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Simulating Data from Common
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2.1 Introduction to Simulating Univariate Data
There are three primary ways to simulate data in SAS software:

• Use the DATA step to simulate data from univariate and uncorrelated multivariate distributions.
You can use the RAND function to generate random values from more than 20 standard
univariate distributions. You can combine these elementary distributions to build more
complicated distributions.
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12 Chapter 2: Simulating Data from Common Univariate Distributions

• Use the SAS/IML language to simulate data from many distributions, including correlated
multivariate distributions. You can use the RANDGEN subroutine to generate random values
from standard univariate distributions, or you can use several predefined modules to generate
data from multivariate distributions. You can extend the SAS/IML language by defining new
functions that sample from distributions that are not built into SAS.

• Use specialized procedures in SAS/STAT software and SAS/ETS software to simulate data
with special properties. Procedures that generate random samples include the SIMNORMAL,
SIM2D, and COPULA procedures.

This chapter describes the two most important techniques that are used to simulate data in SAS
software: the DATA step and the SAS/IML language. Although the DATA step is a useful tool for
simulating univariate data, SAS/IML software is more powerful for simulating multivariate data. To
learn how to use the SAS/IML language effectively, see Wicklin (2010).

Most of the terminology in this book is standard. However, a term that you might not be familiar
with is the term random variate. A random variate is a particular outcome of a random variable
(Devroye 1986). For example, let X be a Bernoulli random variable that takes on the value 1
with probability p and the value 0 with probability 1 � p. If you draw five observations from the
probability distribution, you might obtain the values 0; 1; 1; 0; 1. Those five numbers are random
variates. This book also uses the terms “simulated values” and “simulated data.” Some authors refer
to simulated data as “fake data.”

2.2 Getting Started: Simulate Data from the Standard
Normal Distribution

To “simulate data” means to generate a random sample from a distribution with known properties.
Because an example is often an effective way to convey main ideas, the following DATA step
generates a random sample of 100 observations from the standard normal distribution. Figure 2.1
shows the first five observations.

data Normal(keep=x);
call streaminit(4321); /* Step 1 */
do i = 1 to 100; /* Step 2 */

x = rand("Normal"); /* Step 3 */
output;

end;
run;

proc print data=Normal(obs=5);
run;
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Figure 2.1 A Few Observations from a Normal Distribution

Obs x

1 1.24067

2 -0.53532

3 -1.01394

4 0.68965

5 -0.32458

The DATA step consists of three steps:

1. Set the seed value with the STREAMINIT function. Seeds for random number generation are
discussed further in Section 3.3.

2. Use a DO loop to iterate 100 times.

3. For each iteration, call the RAND function to generate a random value from the standard
normal distribution.

If you change the seed value, you will get a different random sample. If you change the number
100, you will get a sample with a different number of observations. To get a nonnormal distribution,
change the name of the distribution from “Normal” to one of the families listed in Section 2.7. Some
distributions, including the normal distribution, include parameters that you can specify after the
name.

2.3 Template for Simulating Univariate Data in the DATA
Step

It is easy to generalize the example in the previous section. The following SAS pseudocode shows a
basic template that you can use to generate N observations with a specified distribution:

%let N = 100; /* size of sample */

data Sample(keep=x);
call streaminit(4321); /* or use a different seed */
do i = 1 to &N; /* &N is the value of the N macro var */

/* specify distribution and parameters */
x = rand("DistribName", param1, param2, ...);
output;

end;
run;

The simulated data are written to the Sample data set. The macro variable N is defined in order
to emphasize the role of that parameter. The expression &N is replaced by the value of the macro
parameter (here, 100) before the DATA step is run.
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The (pseudo) DATA step demonstrates the following steps for simulating data:

1. A call to the STREAMINIT subroutine, which specifies the seed that initializes the random
number stream. When the argument is a positive integer, as in this example, the random
sequence is reproducible. If you specify 0 as the argument, the random number sequence is
initialized from your computer’s internal system clock. This implies that the random sequence
will be different each time that you run the program. Seeds for random number generation are
discussed in Section 3.3.

2. A DO loop that iterates N times.

3. A call to the RAND function, which generates one random value each time that the function
is called. The first argument is the name of a distribution. The supported distributions are
enumerated in Section 2.7. Subsequent arguments are parameter values for the distribution.

2.4 Simulating Data from Discrete Distributions
When the set of possible outcomes is finite or countably infinite (like the integers), assigning a
probability to each outcome creates a discrete probability distribution. Of course, the sum of the
probabilities over all outcomes is unity.

The following sections generate a sample of size N D 100 from some well-known discrete
distributions. The code is followed by a frequency plot of the sample, which is overlaid with the
exact probabilities of obtaining each value. You can use PROC FREQ to compute the empirical
distribution of the data; the exact probabilities are obtained from the probability mass function
(PMF) of the distribution. Section 3.4.2 describes how to overlay a bar chart with a scatter plot that
shows the theoretical probabilities.

2.4.1 The Bernoulli Distribution
The Bernoulli distribution is a discrete probability distribution on the values 0 and 1. The probability
that a Bernoulli random variable will be 1 is given by a parameter, p, 0 � p � 1. Often a 1 is
labeled a “success,” whereas a 0, which occurs with probability 1 � p, is labeled a “failure.”

The following DATA step generates a random sample from the Bernoulli distribution with p D 1=2.
If you identify x D 1 with “heads” and x D 0 with “tails,” then this DATA step simulates N D 100
tosses of a fair coin.

%let N = 100;
data Bernoulli(keep=x);
call streaminit(4321);
p = 1/2;
do i = 1 to &N;

x = rand("Bernoulli", p); /* coin toss */
output;

end;
run;
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You can use the FREQ procedure to count the outcomes in this simulated data. For this sample, the
value 0 appeared 52 times, and the value 1 appeared 48 times. These frequencies are shown by the
bar chart in Figure 2.2. The expected percentages for each result are shown by the round markers.

Figure 2.2 Sample from Bernoulli Distribution (p D 1=2) Overlaid with PMF

If X is a random variable from the Bernoulli distribution, then the expected value of X is p and the
variance is p.1 � p/. In practice, this means that if you generate a large random sample from the
Bernoulli distribution, you can expect the sample to have a sample mean that is close to p and a
sample variance that is close to p.1 � p/.

2.4.2 The Binomial Distribution
Imagine repeating a Bernoulli trial n times, where each trial has a probability of success equal to p.
If p is large (near 1), you expect most of the Bernoulli trials to be successes and only a few of the
trials to be failures. On the other hand, if p is near 1=2, you expect to get about n=2 successes.

The binomial distribution models the number of successes in a sequence of n independent Bernoulli
trials. The following DATA step generates a random sample from the binomial distribution with
p D 1=2 and n D 10. This DATA step simulates a series of coin tosses. For each trial, the coin is
tossed 10 times and the number of heads is recorded. This experiment is repeated N D 100 times.
Figure 2.3 shows a frequency plot of the results.

data Binomial(keep=x);
call streaminit(4321);
p = 1/2;
do i = 1 to &N;

x = rand("Binomial", p, 10); /* number of heads in 10 tosses */
output;

end;
run;
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Figure 2.3 Sample from Binomial Distribution (p D 1=2; n D 10) Overlaid with PMF

For this series of experiments, you expect to get five heads most frequently, followed closely by four
and six heads. The expected percentages are indicated by the round markers. For this particular
simulation, Figure 2.3 shows that four heads and six heads appeared more often than five heads
appeared. The sample values are shown by the bars; the expected percentages are shown by round
markers.

