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About This Book 

What Does This Collection Cover? 
 

Machine learning is a branch of artificial intelligence (AI) that develops algorithms that allow computers to learn from examples 
without being explicitly programmed. Machine learning identifies patterns in the data and models the results. These descriptive 
models enable a better understanding of the underlying insights the data offers. Machine learning is a powerful tool with many 
applications, from real-time fraud detection, the Internet of Things (IoT), recommender systems, and smart cars. It will not be 
long before some form of machine learning is integrated into all machines, augmenting the user experience and automatically 
running many processes intelligently. 
 
SAS offers many different solutions to use machine learning to model and predict your data. The papers included in this special 
collection demonstrate how cutting-edge machine learning techniques can benefit your data analysis.   
 
 

The following papers are excerpts from the SAS Global Users Group Proceedings. For more SUGI and SAS Global Forum 
Proceedings, visit the online versions of the Proceedings.  

More helpful resources are available at support.sas.com and sas.com/books. 
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The term machine learning was coined by Arthur Lee Samuel to represent a class of self-learning programs he created to play 

the game of checkers. It is a data-driven system focused on selecting the best approach for a specific analytic problem, such 

as regression, classification, or pattern recognition. Machine learning algorithms identify patterns in data to provide 

descriptive models of the data. A key driver for machine learning is how well the derived model can be generalized to new 

data, thus leading to better business decisions and the ability to predict outcomes in the digital world. 

For more than four decades, SAS has been recognized for its innovation and application of machine learning to help 

companies tackle the toughest business problems, ranging from real-time fraud detection, the Internet of Things (IoT), 

recommender systems, and smart cars. Using state-of-the-art techniques, such as deep learning and kernel approximation, 

SAS allows you to build machine learning models and implement iterative machine learning processes. With the drive toward 

artificial intelligence (AI) and automation, it will not be long before some form of machine learning is integrated into every 

aspects of our lives, augmenting the user experience and automatically running many processes intelligently. 

SAS offers many different solutions to use machine learning to model and predict your data, and several groundbreaking 

papers have been written to demonstrate how to use these techniques. We have carefully selected a handful of these from 

recent SAS Global Forum papers to introduce you to the topics and to let you sample what each has to offer. 

An Overview of SAS® Visual Data Mining and Machine Learning on SAS® Viya® 

Jonathan Wexler, Susan Haller, and Radhikha Myneni, SAS Institute Inc. 

Solving modern business problems often requires analytics that encompass multiple algorithmic disciplines, data that is both 

structured and unstructured, multiple programming languages, and – most importantly – collaboration within and across 

teams of varying skill sets. SAS®
 Visual Data Mining and Machine Learning on SAS®

 Viya® surfaces in-memory machine-

learning techniques such as gradient boosting, factorization machines, neural networks, and much more through its 

interactive visual interface, SAS®
 Studio tasks, procedures, and a Python client. This paper shows you how to solve business 

problems, quickly and collaboratively, using SAS Visual Data Mining and Machine Learning on SAS Viya.  

Interactive Modeling in SAS® Visual Analytics 

Don Chapman, SAS Institute Inc.  

This paper illustrates how the use of the highly interactive, visual SAS® Visual Data Mining and Machine Learning offering 

will not only make your data problems manageable but also engaging. This offering is composed of capabilities that range 

from data preparation to programmatic access to advanced machine learning in your language of choice. We focus on the 

case study of a day in the life of a data scientist who needs to solve a business problem quickly. How do they acquire the data 

and get it prepared for modeling? How do they explore the data to understand its characteristics? How do they generate and 

compare models? How do they document those insights and apply them to solving a business problem? 

Open Your Mind: Use Cases for SAS® and Open-Source Analytics 

Tuba Islam, SAS Institute Inc.  

