WHEN MANUSTAT = 'CA' THEN 'South West'
 WHEN MANUSTAT = 'FL' THEN 'South East'
 WHEN MANUSTAT = 'TX' THEN 'Central'
 WHEN MANUSTAT = ' ' THEN 'Missing'
 ELSE 'Unknown'
 END AS Region
 FROM MANUFACTURERS;
QUIT;

136 PROC SQL: Beyond the Basics Using SAS, Third Edition

Results

The results indicate that there were no missing or null values in our database for the column
being tested. But, suppose a new row of data was added containing null values in the
manufacturer’s city and state of residence columns so our new row looked something like
following:

Manufacturer Number: 800
Manufacturer Name: Spring Valley Products
Manufacturer City: <Missing>
Manufacturer State: <Missing>.

If you rerun the previous code, the result would look something like the following.

SQL Code
PROC SQL;
 SELECT MANUNAME,
 MANUSTAT,
 CASE
 WHEN MANUSTAT = 'CA' THEN 'South West'
 WHEN MANUSTAT = 'FL' THEN 'South East'
 WHEN MANUSTAT = 'TX' THEN 'Central'
 WHEN MANUSTAT = ' ' THEN 'Missing'
 ELSE 'Unknown'
 END AS Region
 FROM MANUFACTURERS;
QUIT;

Chapter 4: Coding PROC SQL Logic 137

Results

IFC and IFN Functions
Two relatively new and handy functions available to the PROC SQL user are the IFC and
IFN functions. These functions provide a convenient way to incorporate conditional logic in a
WHERE and HAVING clause, much like the CASE expression in PROC SQL, and the IF-
THEN/ELSE and SELECT-WHEN/OTHERWISE statements in the DATA step. Although
not part of the SQL ANSI guidelines, the IFC and IFN functions cannot be used with external
database connections such as SAS to Oracle, SAS to DB2, SAS to SQL Server, etc., but are
useful constructs for encoding, decoding, and flagging values in the construction of
conditional logic in a SAS SQL query environment.

IFC and IFN Syntax
The IFC function returns a character value based on whether an expression is true, false, or
missing. In contrast, the IFN function returns a numeric value based on whether an
expression is true, false, or missing. The specific IFC and IFN functions syntax and
arguments are illustrated below.

IFC Syntax:

IFC (logical-expression,
 value-returned-when-true,
 value-returned-when-false,
 <value-returned-when-missing>)

Arguments for IFC:

Logical-expression specifies a numeric constant, variable, or expression.

Value-returned-when-true specifies a character constant, variable, or expression when the
value of a logical expression is true.

138 PROC SQL: Beyond the Basics Using SAS, Third Edition

Value-returned-when-false specifies a character constant, variable, or expression when
the value of a logical expression is false.

Value-returned-when-missing is an optional argument that specifies a character constant,
variable, or expression when the value of a logical expression is missing.

IFN Syntax:

IFN (logical-expression,
 value-returned-when-true,
 value-returned-when-false,
 <value-returned-when-missing>)

Arguments for IFN:

Logical-expression specifies a numeric constant, variable, or
expression.

Value-returned-when-true specifies a numeric constant, variable,
or expression when the value of a logical expression is true.

Value-returned-when-false specifies a numeric constant, variable,
or expression when the value of a logical expression is false.

Value-returned-when-missing is an optional argument that specifies
a numeric constant, variable, or expression when the value of a
logical expression is missing.

Application of the IFC and IFN Functions
The IFC and IFN are SAS specific functions that PROC SQL users can enjoy and use. It is
worth noting that these functions, as with many other SAS functions, can also be specified as
arguments to other functions such as CAT, CATQ, CATS, CATT, and CATX, among others.