If X is a random variable from the binomial(p; n) distribution, then the expected value of X is np
and the variance is np.1 � p/. In practice, this means that if you generate a large random sample
from the binomial(p; n) distribution, then you can expect the sample to have a sample mean that is
close to np.

Some readers might be concerned that the distribution of the sample shown in Figure 2.3 differs so
much from the theoretical distribution of the binomial distribution. This deviation is not an indication
that something is wrong. Rather, it demonstrates sampling variation. When you simulate data from a
population model, the data will almost always look slightly different from the distribution of the
population. Some values will occur more often than expected; some will occur less often than
expected. This is especially apparent in small samples and for distributions with large variance. It is
this sampling variation that makes simulation so valuable.

2.4.3 The Geometric Distribution
How many times do you need to toss a fair coin before you see heads? Half the time you will see
heads on the first toss, one quarter of the time it requires two tosses, and so on. This is an example of
a geometric distribution.

In general, the geometric distribution models the number of Bernoulli trials (with success probability
p) that are required to obtain one success. An alternative definition, which is used by the MCMC
procedure in SAS, is to define the geometric distribution to be the number of failures before the first
success.
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You can simulate a series of coin tosses in which the coin is tossed until a heads appears and the
number of tosses is recorded. If p is the probability of tossing heads, then the following statement
generates an observation from the Geometric(p) distribution:

x = rand("Geometric", p); /* number of trials until success */

Figure 3.6 shows a graph of simulated geometric data and an overlaid PMF.

If X is a random variable from the geometric(p) distribution, then the expected value of X is 1=p
and the variance is .1 � p/=p2.

Exercise 2.1: Write a DATA step that simulates observations from a Geometric(0:5) distribution.

2.4.4 The Discrete Uniform Distribution
A Bernoulli distribution models two outcomes. You can model situations in which there are multiple
outcomes by using either the discrete uniform distribution or the “Table” distribution (see the next
section).

When you toss a standard six-sided die, there is an equal probability of seeing any of the six faces.
You can use the discrete uniform distribution to produce k integers in the range Œ1; k�. SAS does not
have a built-in discrete uniform distribution. Instead, you can use the continuous uniform distribution
to produce a random number u in the interval .0; 1/, and you can use the CEIL function to produce
the smallest integer that is greater than or equal to ku.

The following DATA step generates a random sample from the discrete uniform distribution with
k D 6. This DATA step simulates N D 100 rolls of a fair six-sided die.

data Uniform(keep=x);
call streaminit(4321);
k = 6; /* a six-sided die */
do i = 1 to &N;

x = ceil(k * rand("Uniform")); /* roll 1 die with k sides */
output;

end;
run;

You can also simulate data with uniform probability by using the “Table” distribution, which is
described in the next section.

To check the empirical distribution of the simulated data, you can use PROC FREQ to show the
distribution of the x variable. The results are shown in Figure 2.4. As expected, each number 1, 2,. . . ,
6 is generated about 16% of the time.

proc freq data=Uniform;
tables x / nocum;

run;
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Figure 2.4 Sample from Uniform Distribution (k D 6)

The FREQ ProcedureThe FREQ Procedure

x Frequency Percent

1 15 15.00

2 18 18.00

3 15 15.00

4 12 12.00

5 22 22.00

6 18 18.00

2.4.5 Tabulated Distributions
In some situations there are multiple outcomes, but the probabilities of the outcomes are not equal.
For example, suppose that there are 10 socks in a drawer: five are black, two are brown, and three
are white. If you close your eyes and draw a sock at random, the probability of that sock being black
is 0.5, the probability of that sock being brown is 0.2, and the probability of that sock being white is
0.3. After you record the color of the sock, you can replace the sock, mix up the drawer, close your
eyes, and draw again.

The RAND function supports a “Table” distribution that enables you to specify a table of probabilities
for each of k outcomes. You can use the “Table” distribution to sample with replacement from a
finite set of outcomes where you specify the probability for each outcome. In SAS/IML software,
you can use the RANDGEN or SAMPLE routines.

The following DATA step generates a random sample of size N D 100 from the “Table” distribution
with probabilities p D f0:5; 0:3; 0:2g. You can use PROC FREQ to display the observed frequencies,
which are shown in Figure 2.5.

data Table(keep=x);
call streaminit(4321);
p1 = 0.5; p2 = 0.2; p3 = 0.3;
do i = 1 to &N;

x = rand("Table", p1, p2, p3); /* sample with replacement */
output;

end;
run;

proc freq data=Table;
tables x / nocum;

run;
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Figure 2.5 Sample from “Table” Distribution (p D f0:5; 0:2; 0:3g)

The FREQ ProcedureThe FREQ Procedure

x Frequency Percent

1 48 48.00

2 21 21.00

3 31 31.00

For the simulated sock experiment with the given probabilities, a black sock (category 1) was drawn
48 times, a brown sock (category 2) was drawn 21 times, and a white sock was drawn 31 times.

If you have many potential outcomes, it would be tedious to specify the probabilities of each outcome
by using a comma-separated list. Instead, it is more convenient to specify an array in the DATA step
to hold the probabilities, and to use the OF operator to list the values of the array as shown in the
following example:

data Table(keep=x);
call streaminit(4321);
array p[3] _temporary_ (0.5 0.2 0.3);
do i = 1 to &N;

x = rand("Table", of p[*]); /* sample with replacement */
output;

end;
run;

The _TEMPORARY_ keyword makes p a temporary array that holds the parameter values. The
elements of a temporary array do not have names and are not written to the output data set, which
means that you do not need to use a DROP or KEEP option to omit them from the data set.

The “Table” distribution is related to the multinomial distribution, which is discussed in Section 8.2.
If you generate N observations from the “Table” distribution and tabulate the frequencies for
each category, then the frequency vector is a single observation from the multinomial distribution.
Consequently, the “Table” and multinomial distributions are related in the same way that the
Bernoulli and binomial distributions are related.

Exercise 2.2: Use the “Table” distribution to simulate rolls from a six-sided die.

2.4.6 The Poisson Distribution
Suppose that during the work day a worker receives email at an average rate of four messages per
hour. What is the probability that she might get seven messages in an hour? Or that she might get
only one message? The Poisson distribution models the counts of an event during a given time
period, assuming that the event happens at a constant average rate.

For an average rate of � events per time period, the expected value of a random variable from the
Poisson distribution is �, and the variance is also �.