Data scientists need analytical tools and algorithms, whether commercial or open source, and will always have some 

favorites. But how do you decide when to use what? And how can you integrate their use to your maximum advantage? This 

paper some examples to show the deployment of both SAS® and open-source analytical tools to increase productivity and 

efficiency in your enterprise ecosystem. We look at an analytical business flow for marketing using SAS and R algorithms in 

SAS® Enterprise Miner™ for developing a predictive model, and then operationalizing and automating that model for 

scoring, performance monitoring and retraining. There are also suggestions for using Python and SAS integration in a Jupyter 

Notebook environment. 
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Automated Hyperparameter Tuning for Effective Machine Learning 

Patrick Koch, Brett Wujek, Oleg Golovidov, and Steven Gardner, SAS Institute Inc.  

Machine learning is a form of self-calibration of predictive models that are built from training data. Machine learning 

predictive modeling algorithms are commonly used to find hidden value in big data. Machine learning predictive modeling 

algorithms are governed by “hyperparameters” that have no clear defaults agreeable to a wide range of applications. This 

paper presents an automatic tuning implementation that uses local search optimization for tuning hyperparameters of 

modeling algorithms in SAS® Visual Data Mining and Machine Learning. Given the inherent expense of training numerous 

candidate models, the paper addresses efficient distributed and parallel paradigms for training and tuning models on the 

SAS® Viya® platform. It also presents sample tuning results that demonstrate improved model accuracy and offers 

recommendations for efficient and effective model tuning.  

Random Forests with Approximate Bayesian Model Averaging 

Tiny du Toit, North-West University, South Africa; André de Waal, SAS Institute Inc.  

Random forests occupies a leading position amongst ensemble models and have shown to be very successful in data mining 

and analytics competitions. A random forest is an ensemble of decision trees that often produce more accurate results than a 

single decision tree. The predictions of the individual trees in the forest are averaged to produce a final prediction. The 

question now arises whether a better or more accurate final prediction cannot be obtained by a more intelligent use of the 

trees in the forest. In this paper two novel approaches to solving this problem are presented and the results compared to that 

obtained with the standard random forest approach.  

Methods of Multinomial Classification Using Support Vector Machines 

Ralph Abbey, Taiping He, and Tao Wang, SAS Institute Inc.  

The support vector machine (SVM) algorithm is a popular binary classification technique used in the fields of machine 

learning, data mining, and predictive analytics. Since the introduction of the SVM algorithm in 1995 (Cortes and Vapnik 

1995), researchers and practitioners in these fields have shown significant interest in using and improving SVMs. Two 

established methods of using SVMs in multinomial classification are the one-versus-all approach and the one-versus-one 

approach. This paper describes how to use SAS® software to implement these two methods of multinomial classification, 

with emphasis on both training the model and scoring new data. A variety of data sets are used to illustrate the pros and cons 

of each method.  

Factorization Machines: A New Tool for Sparse Data 

Jorge Silva and Raymond E. Wright, SAS Institute Inc.  

Factorization models, which include factorization machines as a special case, are a broad class of models popular in statistics 

and machine learning. Factorization machines are well suited to very high-cardinality, sparsely observed transactional data. 

This paper presents the new FACTMAC procedure, which implements factorization machines in SAS® Visual Data Mining 

and Machine Learning. Thanks to a highly parallel stochastic gradient descent optimization solver, PROC FACTMAC can 

quickly handle data sets that contain tens of millions of rows.  

Building Bayesian Network Classifiers Using the HPBNET Procedure 

Ye Liu, Weihua Shi, and Wendy Czika, SAS Institute Inc.  

A Bayesian network is a directed acyclic graphical model that represents probability relationships and conditional 

independence structure between random variables. SAS® Enterprise Miner™ implements a Bayesian network primarily as a 

classification tool; it supports naïve Bayes, tree-augmented naïve Bayes, Bayesian-network-augmented naïve Bayes, parent-

child Bayesian network, and Markov blanket Bayesian network classifiers. This paper compares the performance of Bayesian 

network classifiers to other popular classification methods such as classification tree, neural network, logistic regression, and 

support vector machines. 
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Stacked Ensemble Models for Improved Prediction Accuracy 

Funda Güneş, Russ Wolfinger, and Pei-Yi Tan, SAS Institute Inc.  