SQL Code
PROC SQL;
 SELECT PRODNAME
 , INVENQTY
 , IFC(P.PRODNUM = 1700 AND I.INVENQTY < 11, "Yes", "No",
"Missing")
 AS IFC_Results
 , IFN(P.PRODNUM = 1700 AND I.INVENQTY < 11, 1, 0, 999)
 AS IFN_Results
 FROM INVENTORY I
 , PRODUCTS P
 WHERE P.PRODNUM = 1700
 AND I.PRODNUM = 1700;
QUIT;

Results

Chapter 4: Coding PROC SQL Logic 139

Interfacing PROC SQL with the Macro Language
Many software vendors’ SQL implementation permits SQL to be interfaced with a host
language. The SAS SQL implementation is no different. The SAS macro language enables
you customize the way SAS software behaves, and in particular enables you to extend the
capabilities of the SQL procedure. PROC SQL users can apply the macro facility’s many
powerful features by interfacing the SQL procedure with the macro language to provide a
wealth of programming opportunities.

From creating and using user-defined macro variables and automatic variables (which are
supplied by SAS), reducing redundant code, and performing common and repetitive tasks, to
building powerful and simple macro applications, the macro language has the tools PROC
SQL users need to improve efficiency. The best part is that you do not have to be a macro
language heavyweight to begin reaping the rewards of this versatile interface between two
powerful Base SAS software languages.

This section will introduce you to a number of techniques that, with a little modification,
could be replicated and used in your own programming environment. You will learn how to
use the SQL procedure with macro programming techniques, as well as learn to explore how
dictionary tables (see Chapter 2, “Working with Data in PROC SQL,” for details) and the
SAS macro facility can be combined with PROC SQL to develop useful utilities to inquire
about the operating environment and other information. For more information about the SAS
macro language, see Carpenter’s Complete Guide to the SAS Macro Language, Third Edition
by Art Carpenter; SAS Macro Programming Made Easy, Second Edition by Michele M.
Burlew; and SAS Macro Language: Reference by SAS Institute Inc.

Exploring Macro Variables and Values
Macro variables and their values provide PROC SQL users with a convenient way to store
text strings in SAS code. Whether user-defined macro variables are created or automatic
macro variables supplied by SAS are referenced, macro variables can be defined and used to
improve a program’s efficiency and usefulness. A number of useful techniques are presented
in this section to illustrate the capabilities afforded users when interfacing PROC SQL with
macro variables.

Creating a Macro Variable with %LET
The %LET macro statement creates a single macro variable and assigns or changes a text
string value. It can be specified inside or outside a macro and used with PROC SQL. In the
next example, a macro variable called PRODTYPE is created with a value of SOFTWARE
assigned in a %LET statement. The PRODTYPE macro variable is referenced in the TITLE
statement and enclosed in quotation marks in the PROC SQL WHERE clause. This approach
of assigning macro variable values at the beginning of a program makes it easy and
convenient to make changes because the values are all at the beginning of the program.

SQL Code
%LET PRODTYPE=SOFTWARE;
TITLE “Listing of &PRODTYPE Products”;
PROC SQL;
 SELECT PRODNAME,

140 PROC SQL: Beyond the Basics Using SAS, Third Edition

 PRODCOST
 FROM PRODUCTS
 WHERE UPCASE(PRODTYPE) = “&PRODTYPE”
 ORDER BY PRODCOST;
QUIT;

Results

In the next example, a macro named VIEW creates a macro variable called NAME and
assigns a value to it with a %LET statement. When VIEW is executed, a value of
PRODUCTS, MANUFACTURERS, or INVENTORY is substituted for the macro variable.
The value supplied for the macro variable determines what view is referenced. If the value
supplied to the macro variable is not one of these three values, then a program warning
message is displayed in the SAS log. Invoking the macro with %VIEW(Products) produces
the following results.