The following DATA step generates a random sample from the Poisson distribution with � D 4. This
DATA step simulates the number of emails that a worker receives each hour, under the assumption
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that the number of emails arrive at a constant average rate of four emails per hour. This experiment
simulates N D 100 hours at work. The results are shown in Figure 2.6.

data Poisson(keep=x);
call streaminit(4321);
lambda = 4;
do i = 1 to &N;

x = rand("Poisson", lambda); /* num events per unit time */
output;

end;
run;

Figure 2.6 Sample from Poisson Distribution (� D 4) Overlaid with PMF

For the Poisson model, the worker can expect to receive four emails during a one-hour period about
20% of the time. The same is true for receiving three emails in an hour. She can expect to receive six
emails during an hour slightly more than 10% of the time. These expected percentages are shown by
the round markers. The “actual” number of emails received during each hour is shown by the bar
chart for the 100 simulated hours. There were 18 one-hour periods during which the worker received
three emails. There were 11 one-hour periods during which the worker received six emails.

Exercise 2.3: A negative binomial variable is defined as the number of failures before k successes
in a series of independent Bernoulli trials with probability of success p. Define a trial as rolling
a six-sided die until a specified face appears k D 3 times. Simulate 1,000 trials and plot the
distribution of the number of failures.

2.5 Simulating Data from Continuous Distributions
When the set of possible outcomes is uncountably infinite (like an interval or the set of real numbers),
assigning a probability to each outcome creates a continuous probability distribution. Of course, the
integral of the probabilities over the set is unity.
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The following sections generate a sample of size N D 100 from some well-known continuous
distributions. Most sections also show a histogram of the sample that is overlaid with the probability
density curve for the population. The probability density function (PDF) is described in Section 3.2.
Section 3.4.3 describes how to create the graphs.

See Table 2.3 for a list of common distributions that SAS supports.

2.5.1 The Normal Distribution
The normal distribution with mean � and standard deviation � is denoted by N.�; �/. Its density is
given by the following:

f .xI�; �/ D
1

�
p
2�

exp
�
�
.x � �/2

2�2

�
The standard normal distribution sets � D 0 and � D 1.

Many physical quantities are modeled by the normal distribution. Perhaps more importantly, the
sampling distribution of many statistics are approximately normally distributed.

Section 2.2 generated 100 observations from the standard normal distribution. Figure 2.7 shows a
histogram of the simulated data along with the graph of the probability density function. For this
sample, the histogram bars are below the PDF curve for some intervals and are greater than the curve
for other intervals. A second sample of 100 observations is likely to produce a different histogram.

Figure 2.7 Sample from a Normal Distribution (� D 0; � D 1) Overlaid with PDF

To explicitly specify values of the location and scale parameters, define mu and sigma outside of the
DO loop, and then use the following statement inside the DO loop:

x = rand("Normal", mu, sigma); /* X ~ N(mu, sigma) */

If X is a random variable from the N.�; �/ distribution, then the expected value of X is � and
the variance is �2. Be aware that some authors denote the normal distribution by N.�; �2/, where
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the second parameter indicates the variance. This book uses N.�; �/ instead, which matches the
meaning of the parameters in the RAND function.

2.5.2 The Uniform Distribution
The uniform distribution is one of the most useful distributions in statistical simulation. One reason
is that you can use the uniform distribution to sample from a finite set. Another reason is that
“random variates with various distributions can be obtained by cleverly manipulating” independent,
identically distributed uniform variates (Devroye 1986, p. 206).

The uniform distribution on the interval .a; b/ is denoted by U.a; b/. Its density is given by
f .x/ D .b � a/�1 for x in .a; b/. The standardized uniform distribution on [0,1] (often called the
uniform distribution) is denoted U.0; 1/.

You can use the following statement in the DATA step to generate a random observation from the
standard uniform distribution:

x = rand("Uniform"); /* X ~ U(0, 1) */

The uniform random number generator never generates the number 0 nor the number 1. Therefore,
all values are in the open interval .0; 1/.

You can also use the uniform distribution to sample random values from U.a; b/. To do this, define
a and b outside of the DO loop, and then use the following statement inside the DO loop:

y = a + (b-a)*rand("Uniform"); /* Y ~ U(a, b) */

If X is a random variable from the standard uniform distribution, then the expected value of X is
1=2 and the variance is 1=12. In general, the uniform distribution on .a; b/ has a uniform density of
1=.b � a/. If Y is a random variable from the U.a; b/, the expected value of Y is .aC b/=2 and the
variance is .b � a/2=12.

Exercise 2.4: Generate 100 observations from a uniform distribution on the interval .�1; 1/.

2.5.3 The Exponential Distribution
The exponential distribution models the time between events that occur at a constant average rate.
The exponential distribution is a continuous analog of the geometric distribution. The classic usage
of the exponential distribution is to model the time between detecting particles emitted during
radioactive decay.

The exponential distribution with scale parameter � is denoted Exp.�/. Its density is given by
f .x/ D .1=�/ exp.�x=�/ for x > 0. Alternatively, you can use � D 1=� , which is called the rate
parameter. The rate parameter describes the rate at which an event occurs.

The following DATA step generates a random sample from the exponential distribution with scale
parameter � D 10. A histogram of the sample is shown in Figure 2.8.
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data Exponential(keep=x);
call streaminit(4321);
sigma = 10;
do i = 1 to &N;

x = sigma * rand("Exponential"); /* X ~ Expo(10) */
output;

end;
run;

Figure 2.8 Sample from the Exponential Distribution (� D 10) Overlaid with PDF

Notice that the scale parameter for the exponential distribution is not supported by the RAND
function as of SAS 9.3. However, you can show that if X is distributed according to an exponential
distribution with unit scale parameter, then Y D �X is distributed exponentially with scale parameter
� . The expected value of X is � ; the variance is �2. For example, the data shown in Figure 2.8 have
a mean close to � D 10.

If you use the exponential distribution with a scale parameter frequently, you might want to define
and use the following SAS macro, which is used in Chapter 7 and in Chapter 12:

%macro RandExp(sigma);
((&sigma) * rand("Exponential"))

%mend;

The following statement shows how to call the macro from the DATA step:

x = %RandExp(sigma);

Exercise 2.5: Some distributions include the exponential distribution for particular values of the
distribution parameters. For example, a Weibull.1; b/ distribution is an exponential distribution with
scale parameter b. Modify the program in this section to simulate data as follows:
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x = rand("Weibull", 1, sigma);

Do you obtain a similar distribution of values? Use PROC UNIVARIATE to fit the exponential
model to the simulated data.

2.6 Simulating Univariate Data in SAS/IML Software
You can also generate random samples by using the RANDGEN subroutine in SAS/IML software.
The RANDGEN subroutine uses the same algorithms as the RAND function, but it fills an entire
matrix at once, which means that you do not need a DO loop.

The following SAS/IML pseudocode simulates N observations from a named distribution:

%let N = 100;
proc iml;
call randseed(4321); /* or use a different seed */
x = j(1, &N); /* allocate vector or matrix */
call randgen(x, "DistribName", param1, param2,...); /* fill x */

The PROC IML program contains the following function calls:

1. A call to the RANDSEED subroutine, which specifies the seed that initializes the random
number stream. If the argument is a positive integer, then the sequence is reproducible.
Otherwise, the system time is used to initialize the random number stream, and the sequence
will be different each time that you run the program.