Ensemble modeling is now a well-established means for improving prediction accuracy; it enables you to average out noise 

from diverse models and thereby enhance the generalizable signal. Basic stacked ensemble techniques combine predictions 

from multiple machine learning algorithms and use these predictions as inputs to second-level learning models. This paper 

shows how you can generate a diverse set of models by various methods such as forest, gradient boosted decision trees, 

factorization machines, and logistic regression and then combine them with stacked-ensemble techniques such as hill 

climbing, gradient boosting, and nonnegative least squares in SAS® Visual Data Mining and Machine Learning.  

We hope these selections give you a useful overview of the many tools and techniques that are available to incorporate 

cutting-edge machine learning techniques into your data analysis.   

 

Saratendu Sethi, SAS Institute Inc. 

Head, Artificial Intelligence and Machine Learning R&D 

 

 

Saratendu Sethi is Head of Artificial Intelligence and Machine Learning R&D at SAS Institute. He 

leads SAS’ software development and research teams for Artificial Intelligence, Machine Learning, 

Cognitive Computing, Deep Learning, and Text Analytics. Saratendu has extensive experience in 

building global R&D teams, launching new products and business strategies. Perennially fascinated 

by how technology enables a creative life, he is a staunch believer in transforming powerful 

algorithms into innovative technologies. At SAS, his teams develop machine learning, cognitive- 

and semantic-enriched capabilities for unstructured data and multimedia analytics. He joined SAS 

Institute through the acquisition of Teragram Corporation, where he was responsible for the 

development of natural language processing and text analytics technologies. Before joining 

Teragram, Saratendu held research positions at the IBM Almaden Research Center and at Boston 

University, specializing in computer vision, pattern recognition, and content-based search. 

  

http://support.sas.com/resources/papers/proceedings17/SAS0437-2017.pdf


x  Foreword 

 

 



1 

Paper SAS1492-2017 

An Overview of SAS® Visual Data Mining and Machine Learning on SAS® 
Viya  

Jonathan Wexler, Susan Haller, and Radhikha Myneni, SAS Institute Inc., Cary, NC 

ABSTRACT 

Machine learning is in high demand. Whether you are a citizen data scientist who wants to work 
interactively or you are a hands-on data scientist who wants to code, you have access to the latest 
analytic techniques with SAS® Visual Data Mining and Machine Learning on SAS® Viya. This offering 
surfaces in-memory machine-learning techniques such as gradient boosting, factorization machines, 
neural networks, and much more through its interactive visual interface, SAS® Studio tasks, procedures, 
and a Python client. Learn about this multi-faceted new product and see it in action. 

INTRODUCTION 

Solving modern business problems often requires analytics that encompass multiple algorithmic 
disciplines, data that is both structured and unstructured, multiple programming languages, and – most 
importantly – collaboration within and across teams of varying skill sets. Addressing and solving business 
problems should not be constrained by technology. Technology enables analysts to solve problems from 
multiple angles. Likewise, computing power is cheap. Problems that were once deemed unsolvable using 
neural networks can now be run in mere seconds. 

This paper shows you how to solve business problems, quickly and collaboratively, using SAS Visual 
Data Mining and Machine Learning on SAS Viya. This new offering enables you to interactively explore 
your data to uncover ‘signal’ in your data. Next you can programmatically analyze your data using a rich 
set of SAS procedures covering Statistics, Machine Learning, and Text Mining. You can add new input 
features using in-memory SAS DATA step. Utilize new tasks in SAS Studio on the SAS Viya platform to 
automatically generate the SAS code. If you prefer to write Python, access SAS Viya methods with the 
Python API. No matter the interface or language, SAS Viya enables you to start your analysis and 
continue forward without any roadblocks. 

In this paper, you will learn how to access these methods through a case study. 