SQL Code
%MACRO VIEW(NAME);
%IF %UPCASE(&NAME) ^= %STR(PRODUCTS) AND
 %UPCASE(&NAME) ^= %STR(MANUFACTURERS) AND
 %UPCASE(&NAME) ^= %STR(INVENTORY) %THEN %DO;
 %PUT A valid view name was not supplied and no output
 will be generated!;
%END;
%ELSE %DO;
 PROC SQL;
 TITLE “Listing of &NAME View”;
 %IF %UPCASE(&NAME)=%STR(PRODUCTS) %THEN %DO;
 SELECT PRODNAME,
 PRODCOST
 FROM &NAME._view
 ORDER BY PRODCOST;
 %END;
 %ELSE %IF %UPCASE(&NAME)=%STR(MANUFACTURERS) %THEN %DO;
 SELECT MANUNAME,
 MANUCITY,
 MANUSTAT
 FROM &NAME._view
 ORDER BY MANUCITY;
 %END;
 %ELSE %IF %UPCASE(&NAME)=%STR(INVENTORY) %THEN %DO;
 SELECT PRODNUM,

Chapter 4: Coding PROC SQL Logic 141

 INVENQTY,
 INVENCST
 FROM &NAME._view
 ORDER BY INVENCST;
 %END;
 QUIT;
 %END;
%MEND VIEW;

In the previous example, if a name is supplied to the macro variable &NAME that is not
valid, then the user-defined program warning message would be displayed in the SAS log.
Suppose we invoked the VIEW macro by entering %VIEW(Customers). The results are
displayed in the SAS log.

SQL Code
%VIEW(Customers);

SAS Log Results
 %VIEW(Customers);
A valid view name was not supplied and no output will be
generated!

Creating a Macro Variable from a Table Row Column
A macro variable can be created from a column value in the first row of a table in PROC SQL
by specifying the INTO clause. The macro variable is assigned using the value of the column
that is specified in the SELECT list from the first row selected. A colon (:) is used in
conjunction with the macro variable name being defined. In the next example, output results
are suppressed with the NOPRINT option, while two macro variables are created using the
INTO clause and their values displayed in the SAS log. Note: In the absence of a WHERE
clause, the first row in the specified table is the one selected for populating macro variables.

SQL Code
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODNAME,
 :PRODCOST
 FROM PRODUCTS;
QUIT;
%PUT &PRODNAME &PRODCOST;

142 PROC SQL: Beyond the Basics Using SAS, Third Edition

SAS Log Results
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODNAME,
 :PRODCOST
 FROM PRODUCTS;
QUIT;
NOTE: PROCEDURE SQL used:
 real time 0.38 seconds

%PUT &PRODNAME &PRODCOST;
Dream Machine $3,200.00

In the next example, two macro variables are created using the INTO clause and a WHERE
clause to control what row is used in the assignment of macro variable values. Using the
WHERE clause enables a row other than the first row to always be used in the assignment of
macro variables. Their values are displayed in the SAS log.

SQL Code
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODNAME,
 :PRODCOST
 FROM PRODUCTS
 WHERE UPCASE(PRODTYPE) IN (‘SOFTWARE’);
QUIT;
%PUT &PRODNAME &PRODCOST;

SAS Log Results
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODNAME,
 :PRODCOST
 FROM PRODUCTS
 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE');
QUIT;
NOTE: PROCEDURE SQL used:
 real time 0.04 seconds

%PUT &PRODNAME &PRODCOST;
Spreadsheet Software $299.00

Creating a Macro Variable with Aggregate Functions
Turning data into information and then saving the results as macro variables is easy with
summary (aggregate) functions. The SQL procedure provides a number of useful summary
functions to help perform calculations, descriptive statistics, and other aggregating
computations in a SELECT statement or HAVING clause. These functions are designed to

Chapter 4: Coding PROC SQL Logic 143

summarize information and are not designed to display detail about data. In the next example,
the MIN summary function is used to determine the least expensive product from the
PRODUCTS table with the value stored in the macro variable MIN_PRODCOST using the
INTO clause. The results are displayed in the SAS log.