2. A call to the J function, which allocates a matrix of a certain size. The syntax J(r, c) creates
an r � c matrix. For this example, x is a vector that has one row and N columns.

3. A call to the RANDGEN subroutine, which fills the elements of x with random values from a
named distribution. The supported distributions are listed in Section 2.7.

When you use the J function to allocate a SAS/IML matrix, the matrix is filled with 1s by default.
However, you can use an optional third argument to fill the matrix with another value. For example
y=j(1,5,0) allocates a 1� 5 vector where each element has the value 0, and y=j(4,3,.) allocates
a 4 � 3 matrix where each element is a SAS missing value.

Notice that the SAS/IML implementation is more compact than the DATA step implementation.
It does not create a SAS data set, but instead holds the simulated data in memory in the x vector.
By not writing a data set, the SAS/IML program is more efficient. However, both programs are
blazingly fast. On the author’s PC, generating a million observations with the DATA step takes about
0.2 seconds. Simulating the same data in PROC IML takes about 0.04 seconds.

2.6.1 Simulating Discrete Data
The RANDGEN subroutine in SAS/IML software supports the same distributions as the RAND
function. Because the IML procedure does not need to create a data set that contains the simulated
data, well-written simulations in the SAS/IML language have good performance characteristics.
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The previous sections showed how to use the DATA step to generate random data from various
distributions. The following SAS/IML program generates samples of size N D 100 from the same
set of distributions:

proc iml;
/* define parameters */
p = 1/2; lambda = 4; k = 6; prob = {0.5 0.2 0.3};

/* allocate vectors */
N = 100;
Bern = j(1, N); Bino = j(1, N); Geom = j(1, N);
Pois = j(1, N); Unif = j(1, N); Tabl = j(1, N);

/* fill vectors with random values */
call randseed(4321);
call randgen(Bern, "Bernoulli", p); /* coin toss */
call randgen(Bino, "Binomial", p, 10); /* num heads in 10 tosses */
call randgen(Geom, "Geometric", p); /* num trials until success */
call randgen(Pois, "Poisson", lambda); /* num events per unit time */
call randgen(Unif, "Uniform"); /* uniform in (0,1) */
Unif = ceil(k * Unif); /* roll die with k sides */
call randgen(Tabl, "Table", prob); /* sample with replacement */

Notice that in the SAS/IML language, which supports vectors in a natural way, the syntax for the
“Table” distribution is simpler than in the DATA step. You simply define a vector of parameters and
pass the vector to the RANDGEN subroutine. For example, you can use the following SAS/IML
program to simulate data from a discrete uniform distribution as described in Section 2.4.4. The
program simulates the roll of a six-sided die by using the RANDGEN subroutine to sample from six
outcomes with equal probability:

proc iml;
call randseed(4321);
prob = j(6, 1, 1)/6; /* equal prob. for six outcomes */
d = j(1, &N); /* allocate 1 x N vector */
call randgen(d, "Table", prob); /* fill with integers in 1-6 */

2.6.2 Sampling from Finite Sets
It can be useful to sample from a finite set of values. The SAS/IML language provides three
functions that you can use to sample from finite sets:

• The RANPERM function generates random permutations of a set with n elements. Use this
function to sample without replacement from a finite set with equal probability of selecting
any item.

• The RANPERK function (introduced in SAS/IML 12.1) generates random permutations of k
items that are chosen from a set with n elements. Use this function to sample k items without
replacement from a finite set with equal probability of selecting any item.

• The SAMPLE function (introduced in SAS/IML 12.1) generates a random sample from a
finite set. Use this function to sample with replacement or without replacement. This function
can sample with equal probability or with unequal probability.
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Each of these functions uses the same random number stream that is set by the RANDSEED routine.
DATA step versions of the RANPERM and RANPERK functions are also supported.

These functions are similar to the “Table” distribution in that you can specify the probability of
sampling each element in a finite set. However, the “Table” distribution only supports sampling with
replacement, whereas these functions are suitable for sampling without replacement.

As an example, suppose that you have 10 socks in a drawer as in Section 2.4.5. Five socks are black,
two socks are brown, and three socks are white. The following SAS/IML statements simulate three
possible draws, without replacement, of five socks. The results are shown in Figure 2.9.

proc iml;
call randseed(4321);
socks = {"Black" "Black" "Black" "Black" "Black"

"Brown" "Brown" "White" "White" "White"};
params = { 5, /* sample size */

3 }; /* number of samples */
s = sample(socks, params, "WOR"); /* sample without replacement */
print s;

Figure 2.9 Random Sample without Replacement

s

White Black White Black Brown

Brown Brown Black Black Black

White Black White Black Brown

The SAMPLE function returns a 3 � 5 matrix, s. Each row of s is an independent draw of five socks
(because param[1] = 5). After each draw, the socks are returned to the drawer and mixed well.
The experiment is repeated three times (because param[2] = 3). Because each draw is without
replacement, no row can have more than two brown socks or more than three white socks.

2.6.3 Simulating Continuous Data
Section 2.6.1 shows how to simulate data from discrete distributions in SAS/IML software. In the
same way, you can simulate data from continuous distributions by calling the RANDGEN subroutine.
As before, if you allocate a vector or matrix, then a single call of the RANDGEN subroutine fills the
entire matrix with random values.

The following SAS/IML program generates samples of size N D 100 from the normal, uniform, and
exponential distributions:

proc iml;
/* define parameters */
mu = 3; sigma = 2;

/* allocate vectors */
N = 100;
StdNor = j(1, N); Normal = j(1, N);
Unif = j(1, N); Expo = j(1, N);
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/* fill vectors with random values */
call randseed(4321);
call randgen(StdNor, "Normal"); /* N(0,1) */
call randgen(Normal, "Normal", mu, sigma); /* N(mu,sigma) */
call randgen(Unif, "Uniform"); /* U(0,1) */
call randgen(Expo, "Exponential"); /* Exp(1) */

2.7 Univariate Distributions Supported in SAS Software
In SAS software, the RAND function in Base SAS software and the RANDGEN subroutine in
SAS/IML software are the main tools for simulating data from “named” distributions. These two
functions call the same underlying numerical routines for computing random variates. However,
there are some differences, as shown in Table 2.1:

Table 2.1 Differences Between RAND and RANDGEN Functions

RAND Function RANDGEN Subroutine
Called from: DATA step PROC IML
Seed set by: CALL STREAMINT CALL RANDSEED
Returns: Scalar value Vector or matrix of values

Because SAS/IML software can call Base SAS functions, it is possible to call the RAND function
from a SAS/IML program. However, this is rarely done because it is more efficient to use the
RANDGEN subroutine to generate many random variates with a single call.

Table 2.2 and Table 2.3 list the discrete and continuous distributions that are built into SAS software.
Except for the t , F , and “NormalMix” distributions, you can identify a distribution by its first four
letters. Parameters for each distribution are listed after the distribution name. Parameters in angled
brackets are optional. If an optional parameter is omitted, then the default value is used.

The functions marked with an asterisk are supported by the RANDGEN function in SAS/IML 12.1.
In general, parameters named � and � are location parameters, whereas � denotes a scale parameter.