SAS VISUAL DATA MINING AND MACHINE LEARNING ON SAS VIYA 

SAS Viya is the foundation upon which the analytical toolset in this paper is installed. The components 
are modular by design.  At its core, SAS Viya is built upon a common analytic framework, using ‘actions’. 
These actions are atomic analytic activities, such as selecting variables, building models, generating 
results, and outputting score code. As shown in Figure 1, these actions can be accessed via SAS 
procedures, SAS applications, RESTful services, Java, Lua, and Python. 

Figure 1. SAS Viya Ecosystem Is Open and Modular 



2 

SUPPORTED SAS VIYA ALGORITHMS 

From a data mining and machine learning perspective, SAS Visual Data Mining and Machine Learning on 
SAS Viya enables end-to-end analytics - data wrangling, model building, and model assessment.  

As shown in Table 1, the following methods are available to users: 

Data Wrangling Modeling 

Binning Logistic Regression 

Cardinality  Linear Regression 

Imputation Generalized Linear Models 

Transformations Nonlinear Regression  

Transpose Ordinary Least Squares Regression 

SQL Partial Least Squares Regression 

Sampling Quantile Regression 

Variable Selection Decision Trees 

Principal Components Analysis (PCA) Forest 

K-Means Clustering Gradient Boosting 

Moving Window PCA Neural Network 

Robust PCA Support Vector Machines 

 Factorization Machines 

 Network / Community Detection 

 Text Mining 

 Support Vector Data Description 

Table 1. Analytic Methods Available in SAS Visual Data Mining and Machine Learning on SAS Viya  

You will experience increased productivity when using the aforementioned methods. All of these methods 
run in-memory, and take advantage of the parallel processing ability of your underlying infrastructure. The 
more nodes you have; the higher degree of parallelism you will experience when running. Once data is 
loaded to memory up-front, you can run sequential procedures against the same table in memory, 
eliminating the need to drop the data to disk after each run. You can continue your analysis using the 
same data in-memory. If the memory of your problem requires more memory than is available, the 
processing will continue over to disk. 

There were numerous analytic innovations that we introduced with SAS Viya. At the head of the class is 
hyperparameter autotuning (Koch, Wujek, Golovidov, and Gardner 2017). When data scientists tune 
models, they train the models to determine the best model parameters to relate the input to a target. 
When they tune a model, they determine the architecture or best algorithmic hyperparameters that 
maximize predictability on an independent data set. Autotuning eliminates the need for random grid 
search or in a SAS user’s case, running repetitive procedure calls with different properties. As shown in 
Figure 2, Autotuning uses a local search optimization methodology to intelligently search the 
hyperparameter space for the best combination of values that addresses the model objective – that is, 
misclassification, Lift, KS, and so on. Autotuning is available for Decision Trees, Neural Networks, 
Support Vector Machines, Forests, Gradient Boosting, and Factorization Machines.  

Also new in SAS Viya are enhanced feature engineering techniques like Robust PCA (RPCA), Moving 
Window PCA, and the capability to detect outliers using Support Vector Data Description (SVDD). Robust 
PCA decomposes an input matrix into low-rank and sparse matrices. The low-rank matrix is more stable 
as the distortions in the data are moved into the sparse matrix, hence the term robust. Moving Window 
PCA captures the changes in principal components over time using sliding windows and you can choose 
RPCA to be performed in each window. SVDD is a machine learning technique where the model builds a 
minimum radius sphere around the training data and scores new observations by comparing the 
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observation’s distance from sphere center with the sphere radius. Thus, an observation outside the 
sphere is classified as an outlier. 

 

Figure 2. Autotuning Uses Optimization to Find the Best Set of Hyperparameters to Minimize Error 

SAS VISUAL DATA MINING AND MACHINE LEARNING PRIMARY ANALYTIC 
INTERFACES 

There are three primary interfaces we will cover in this paper. From within each tool, you can extend your 
analysis into one of the others. Data can be shared, and models can be extended and compared.  