SQL Code
PROC SQL NOPRINT;
 SELECT MIN(PRODCOST) FORMAT=DOLLAR10.2
 INTO :MIN_PRODCOST
 FROM PRODUCTS;
QUIT;
%PUT &MIN_PRODCOST;

SAS Log Results
PROC SQL NOPRINT;
 SELECT MIN(PRODCOST) FORMAT=DOLLAR10.2
 INTO :MIN_PRODCOST
 FROM SQL.PRODUCTS;
QUIT;
NOTE: PROCEDURE SQL used:
 real time 0.05 seconds

%PUT &MIN_PRODCOST;
$35.00

Creating Multiple Macro Variables
PROC SQL enables you to create a macro variable for each row returned by a SELECT
statement. Using the PROC SQL keyword THROUGH or hyphen (-) with the INTO clause, a
range of two or more macro variables is easily created. This is a handy feature for creating
macro variables from multiple rows in a table. For example, suppose we want to create macro
variables for the three least expensive products in the PRODUCTS table. The INTO clause
creates three macro variables and assigns values from the first three rows of the
PRODNAME and PRODCOST columns. The ORDER BY clause is also specified to perform
an ascending sort on product cost (PRODCOST) to assure that the data is in the desired order
from least to most expensive. The results are displayed in the SAS log.

SQL Code
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODUCT1 – :PRODUCT3,
 :COST1 – :COST3
 FROM PRODUCTS
 ORDER BY PRODCOST;
QUIT;
%PUT &PRODUCT1 &COST1;
%PUT &PRODUCT2 &COST2;
%PUT &PRODUCT3 &COST3;

144 PROC SQL: Beyond the Basics Using SAS, Third Edition

SAS Log Results
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODUCT1 - :PRODUCT3,
 :COST1 - :COST3
 FROM PRODUCTS
 ORDER BY PRODCOST;
QUIT;
NOTE: PROCEDURE SQL used:
 real time 0.26 seconds

%PUT &PRODUCT1 &COST1;
Analog Cell Phone $35.00
%PUT &PRODUCT2 &COST2;
Office Phone $130.00
%PUT &PRODUCT3 &COST3;
Digital Cell Phone $175.00

Controlling the Selection and Population of Macro Variables with a
WHERE Clause
Unlike the previous example where little control is allowed over the rows that are selected for
processing, a WHERE clause in a SELECT clause provides SQL programmers with the
control they need to select rows for populating macro variables. This effective technique
creates and populates a range of two or more macro variables using an INTO clause, the
keyword THROUGH or hyphen (-), and a WHERE clause to control what rows and values
are selected and populated as macro variables. Suppose that you want to create and populate
macro variables for the first four ‘Software’ products in the PRODUCTS table. The INTO
clause creates four macro variables and assigns values from the first four rows that match the
WHERE clause expression. Any rows that do not match the WHERE clause expression are
omitted from the results. The ORDER BY clause is specified to perform an ascending sort on
the product name (PRODNAME), and macro resolution results are displayed in the SAS log.

SQL Code
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODUCT1 – :PRODUCT4,
 :COST1 – :COST4
 FROM PRODUCTS
 WHERE PRODTYPE = ‘Software’
 ORDER BY PRODNAME;
QUIT;
%PUT &PRODUCT1 &COST1;
%PUT &PRODUCT2 &COST2;
%PUT &PRODUCT3 &COST3;
%PUT &PRODUCT4 &COST4;

Chapter 4: Coding PROC SQL Logic 145

SAS Log Results
PROC SQL NOPRINT;
 SELECT PRODNAME,
 PRODCOST
 INTO :PRODUCT1 - :PRODUCT4,
 :COST1 - :COST4
 FROM PRODUCTS
 WHERE PRODTYPE = 'Software'
 ORDER BY PRODNAME;
QUIT;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.06 seconds
 cpu time 0.00 seconds