Table 2.2 Parameters for Discrete Distributions

Distribution distname parm1 parm2 parm3
Bernoulli ‘BERNOULLI’ p

Binomial ‘BINOMIAL’ p n

Geometric ‘GEOMETRIC’ p

Hypergeometric ‘HYPERGEOMETRIC’ N R n

Negative Binomial ‘NEGBINOMIAL’ p k

Poisson ‘POISSON’ m

Table ‘TABLE’ p
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Table 2.3 Parameters for Continuous Distributions

Distribution distname parm1 parm2 parm3
Beta ‘BETA’ a b

Cauchy ‘CAUCHY’
Chi-Square ‘CHISQUARE’ d

Erlang ‘ERLANG’ a < � D 1>
Exponential ‘EXPONENTIAL’ < � D 1>
F ‘F’ n d

Gamma ‘GAMMA’ a < � D 1>
Laplace� ‘LAPLACE’ < � D 0> < � D 1>
Logistic� ‘LOGISTIC’ < � D 0> < � D 1>
Lognormal ‘LOGNORMAL’ <� D 0> < � D 1>
Normal ‘NORMAL’ <� D 0> < � D 1>
Normal Mixture� ‘NORMALMIX’ p � �

Pareto� ‘PARETO’ a < k D 1>
t ‘T’ d

Triangle ‘TRIANGLE’ h

Uniform ‘UNIFORM’ < a D 0> < b D 1>
Wald� ‘WALD’ or ‘IGAUSS’ � <� D 1>
Weibull ‘WEIBULL’ a b

Densities for all supported distributions are included in the documentation for the RAND function in
SAS Functions and CALL Routines: Reference.
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packaging commands into   98–99 
usage considerations   101–102 

Matérn model II   277 
MATLAB functions   188 
matrices 

See also correlation matrices 
See also covariance matrices 
block-diagonal   232–233 
checking if PSD   178–179 
checking if symmetric   178 
constructing   240 
creating data sets from   331 
creating from data sets   330 
design   215–218 
efficiency of   6 
eigenvalues for   187–189 
Iman-Conover method   161–164 
reshaping   69 
row-major order for   260 
SAS/IML language and   6 
subscript reduction operators for   328–329 
tips for shortening simulation times   103 

matrix arithmetic   155, 217 
MATRIX statement, SGSCATTER procedure   291 
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MAX function   327, 329 
maximum likelihood estimate 

checking correctness of simulated data   36 
fitting gamma distribution to data   306 
suppressing notes to SAS log   99–100 

maximum (<>) operator   329 
MCD subroutine   140 
MCMC procedure 

about   9 
Gibbs sampling and   145 
parameter considerations   110 

mean 
assessing two-sample t test   78–84 
computing variances of   61–62 
confidence interval for   74–78, 295 
sampling distribution of   57–59, 68–69 

MEAN function 
about   68, 327 
computing confidence interval for a mean   77 
subscript reduction operator equivalent   329 
writing efficient simulations   97 

mean mapping method   158–159 
mean (:) operator   68, 77, 329 
mean square error   54 
MEAN statement, SIM2D procedure   267–268 
MEANS procedure 

approximating sampling distribution   55 
bootstrap resampling   287–288 
BY statement   64 
CLASS statement   64 
computing point estimates   282 
computing sample kurtosis   66 
computing sample moments   319 
computing variances   61 
design of simulation studies and   315 
displaying descriptive statistics   255 
OUTPUT statement   56, 66, 74–75 
P5 option   58, 285 
P95 option   58, 285 
sampling distribution of the mean   57–59 
unconditional simulation of one-dimensional data   

266–267 
VARDEF= option   295 

median, computing variances of   61–62 
MEDIAN function   68, 327 
Mersenne-Twister algorithm   32–33 
METHOD= option 

ROBUSTREG procedure   220–221 
SURVEYSELECT procedure   287 

MIN function   327, 329 
minimum (><) operator   329 
mixed models 

See linear mixed models 
MIXED procedure 

CL option   235 
covariance structures supported   183 
estimating covariance matrices   181 

repeated measures model with random effect   
231–232 

mixing probabilities   120 
mixture distributions 

about   119–120 
contaminated normal distribution   121–122 
simulating from   120–121 

MODEL procedure 
about   9, 252 
parametric bootstrap method   291 
simulating data from copula model   169 

MODEL statement 
LOESS procedure   249 
REG procedure   221 
ROBUSTREG procedure   222 

moment matching 
about   298, 303 
as modeling tool   302–303 
as tool for designing simulation studies   315–317 

moment-ratio diagram 
about   298–302 
as tool for designing simulation studies   315–317 
comparing simulations and choosing models   314 
extensions to multivariate data   318–331 
fitting gamma distribution to data   306–308 
Fleishman's method   311–314 
for continuous distributions   300–301 
Johnson system of distributions   308–311 
plotting variation of skewness and kurtosis on   

303–306 
MOMENTS module   312 
moments of a distribution   299–301 
Monte Carlo estimates 

about   54 
bias of kurtosis estimates in small samples   67 
effect of sample size on sampling distribution   

63–64 
MCMC procedure and   9 
number of samples and   96 
sampling distribution of the mean   58 
simple regression model example   202–203 

Monte Carlo standard error   96 
multinomial distribution 

about   130–132 
generating random samples from   89 
simulating data from   130–132 
tabulated distributions and   19, 130 

multiplication (#) operator   215, 329 
multivariate ARMA models   260–261 
multivariate contaminated normal distribution   

138–140 
multivariate distributions 

See also multinomial distribution 
See also MVN (multivariate normal distributions) 
advanced techniques for simulating data   153–174 
basic technique for simulating data   129–152 
Cholesky transformation and   146–150 
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multivariate distributions (continued) 
constructing with Fleishman distribution   115 
extensions to   318–331 
generating data from   137 
generating data from copulas   164–173 
generating multivariate binary variates   154–157 
generating multivariate ordinal variates   158–161 
methods for generating data from   144–146 
mixtures of   138–141 
reordering multivariate data   161–164 
resampling with SAS/IML software   289–291 
simulating data from   129, 153–154 
simulating data in time series   251 
simulating data with given moments   298 
spectral decomposition and   150–151 
using DO loop   55, 97 

multivariate normal distributions (MVN) 
about   133 
conditional   142–144 
estimating covariance matrix from data   180 
mixtures of   140–141 
simulating in SAS/IML software   133–136 
simulating in SAS/STAT software   136 

%MULTNORM macro   135–136, 140 
MVN (multivariate normal distributions) 

about   133 
conditional   142–144 
estimating covariance matrix from data   180 
mixtures of   140–141 
simulating in SAS/IML software   133–136 
simulating in SAS/STAT software   136 

MYSQRVECH function   335 

N 
naive bootstrap 

See bootstrap methods 
NARROW option, SIM2D procedure   267 
NCOL function   327 
nearest correlation matrix   191–193 
negative binomial distribution   27, 39 
NLIN procedure   291 
NOMISS option, CORR procedure   180, 190 
nonnormal distributions   81–82 
NONOTES system option   101, 116 
nonparametric models   247–249 
nonsingular parameterizations   218 
NOPRINT option 