VISUAL ANALYTICS 

SAS Visual Analytics enables drag-and-drop, exploratory visualization and modeling. Data must be 
loaded into memory, otherwise known as SAS Cloud Analytic Services (CAS).  Once in CAS, you can 
interactively explore your data using visuals such as scatter plots, waterfall charts, bubble plots, time 
series plots and many more. As shown in Figure 3, you can further analyze your data using a set of 
statistics techniques including Clustering, Decision Trees, Generalized Linear Models, Linear Regression, 
and Logistic Regression. You can expand upon these models using the latest machine learning 
techniques including Factorization Machines, Forests, Gradient Boosting, Neural Networks, and Support 
Vector Machines. 

 

Figure 3. Interactive Visualization, Exploration, and Modeling Using SAS Visual Analytics  
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SAS STUDIO 

SAS® Studio enables browser-based, programmatic access to the methods in SAS Viya. Using a modern, 
easy-to-use interface, you can run the exact same methods, and get the exact same answers as you 
would have with SAS Visual Analytics. As shown in Figure 4, you can programmatically run the methods 
from SAS Viya using in-memory procedures and SAS DATA step. Yes, the SAS DATA step now runs in-
memory! There are several SAS Studio tasks that serve as code generators, so you have a way to learn 
and run these methods. 

 

Figure 4. Access the SAS Viya Methods Using the SAS Language within SAS Studio 

JUPYTER NOTEBOOK / PYTHON API 

You can access the SAS Viya methods using the Python API to SAS Viya. The same methods that you 
can access in SAS Visual Analytics and SAS Studio are exposed from Python. A shown in Figure 5, you 
can access SAS Viya using a Jupyter notebook. Using a familiar Python construct, you can 
programmatically analyze your data, without any prior SAS knowledge. 
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Figure 5. Access the SAS Viya Methods Using the Python API to SAS Viya 

CASE STUDY 

The BANK data set contains more than one million observations (rows) and 24 variables (columns) for 
this case study. The data set comes from a large financial services firm and represents consumers’ home 
equity lines of credit, their automobile loans, and other types of short to medium-term credit instruments. 
Note that the data has been anonymized and transformed to conform to the regulation guidelines. 

Though three target variables are available in the data set, the primary focus is on the binary target 
variable B_TGT, which indicates consumer accounts that bought at least one product in the previous 
campaign season. A campaign season at the bank runs for half a year and encompasses all marketing 
efforts to motivate the purchase (contracting) of the bank’s financial services products. Campaign 
promotions are categorized into direct and indirect -- direct promotions consist of sales offers to a 
particular account that involve an incentive while indirect promotions are marketing efforts that do not 
involve an incentive.  

In addition to the account identifier (Account ID), the following tables describe the variables in the data 
set: 

Name Label Description  

B_TGT Tgt Binary 
New Product 

A binary target variable. Accounts coded with a 1 contracted for at least 
one product in the previous campaign season. Accounts coded with a 0 
did not contract for a product in the previous campaign season. 

INT_TGT Tgt Interval 
New Sales 

The amount of financial services product (sum of sales) per account in 
the previous campaign season, denominated in US dollars. 

CNT_TGT Tgt Count 
Number New 
Products 

The number of financial services products (count) per account in the 
previous campaign season. 

Table 2. Target Variables Quantify Account Responses over the Current Campaign Season. 

 



6 

Name Label Description 

CAT_INPUT1 Category 1 
Account Activity 
Level 

A three-level categorical variable that codes the activity of each 
account. 

 X  high activity. The account enters the current 
campaign period with a lot of products. 

 Y  average activity. 

 Z  low activity. 

CAT_INPUT2 Category 2 
Customer Value 
Level 

A five-level (A-E) categorical variable that codes customer value. 
For example, the most profitable and creditworthy customers are 
coded with an A. 

Table 3. Categorical Inputs Summarize Account-level Attributes Related to the Propensity to Buy 
Products and Other Characteristics Related to Profitability and Creditworthiness. These Variables 
Have Been Transformed to Anonymize Account-level Information and to Mitigate Quality Issues 
Related to Excessive Cardinality. 