%PUT &PRODUCT4 &COST4;
Database Software $399.00
%PUT &PRODUCT3 &COST3;
Graphics Software $299.00
%PUT &PRODUCT2 &COST2;
Spreadsheet Software $299.00
%PUT &PRODUCT1 &COST1;
Wordprocessor Software $299.00

Creating a List of Values in a Macro Variable
Concatenating values of a single column into one macro variable enables you to create a list
of values that can be displayed in the SAS log or can be output to a SAS data set. Using the
INTO clause with the SEPARATED BY keyword creates a list of values. For example,
suppose that you want to create a blank-delimited list containing manufacturer names
(MANUNAME) from the MANUFACTURERS table. Create a macro variable called
&MANUNAME and assign the manufacturer names to a blank-delimited list with each name
separated with two blank spaces. The WHERE clause restricts the list’s contents to only
manufacturers who are located in San Diego.

SQL Code
PROC SQL NOPRINT;
 SELECT MANUNAME
 INTO :MANUNAME SEPARATED BY ‘ ‘
 FROM MANUFACTURERS
 WHERE UPCASE(MANUCITY)=’SAN DIEGO’;
QUIT;
%PUT &MANUNAME;

146 PROC SQL: Beyond the Basics Using SAS, Third Edition

SAS Log Results
PROC SQL NOPRINT;
 SELECT MANUNAME
 INTO :MANUNAME SEPARATED BY ' '
 FROM MANUFACTURERS
 WHERE UPCASE(MANUCITY)='SAN DIEGO';
QUIT;
NOTE: PROCEDURE SQL used:
 real time 0.00 seconds

%PUT &MANUNAME;
Global Comm Corp Global Software San Diego PC Planet

In the next example, a similar list that contains manufacturers from San Diego is created. But
instead of separating each name with two blanks as in the previous example, a comma is used
instead.

SQL Code
PROC SQL NOPRINT;
 SELECT MANUNAME
 INTO :MANUNAME SEPARATED BY ‘, ‘
 FROM MANUFACTURERS
 WHERE UPCASE(MANUCITY)=’SAN DIEGO’;
QUIT;
%PUT &MANUNAME;

SAS Log Results
PROC SQL NOPRINT;
 SELECT MANUNAME
 INTO :MANUNAME SEPARATED BY ', '
 FROM MANUFACTURERS
 WHERE UPCASE(MANUCITY)='SAN DIEGO';
QUIT;
NOTE: PROCEDURE SQL used:
 real time 0.00 seconds

%PUT &MANUNAME;
Global Comm Corp, Global Software, San Diego PC Planet

Using Automatic Macro Variables to Control Processing
Three automatic macro variables that are supplied by SAS are assigned values during SQL
processing to provide process control information. SQL users can determine the number of
rows processed with the SQLOBS macro variable, assess whether a PROC SQL statement
was successful or not with the SQLRC macro variable, and identify the number of iterations
the inner loop of an SQL query processes with the SQLOOPS macro variable. To inspect the
values of all automatic macro variables at your installation, use the _AUTOMATIC_ option
in a %PUT statement.

Chapter 4: Coding PROC SQL Logic 147

SQL Code
%PUT _AUTOMATIC_;