ESTIMATE statement, ARIMA procedure   254 
IDENTIFY statement, ARIMA procedure   254 
procedures and   97, 254 

normal distribution 
computing p-values   32 
computing quantiles for   156 
confidence interval for a mean   74–77 
contaminated   121–122, 138–140 
parameters for   28 
shape parameters and   301 

simulating data from   12–13, 21–22 
normal mixture distribution   28 
NORTA method   168–169 
notes, suppressing to SAS log   99–100 
NOTES system option   101 
NROW function   327 
number of samples (repetitions)   95–96 
NUMREAL= option, SIMULATE statement (SIM2D)   

267 

O 
observations 

correlating   181 
DATA step and   6 
high-leverage points   219 

ODS EXCLUDE ALL statement   97 
ODS EXCLUDE statement   45–46 
ODS GRAPHICS statement   46 
ODS OUTPUT statement 

creating data sets from tables   45–46, 57 
suppressing output   97–98 
usage example   80 

ODS SELECT statement   45–46 
ODS statements, controlling output with   44–46, 97–99 
ODS TRACE statement   44 
%ODSOFF macro   80, 98, 228, 236 
%ODSON macro   99 
OF operator   19 
OLS (ordinary least squares)   200 
one-dimensional data 

conditional simulation of   270–271 
unconditional simulation of   264–267 

ordinal variates   158–161 
ORDMEAN function   159–160 
ORDVAR function   159–160 
OUT= option 

OUTPUT statement, FREQ procedure   97 
TABLES statement, FREQ procedure   56 

OUTDESIGN= option 
GLIMMIX procedure   238–239 
LOGISTIC procedure   218 

OUTDESIGNONLY option, LOGISTIC procedure   
218 

OUTEST= option 
ESTIMATE statement, ARIMA procedure   254 
REG procedure   56, 97 

OUTHITS option, SURVEYSELECT procedure   
287–288 

outliers   219–221 
OUTP= option, CORR procedure   97, 180 
output, controlling with ODS statements   44–46, 97–99 
OUTPUT statement 

FREQ procedure   97, 190 
MEANS procedure   56, 66, 74–75 
REG procedure   205 
ROBUSTREG procedure   222 

OUTSTAT= option, GLM procedure   97 
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P 
P= option, OUTPUT statement, REG procedure   205 
P5 option, MEANS procedure   58, 285 
P95 option, MEANS procedure   58, 285 
p-values, computing for hypothesis testing   32, 88–90 
pairwise correlations   190 
PAIRWISEDIST module   333–334 
PARAM= option, CLASS statement (LOGISTIC)   218 
parameter estimates 

reading   239–240 
using as parameters   207–208 

parameters 
for Bernouilli distribution   27 
for binomial distribution   27 
for continuous distributions   28 
for discrete distributions   27 
for Emrich-Piedmonte algorithm   155 
for exponential distribution   28, 110 
for gamma distribution   28, 110 
for geometric distribution   27 
for logistic distribution   28 
for lognormal distribution   28, 111 
for normal distribution   28 
for Poisson distribution   27 
for standard normal distribution   28 
for tabulated distributions   27 
for uniform distribution   28, 111 
for univariate distributions   109–111 
for Weibull distribution   28 
location   109–111 
rate   22 
scale   109–111 
shape   110, 299, 301 
using parameter estimates as   207–208 

parametric bootstrap method   281, 291 
Pareto distribution   28, 112–113 
PD (positive definite) 

about   177 
generating covariance or correlation matrix   

179–180 
generating diagonally dominant covariance matrix   

181–182 
problems with covariance matrices   190 
testing covariance matrices   177 

PDF function 
about   326 
checking correctness of simulated data   35 
finite mixture distribution and   120 
overlaying theoretical density on histograms   

40–41 
overlaying theoretical PMF on frequency plots   38 
parameter considerations   110 
simulating data from continuous distributions   21, 

23 
working with statistical distributions   30–31 

Pearson correlations 
bootstrap resampling   290 

copula technique and   169–170 
correlation matrices and   176 
sampling distribution of   69–71 
simple regression model example   202–203 

Pearson system of distributions   302 
PHREG procedure   244 
PLCORR option, OUTPUT statement (FREQ)   190 
PLOTS= option, SIM2D procedure   268 
PMF function 

checking correctness of simulated data   35 
generating multivariate ordinal variates   158–161 
overlaying on frequency plot   37–39 
working with statistical distributions   30–31 

POINT= option, SET statement   205, 282–284 
Poisson distribution   19–20, 27, 229 
Poisson process 

about   273 
homogeneous   273–275 
inhomogeneous   273, 275–276 

Poisson regression model   226, 229–230 
%POLYCHOR macro   190 
POLYCHORIC option, CORR procedure   190 
polynomial effects, linear models   215–218 
POLYROOT function   327 
pooled variance t test 

about   78 
assessing in SAS/IML software   83–84 
effect of sample size on power of   87–88 
evaluating power of   84–86 
robustness to nonnormal populations   81–82 
robustness to unequal variances   78–81 

positive definite (PD) 
about   177 
generating diagonally dominant covariance matrix   

181–182 
problems with covariance matrices   190 
testing covariance matrices   177 

positive semidefinite (PSD)   177–179 
power function distribution   113 
power of regression tests   211–215 
power of t test 

effect of sample size on   87–88 
evaluating   84–86 
exact power analysis   84–85 
simulated analysis   85–86 

POWER procedure 
effect size and   87–88 
evaluating power of t test   84–86 

PRINT statement 
about   328 
COLNAME= option   328 
FORMAT= option   328 
LABEL= option   328 
ROWNAME= option   328 
sampling distribution example   69 

PRINTTO procedure   99–100 
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probability distributions 
See continuous distributions 
See discrete distributions 

probability mass function 
See PMF function 

PROBBNRM function   155 
PROBGAM function   32 
PROBIT function   32 
PROBNORM function   32 
procedures 

BY statement in   55 
data simulation using   55–67 
NOPRINT option in   97, 254 
suppressing notes to SAS log   99–100 

PROD function   327, 329 
profiling simulations   102–103 
PROJS function   191 
PROJU function   191 
proportional hazards model   242–245 
PSD (positive semidefinite)   177–179 
pseudorandom numbers   33 
%PUT statement   35 

Q 
Q-Q (quantile-quantile) plot   41–44 
QNTL subroutine   68, 289, 327 
QQPLOT statement, UNIVARIATE procedure   41–44 
QUANTILE (inverse CDF) function 

about   326 
acceptance-rejection technique and   126–127 
computing confidence interval for a mean   77 
computing quantile of normal distribution   156 
creating Q-Q plots   42–43 
fitting and simulating data from copula model   

170–171 
generating data from copulas   165 
parameter considerations   110 
sampling method   116–122 
univariate distribution support   112–113 
working with statistical distributions   30, 32 

quantile-quantile (Q-Q) plot   41–44 
quantiles 

See also QUANTILE function 
about   32 
checking correctness of simulated data   35 
computing for normal distributions   156 