 

Name Label  Description 

RFM1 RFM1 Average Sales 
Past 3 Years 

Average sales amount attributed to each account over the 
past three years 

RFM2 RFM2 Average Sales 
Lifetime 

Average sales amount attributed to each account over the 
account’s tenure 

RFM3 RFM3 Avg Sales Past 3 
Years Dir Promo Resp 

Average sales amount attributed to each account in the 
past three years in response to a direct promotion 

RFM4 RFM4 Last Product 
Purchase Amount 

Amount of the last product purchased 

RFM5 RFM5 Count Purchased 
Past 3 Years 

Number of products purchased in the past three years 

RFM6 RFM6 Count Purchased 
Lifetime 

Total number of products purchased in each account’s 
tenure. 

RFM7 RFM7 Count Prchsd Past 
3 Years Dir Promo Resp 

Number of products purchased in the previous three years 
in response to a direct promotion 

RFM8 RFM8 Count Prchsd 
Lifetime Dir Promo Resp 

Total number of products purchased in the account’s 
tenure in response to a direct promotion 

RFM9 RFM9 Months Since Last 
Purchase 

Months since the last product purchase 

RFM10 RFM10 Count Total 
Promos Past Year 

Number of total promotions received by each account in 
the past year 

RFM11 RFM11 Count Direct 
Promos Past Year 

Number of direct promotions received by each account in 
the past year 

RFM12 RFM12 Customer Tenure Customer tenure in months. 

Table 4. Interval Inputs Provide Continuous Measures on Account-level Attributes Related to the 
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Recency, Frequency, and Sales Amounts (RFM). All Measures below Correspond to Activity Prior 
to the Current Campaign Season. 

 

Name Label Description 

DEMOG_AGE Demog Customer Age Average age in each account’s demographic 
region 

DEMOG_GENF Demog Female Binary A categorical variable that is 1 if the primary holder 
of the account if female and 0 otherwise. 

DEMOG_GENM Demog Male Binary A categorical variable that is 1 if the primary holder 
of the account is male and 0 otherwise 

DEMOG_HO Demog Homeowner 
Binary 

A categorical variable that is 1 if the primary holder 
of the account is a homeowner and 0 otherwise. 

DEMOG_HOMEVAL Demog Home Value Average home value in each account’s 
demographic region 

DEMOG_INC Demog Income Average income in each account’s demographic 
region 

DEMOG_PR Demog Percentage 
Retired 

The percentage of retired people in each account’s 
demographic region 

Table 5. Demographic Variables Describe the Profile of Each Account in Terms of Income, 
Homeownership, and Other Characteristics. 

LOAD LOCAL DATA TO IN-MEMORY LIBRARY 

Before we start our analysis, we will use SAS Studio to load the local data to memory, so that it is 
accessible by our analytics team both visually and programmatically. We will then create a validation 
holdout set in order to assess our models. 

The first LIBNAME statement automatically starts a CAS session, attached to the public caslib. Caslibs 
are in-memory locations that contain tables, access controls, and information about data sources. We are 
using the public caslib since this location is accessible by our team. In SAS Studio mycaslib is a library 
reference to the public caslib and will be referred to by SAS Viya procedures and any SAS DATA steps. 
The second LIBNAME statement is linked to the local file system that contains our SAS data set. 

libname mycaslib cas caslib=public;   

libname locallib 'your_local_library'; 

 

We will use PROC CASUTIL to load our local data to the public caslib. Using the ‘promote’ option enables 
us to make the data available to all CAS sessions. By default, tables in CAS sessions have local scope, 
so promoting enables you to access the in-memory table across multiple sessions and users. 

proc casutil; 

  load data=locallib.bank OUTCASLIB="public" casout="bank" promote; 

run; 

 

We will run PROC PARTITION to randomly separate our data into training and validation partitions. A 
new variable _partind_ will be assigned two numeric values: 1 for training data and 2 for validation data. 
The seed option allows you to re-create the random sample in future CAS sessions on the same CAS 
server. This is valuable when trying to reproduce results with multiple users. You should include the 
copyvars option if you want to keep all source variables in your partitioned data set. 
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proc partition data=mycaslib.bank partition samppct=70 seed=12345; 

  by b_tgt; 

  output out=mycaslib.bank_part copyvars=(_ALL_); 

run; 