SAS Log Results
%PUT _AUTOMATIC_;
AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB
AUTOMATIC AFSTR1
AUTOMATIC AFSTR2
AUTOMATIC FSPBDV
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 0
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 10JUN04
AUTOMATIC SYSDATE9 10JUN2004
AUTOMATIC SYSDAY Thursday
AUTOMATIC SYSDEVIC
AUTOMATIC SYSDMG 0
AUTOMATIC SYSDSN WORK INVENTORY
AUTOMATIC SYSENDIAN LITTLE
AUTOMATIC SYSENV FORE
AUTOMATIC SYSERR 0
AUTOMATIC SYSFILRC 0
AUTOMATIC SYSINDEX 3
AUTOMATIC SYSINFO 0
AUTOMATIC SYSJOBID 3580
AUTOMATIC SYSLAST WORK.INVENTORY
AUTOMATIC SYSLCKRC 0
AUTOMATIC SYSLIBRC 0
AUTOMATIC SYSMACRONAME
AUTOMATIC SYSMAXLONG 2147483647
AUTOMATIC SYSMENV S
AUTOMATIC SYSMSG
AUTOMATIC SYSNCPU 1
AUTOMATIC SYSPARM
AUTOMATIC SYSPBUFF
AUTOMATIC SYSPROCESSID 41D4E614295031274020000000000000
AUTOMATIC SYSPROCESSNAME DMS Process
AUTOMATIC SYSPROCNAME
AUTOMATIC SYSRC 0
AUTOMATIC SYSSCP WIN
AUTOMATIC SYSSCPL XP_HOME
AUTOMATIC SYSSITE 0045254001
AUTOMATIC SYSSIZEOFLONG 4
AUTOMATIC SYSSIZEOFUNICODE 2
AUTOMATIC SYSSTARTID
AUTOMATIC SYSSTARTNAME
AUTOMATIC SYSTIME 12:50

148 PROC SQL: Beyond the Basics Using SAS, Third Edition

AUTOMATIC SYSUSERID Valued Sony Customer
AUTOMATIC SYSVER 9.1
AUTOMATIC SYSVLONG 9.01.01M0P111803
AUTOMATIC SYSVLONG4 9.01.01M0P11182003

Building Macro Tools and Applications
The macro facility, combined with the capabilities of the SQL procedure, enables the creation
of versatile macro tools and general purpose applications. A principle design goal when
developing user-written macros should be that they are useful and simple to use. It is best to
avoid using a macro that does not meet your needs or that has a name that is complicated and
hard to remember.

As tools, macros should be designed to serve the needs of as many users as possible. They
should contain no ambiguities, consist of distinctive macro variable names, avoid the
possibility of naming conflicts between macro variables and data set variables, and not try to
do too many things. This utilitarian approach to macro design helps gain widespread approval
and acceptance by users.

Creating Simple Macro Tools
Macro tools can be constructed to perform a variety of useful tasks. The most effective
macros are those that are simple and perform a common task. Before embarking on the
construction of one or more macro tools, explore what processes are currently being
performed, and then identify common users’ needs with affected personnel by addressing
voids. Once this has been accomplished, you will be in a better position to construct simple
and useful macro tools that will be accepted by users.

Suppose that during an informal requirements analysis phase you identified users who, in the
course of their jobs, use a variety of approaches and methods to create data set and variable
cross-reference listings. To prevent unnecessary and wasteful duplication of effort, you
decide to construct a simple macro tool that can be used by all users to retrieve information
about the columns in one or more SAS data sets.

Cross-Referencing Columns
Column cross-reference listings are useful when you need to quickly identify all of the SAS
library data sets that a column is defined in. Using the COLUMNS dictionary table (for more
information, see Chapter 2, “Working with Data in PROC SQL”), a macro can be created that
captures column-level information including column name, type, length, position, label,
format, informat, indexes, as well as a cross-reference listing that contains the location of a
column within a designated SAS library. In the next example, the COLUMNS macro consists
of a PROC SQL query that accesses any single column in a SAS library. If the macro was
invoked with a user-request consisting of

%COLUMNS(WORK,CUSTNUM);

then the macro would produce a cross-reference listing on the user library WORK for the
column CUSTNUM in all DATA types.