R 
RAND function 

about   11, 33–34 
finite mixture distribution and   120 
linear regression model and   227 
logistic regression model and   227 
overlaying theoretical PMF on frequency plots   38 
parameter considerations   110–111 
Poisson regression model and   229 

simulating data from inhomogeneous Poisson 
process   275 

simulating univariate data   13–14, 18, 23–24, 27 
univariate distribution support   111–112, 114 
working with statistical distributions   30 

RANDDIRICHLET function   137 
%RandExp macro   23, 123 
RANDFLEISHMAN module   312 
RANDGEN subroutine 

about   33, 227, 327 
computing confidence interval for a mean   77 
distributions supported by   112 
J function and   97 
overlaying theoretical PMF on frequency plots   38 
sampling distribution of the mean   68 
simulating data from homogeneous Poisson process   

274 
simulating univariate data   12, 18, 24–27 
two-sample pooled variance t test   83 
working with statistical distributions   30 

RANDMULTINOMIAL function   89, 130, 327 
RANDMVBINARY function   157 
RANDMVORDINAL function   159–160 
RANDMVT function   137, 327 
RANDNORMAL function 

about   133, 327 
Cholesky transformation   146 
conditional simulations   143 
simulating data from multinomial distributions   70, 

133, 138, 145 
unconditional simulation of one-dimensional data   

265 
random correlation matrices   187–189 
random effects 

about   226 
creating design matrices for   238–239 
generating variables for   201 
linear mixed models with   226, 230–232 
repeated measures model with   231–232 
simulating components   236–242 

random error term   198–199 
random number generation 

about   33–35 
ARMASIM function and   259 
Mersenne-Twister algorithm   32–33 
RANDSEED subroutine and   259 
setting seed value for   33–35 

random values for distributions 
See RAND function 

random variates   12 
RANDSEED subroutine 

about   33, 327 
random number generation and   259 
sampling distribution of the mean   68 
simulating univariate data   24, 26 

RANDVALEMAURELLI function   318–319 
RANDWISHART function   137, 186, 327 
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RANGAM function   32 
RANGE= option, SIMULATE statement (SIM2D)   

267 
rank (Spearman) correlations   169, 176 
RANK function   327 
RANNOR function   32 
RANPERK function   25–26 
RANPERM function   25–26 
rate parameter   22 
Rayleigh distribution   114 
READ statement 

about   329 
INTO clause   330 
WHERE clause   55 

reading data from data sets   329–330 
reference parameterization   218 
REFLINE statement, SGPLOT procedure   90 
REG procedure 

MODEL statement   221 
OUTEST= option   56, 97 
OUTPUT statement   205 
simple linear regression models and   199–200, 

204–205 
TEST statement   211–213 

regression models 
about   197 
components of   198–199 
linear   199–211, 215–218, 226–230 
linear mixed models   226, 230–242 
logistic regression model   226–229 
nonparametric models   247–249 
outliers and   219–224 
Poisson regression model   226, 229–230 
power of regression tests   211–215 
survival analysis models   123–125, 242–247 

regular processes   276–278 
rejection method   126–128 
REPEAT function   69, 327, 331 
repeated measures model with random effect   231–232 
repetitions (number of samples)   95–96 
REPS= option, SURVEYSELECT procedure   287 
resampling 

case   284 
with DATA step   282–286 
with SURVEYSELECT procedure   282, 286–288 

reshaping matrices   69 
response variables 

about   197–198 
in logistic regression   226 
outliers for   219–221 
simulating   240–242 

RETURN statement   327 
ridge factor   190–191 
RMSE (root mean square error) 

about   199 
linear model based on real data   204 
linear model with continuous variable   201 

nonparametric models   248 
RANDMVT function   327 
ROBUSTREG procedure 

FWLS option   220–221 
METHOD= option   220–221 
MODEL statement   222 
OUTPUT statement   222 

ROBUSTREG routine   140 
ROOT function 

about   327 
checking if matrix is PD   182 
checking if matrix is PSD   179 
Cholesky transformation and   147 

root mean square error (RMSE) 
about   199 
linear model based on real data   204 
linear model with continuous variable   201 
nonparametric models   248 

row-major order for matrices   260 
ROWNAME= option, PRINT statement   328 
ROWVEC function   327 
RSREG procedure   316 

S 
SAMPLE function 

about   327, 336 
simulating univariate data   18, 25–26 

sample moments 
checking correctness of simulated data   35–37 
computing   336–337 

sample size 
bias of kurtosis estimates and   65–67 
effect of on power of t test   87–88 
effect of on sampling distribution   63–65 
number of samples and   95–96 
standard error and   96 

SAMPLEREPLACE module   288, 336 
sampling distribution 

approximating   52–55 
approximating for AR(1) parameters   254–256 
bias of kurtosis estimates   65–67 
effect of sample size on   63–65 
estimating probability with   59–60 
evaluating statistical techniques for   73–91 
Monte Carlo estimates   54 
of a statistic   51–53 
of Pearson correlations   69–71 
of statistics for normal data   60–63 
of the mean   57–59, 68–69 
simulating data using SAS/IML language   67–71 
simulating data with DATA step and procedures   

55–67 
sampling variation   16 
SAMPRATE= option, SURVEYSELECT procedure   

287 
SAS Grid Manager   102 
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SAS/IML language 
about   5–6, 12, 325–326 
additional resources   325–326 
assessing t test in   83–84 
computing confidence interval for a mean   77–78 
constructing block-diagonal matrix   232–233 
creating grid of values   332–333 
creating ID vectors   331–332 
DATA step comparison   6 
design of simulation studies and   315 
Fleishman's method and   312–313 
functions supported   326–328 
generating symmetric matrices   181 
Iman-Conover method   162 
license considerations   5–6 
matrices and   6 
modules for sample moments   336–337 
modules replicating functions   333–336 
obtaining programs used in book   8 
PRINT statement   328 
reading data from data sets   329–330 
reading design matrices into   239 
resampling support   282, 288–291 
simulating AR(1) data   258–260 
simulating data from regression models   206–207 
simulating data using   67–71 
simulating multivariate normal data   133–136, 140 
simulating responses   240–241 
subscript reduction operators   328–329 
writing data to data sets   330–331 

SAS log, suppressing notes to   99–100 
SAS Simulation Studio   9 
SAS/STAT software   133, 136, 140 
SASFILE statement   283 
SCALE= option, SIMULATE statement (SIM2D)   267 
scale parameter   109–111 
scatter matrix   186 
SCATTER statement, SGPLOT procedure 

YERRORLOWER= option   86 
YERRORUPPER= option   86 

SDF (survival distribution function)   245 
SEED= option, SURVEYSELECT procedure   

287–288 
seed value 

for random number generation   33–35 
for sampling distribution examples   55 

semicolon (;)   6 
SET statement   205, 282–284 
SETDIF function   327 
SGPLOT procedure 

annotation facility   301 
bias of kurtosis estimates in small samples   66 
conditional distributions   144 
conditional simulations   271 
creating Q-Q plots   42–43 
generating data from copulas   168 
INSET statement   90 

jitter technique and   132 
LINEPARM statement   219–220 
nonparametric models example   248–249 

plotting PDF   31 
profiling simulations   102–103 
REFLINE statement   90 
SCATTER statement   86 
visualizing stationary time series   257–258 