Chapter 4: Coding PROC SQL Logic 149

SQL Code
%MACRO COLUMNS(LIB, COLNAME);
 PROC SQL;
 SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH
 FROM DICTIONARY.COLUMNS
 WHERE LIBNAME=”&LIB” AND
 UPCASE(NAME)=”&COLNAME” AND
 MEMTYPE=”DATA”;
 QUIT;
%MEND COLUMNS;
%COLUMNS(WORK,CUSTNUM);

It is worth noting that multiple matches could be found in databases that contains case-
sensitive names. This would allow both “employee” and “EMPLOYEE” to be displayed as
matches. This is not likely to occur too often in practice, but it is definitely a possibility.

Results

Determining the Number of Rows in a Table
Sometimes it is useful to know the number of observations (or rows) in a table without first
having to read all of the rows. Although the number of rows in a table is available for true
SAS tables, the number of rows is not available for DBMS tables that use a LIBNAME
engine. In the next example, the TABLES dictionary table is accessed in a user-defined
macro called NOBS (for more information, see Chapter 2). Macro NOBS is designed to
accept and process two user-supplied values: the library reference and the table name. Once
these values are supplied, the results are displayed in the Output window.

150 PROC SQL: Beyond the Basics Using SAS, Third Edition

SQL Code
%MACRO NOBS(LIB, TABLE);
 PROC SQL;
 SELECT LIBNAME, MEMNAME, NOBS
 FROM DICTIONARY.TABLES

 WHERE LIBNAME=”&LIB” AND
 UPCASE(MEMNAME)=”&TABLE” AND
 UPCASE(MEMTYPE)=”DATA”;

 QUIT;
%MEND NOBS;

%NOBS(WORK,PRODUCTS);

Results

Identifying Duplicate Rows in a Table
Sometimes it is useful to be able to identify duplicate rows in a table. In the next example, the
SELECT statement with a COUNT summary function and HAVING clause are used in a
user-defined macro called DUPS. Macro DUPS is designed to accept and process three user-
supplied values: the library reference, table name, and column(s) in a group by list. Once
these values are supplied by submitting macro DUPS, the macro is executed with the results
displayed in the Output window.

SQL Code
%MACRO DUPS(LIB, TABLE, GROUPBY);

 PROC SQL;
 SELECT &GROUPBY, COUNT(*) AS Duplicate_Rows
 FROM &LIB..&TABLE
 GROUP BY &GROUPBY
 HAVING COUNT(*) > 1;

 QUIT;
%MEND DUPS;

%DUPS(WORK,PRODUCTS,PRODTYPE);

Chapter 4: Coding PROC SQL Logic 151

Results

Summary
1. Conditional logic with the use of predicates (e.g., IN, BETWEEN, and CONTAINS)

provides WHERE and HAVING clauses with added value and flexibility (see
“Conditional Logic with Predicates (Operators)” section.

2. A CASE expression is a construct in PROC SQL that is used to evaluate whether a
particular condition has been met (see the “CASE Expressions” section).

3. A CASE expression can be used to conditionally process a table’s rows (see the
“CASE Expressions” section).

4. A single value is returned from its evaluation of each row in a table (see the “CASE
Expressions” section).

5. Logic conditions can be combined using the AND and OR logical operators (see the
“Logic and Nulls” section).

6. A missing or NULL value is returned when an ELSE expression is not specified and
each WHEN condition is “false” (see the “Logic and Nulls” section).

7. A missing value is not the same as a value of 0 (zero), or as a blank character
because it represents a unique value or a lack of a value (see the “Logic and Nulls”
section).

8. The IFC and IFN functions are useful constructs for encoding, decoding, and
flagging values in the construction of conditional logic in a SAS SQL query
environment (see the “IFC and IFN Functions” section).

9. Although not part of the SQL ANSI guidelines, the IFC and IFN functions cannot be
used with external database connections such as SAS to Oracle, SAS to DB2, SAS
to SQL Server, etc. (see the “IFC and IFN Functions” section).

10. PROC SQL can be used with the SAS macro facility to perform common and
repetitive tasks (see the “Interfacing PROC SQL with the Macro Language”
section).

11. Simple, but effective, user-defined macros combined with the SQL procedure can be
created for all users to use (see the “Building Macro Tools and Applications”
section).

12. Single-value macro variables can be defined using the INTO clause (see the
“Creating a Macro Variable with Aggregate Functions” section).

13. Value-list macro variables can be defined using the INTO clause and SEPARATED
BY keyword (see “Controlling the Selection and Population of Macro Variables
with a WHERE Clause” section).

	Contents
	About This Book
	What Does This Book Cover?
	Is This Book for You?
	What Should You Know about the Examples?
	Software Used to Develop the Book's Content
	Example Code and Data
	SAS University Edition

	We Want to Hear from You
	Acknowledgments

	Chapter 4: Coding PROC SQL Logic
	Introduction
	Conditional Logic
	WHERE versus ON Clause
	WHERE versus HAVING Clause
	SQL Code
	SQL Code
	SQL Code
	SQL Code
	SQL Code
	SQL Code
	SAS Log Results
	SQL Code
	Results

	Conditional Logic with Predicates (Operators)
	SQL Code
	SQL Code
	SQL Code
	SQL Code
	SQL Code
	SQL Code

	CASE Expressions
	Simple CASE Expression
	Simple CASE Expression in a SELECT Clause
	SQL Code
	Results
	SQL Code
	Results
	SQL Code
	Results
	SQL Code
	Results

	Simple CASE Expression in a WHERE Clause
	SQL Code
	Results

	Creating a Customized List with a Simple CASE Expression
	SQL Code
	Results

	Simple CASE Expression in a HAVING Clause
	SQL Code
	Results
	SQL Code
	Results

	Simple CASE Expression in a Join Construct
	SQL Code
	Results

	Preventing Division by Zero with a Simple CASE Expression
	SQL Code
	Results
	SQL Code
	Results

	Nesting Simple CASE Expressions
	SQL Code
	Results

	Conditionally Updating a Table with a Simple CASE Expression
	SQL Code
	Results

	Searched CASE Expression
	Searched CASE Expression in a SELECT Clause
	SQL Code
	Results

	Complex Comparisons with Searched CASE Expressions
	SQL Code
	Results

	Creating a Customized List with a Searched CASE Expression
	SQL Code
	Results

	Another Customized List with a Searched CASE Expression
	SQL Code
	Results

	Case Logic versus COALESCE Expression
	SQL Code
	SQL Code
	SQL Code
	Results

	Assigning Labels and Grouping Data
	Non-SQL Code
	Results
	SQL Code
	Results

	Logic and Nulls
	SQL Code
	Results
	SQL Code
	Results

	IFC and IFN Functions
	IFC and IFN Syntax
	Application of the IFC and IFN Functions
	SQL Code
	Results

	Interfacing PROC SQL with the Macro Language
	Exploring Macro Variables and Values
	Creating a Macro Variable with %LET
	SQL Code
	Results
	SQL Code
	SQL Code
	SAS Log Results

	Creating a Macro Variable from a Table Row Column
	SQL Code
	SAS Log Results
	SQL Code
	SAS Log Results

	Creating a Macro Variable with Aggregate Functions
	SQL Code
	SAS Log Results

	Creating Multiple Macro Variables
	SQL Code
	SAS Log Results
	Controlling the Selection and Population of Macro Variables with a WHERE Clause
	SQL Code
	SAS Log Results

	Creating a List of Values in a Macro Variable
	SQL Code
	SAS Log Results
	SQL Code
	SAS Log Results

	Using Automatic Macro Variables to Control Processing
	SQL Code
	SAS Log Results

	Building Macro Tools and Applications
	Creating Simple Macro Tools
	Cross-Referencing Columns
	SQL Code
	Results

	Determining the Number of Rows in a Table
	SQL Code
	Results

	Identifying Duplicate Rows in a Table
	SQL Code
	Results

	Summary