SGRENDER procedure 
conditional simulations   272 
DYNAMIC statement   39, 41 
overlaying theoretical density on histograms   

40–41 
overlaying theoretical PMF on frequency plots   38 

SGSCATTER procedure   135, 141, 291 
SHAPE function 

about   327 
generating ID variables   331 
generating matrices from Wishart distribution   187 
reshaping matrices   69 

shape parameters   110, 299, 301 
shrinkage methods   190–191 
SIM2D procedure 

about   12 
COORDINATES statement   272 
GRID statement   267 
MEAN statement   267–268 
NARROW option   267 
PLOTS= option   268 
producing contour plots   269 
SIMULATE statement   267–268, 272 
simulating data from Gaussian field   263–264, 

267, 272 
SIMNORMAL procedure 

about   12, 133 
conditional simulations   142 
simulating MVN distributions   136 

simple bootstrap 
See bootstrap methods 

SIMULATE statement 
COPULA procedure   170 
SIM2D procedure   267–268, 272 

simulating data 
See also under specific techniques 
about   3–4 
advanced techniques for multivariate data   

153–174 
advanced techniques for univariate data   109–128 
building correlation and covariance matrices    

175–194 
checking correctness of   35–44 
disadvantages of   105 
for advanced regression models   225–249 
for basic regression models   197–224 
from basic multivariate distributions   129–152 
from common univariate distributions   11–28 
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from spatial models   263–279 
from time series models   251–261 
moment matching and moment-ratio diagram   

297–322 
preliminary and background information   29–47 
resampling and bootstrap methods   281–295 
shortening simulation times   103–105 
specialized tools for   8–9 
strategies for   93–106 
to estimate sampling distributions   51–71 
to evaluate statistical techniques   73–91 
using DATA step and procedures   55–67 
using SAS/IML language   67–71 

simulation loop   55 
Simulation Studio   9 
singular parameterization   216 
skewness 

bootstrap resampling   285–289 
checking correctness of simulated data   36 
computing   336–337 
design of simulation studies and   315–316 
Fleishman distribution and   115, 311 
for gamma distribution   306–308 
Johnson system of distributions   310–311 
moment matching and   303 
moments and   299–301 
plotting variations on moment-ratio diagram   

303–306 
sampling distribution example   65–67 

SKEWNESS module   288 
Sklar's theorem   169 
smooth bootstrap method   281, 292–294 
SMOOTH= option, MODEL statement (LOESS)   249 
SMOOTHBOOTSTRAP module   294 
SOLVE function   327 
SORT call   327 
SORT procedure   56 
spatial functions   273–274 
spatial models 

about   263 
simulating data from a regular process   276–278 
simulating data from Gaussian random field    

263–273 
simulating data from homogeneous Poisson process   

274–275 
simulating data from inhomogeneous Poisson 

process   275–276 
simulating data from spatial point process   

273–274 
simulating data using other techniques   278–279 

spatial point processes   273–274 
Spearman (rank) correlations   169, 176 
spectral decomposition   150–151 
spectrum (eigenvalues)   187–189 
SQRT function   326 
SQRVECH function 

about   327, 335 

generating symmetric matrices   181 
multivariate normal distributions and   140–141 

SSQ function   327, 329 
standard errors 

about   53 
bootstrap   283, 294–295, 305–306 
Monte Carlo   96 
plotting bootstrap estimates of   305–306 
sample size and   96 

standard normal distribution 
computing p-values   32 
computing quantiles for   156 
contaminated   121–122, 138–140 
parameters for   28 
simulating data from   12–13, 21–22 

standardized uniform distribution   22 
START statement   327 
STAT= option, BARCHART statement (TEMPLATE)   

38–39 
STATESPACE procedure   261 
statistic 

sampling distribution of   51–53 
standard error of   53 

statistical distributions 
checking correctness of simulated data   35–44 
essential functions for working with   30–33 
random number streams   33–35 

STD function   68, 77, 328 
STOP statement   205, 328 
STORE statement   328 
STREAMINIT function 

about   33–34 
linear regression example   227 
macro-loop technique and   101 
simulating univariate data   13–14 

Student's t distribution   137 
subpopulations (components)   119–121 
subscript reduction operators 

about   328–329 
assessing t test   84 
sampling distribution of the mean   68 
writing efficient simulations   97 

SUM function   328–329 
sum of squares (##) operator   329 
SURVEYSELECT procedure 

about   282 
METHOD= option   287 
OUTHITS option   287–288 
REPS= option   287 
resampling with   282, 286–288 
SAMPRATE= option   287 
SEED= option   287–288 

survival analysis models 
about   125 
proportional hazards model   242–245 
simulating data from multiple survivor functions   

245–247 
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survival analysis models (continued) 
simulating data in   123–125 

survival distribution function (SDF)   245 
survivor function   245–247 
SYMCHECK function   178 
symmetric matrices   181 
SYMPUTX subroutine   90 
%SYSEVALF macro   172 
SYSRANDOM macro variable   34–35 
system time, setting seed value from   34–35 

T 
t distribution   28, 301 
T function   328 
t test 

assessing for equality of means   78–84 
effect of sample size on   87–88 
evaluating power of   84–88 

tables 
creating data sets from   45–46, 57 
excluding   45 
finding names of   44–45 
selecting   45 

TABLES statement, FREQ procedure 
BINOMIAL option   81, 86 
CHISQ option   90 
OUT= option   56 

TABULATE call   328 
tabulated distributions 

about   18–19 
finite mixture distribution and   120 
multinomial distribution and   19, 130 
parameters for   27 
sampling from finite sets and   26 

TEMPLATE procedure 
BARCHART statement   38–39 
overlaying theoretical density on histograms   40 

templates for simulating data 
defining contour plots   268 
macro-loop technique and   100–101 
overlaying theoretical densities on histograms   40–

41 
overlaying theoretical PMF on frequency plots   

37–38 
univariate distributions   13–14 
with DATA step and procedures   55–57 

_TEMPORARY_ keyword   19 
TEST statement, REG procedure   211–213 
testing for covariance matrices   177–179 
thinning algorithms   275, 278–279 
TIME function   102, 161 
time series models 

about   251 
simulating data from ARMA models   252–261 
using arrays to hold explanatory variables   201 
visualizing stationary time series with SGPLOT   

257–258 

time-to-event data   123–127 
TOEPLITZ function   185, 328 
Toeplitz matrix   185 
TPSPLINE procedure   247 
transformation technique   146 
TRANSPOSE procedure   66 
triangle distribution   28 
TRISOLV function   149–150, 328 
truncated distribution   121, 126 
TTEST procedure 

BY statement   80, 85 
simulated power analysis   85 
two-sample pooled variance t test   80, 83, 85 

two-dimensional data 
conditional simulation of   272–273 
unconditional simulation of   267–269 

two-sample t test 
about   78 
assessing in SAS/IML software   83–84 
effect of sample size on power of   87–88 
evaluating power of   84–86 
robustness to nonnormal populations   81–82 
robustness to unequal variances   78–81 
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