BUILD MODELS INTERACTIVELY USING VISUAL ANALYTICS 

Once the data is loaded and promoted to the public caslib, it is accessible from within SAS Visual 
Analytics. The first model we will create is a Gradient Boosting model, which trains a series of decision 
trees successively to fit the residual of the prediction from the earlier trees in the series. The target in this 
model is b_tgt. We will set the number of trees to 50. There are other regularization options such as 
Lasso and Ridge that can help prevent overfitting. As you change options, the visualization is recomputed 
in near real time, taking just a few seconds. 

Note that misclassification for the validation partition is 0.1598. The first visualization, on the left, is the 
Variable Importance plot. This plot displays each variable’s importance in the model. See that rfm5, rfm9, 
and demog_homeval are proportionately more important than the other predictors. The next plot is the 
Iteration plot, which indicates how well the model classified as the number of trees increased. In this 
case, the misclassification rate tails off after about 30 trees. The bottom right plot indicates how well the 
model assessed in terms of lift, misclassification, and ROC. 

 

Figure 6. Interactive Gradient Boosting in SAS Visual Analytics 

The next model we will build is a Neural Network, which is a statistical model that is designed to mimic the 
biological structures of the human brain that contains an input layer, multiple hidden layers, an output 
layer, and the connections between each of those.  

Note that misclassification for the validation partition is 0.1970. The Network plot illustrates the 
relationship between your inputs and hidden layers. The next plot is the Iteration plot, which reports on 
the Objective/Loss function as the number of iterations increased. It appears that the Objective/Loss 
flattens around 20 iterations. You can tune the model further by changing the number of hidden layers, 
the number of neurons in each hidden layer, activation function for each layer, or other options. 

 

 

 



9 

 

Figure 7. Interactive Two-Layer Neural Network in SAS Visual Analytics 

The Model Comparison automatically chooses the best model based on the fit statistic selected in the 
Options panel.  In this case, the model with the lowest misclassification rate is chosen. Note the partition, 
response, and event level much match across each model in order to generate the report. Gradient 
Boosting is selected as the champion model. 

 

Figure 8. Interactive Model Comparison in SAS Visual Analytics 

We will export the Gradient Boosting model so that it is accessible from SAS Studio in the next section. 
This model information will automatically be stored in the ‘models’ caslib as a binary analytic store (or 
astore) file. 

 



10 

 

Figure 9. Exporting Gradient Boosting Score Code from SAS Visual Analytics 

BUILD MODELS PROGRAMATICALLY USING SAS STUDIO 

Now that we have explored our data and built interactive models within SAS Visual Analytics to predict 
b_tgt, we might want to extend our analysis and build additional models within SAS Studio, our 
programmatic environment.    Prior to building our models within SAS Visual Analytics, we created and 
promoted the BANK_PART CAS table to the public caslib so that it is available across multiple sessions 
and multiple users.  In addition, this table contains a _partind_ variable to represent our training and 
validation partitions.   The LIBNAME statement below points to this public caslib and allows the user 
within SAS Studio to build models with the same table that was loaded into memory and used to build our 
interactive models in SAS Visual Analytics.   
 

libname mycaslib cas caslib=public; 

 

The first step in our modeling process is to further “wrangle” our data.  In this case, we have identified 
several predictors that have a high percentage of missing values.   In order to address this, we will first 
run PROC VARIMPUTE to replace these missing values with the calculated mean of all of the nonmissing 
observations.   

 

%let partitioned_data = mycaslib.bank_part;   

 

proc varimpute data=&partitioned_data.; 

  input demog_age demog_homeval demog_inc rfm3  /ctech=mean; 

  output out=mycaslib.bank_prepped_temp copyvars=(_ALL_); 

  code file="&outdir./impute_score.sas"; 

run; 

 

Next, we might want to apply transformations to a few of the continuous predictors.  These 
transformations can be done using in-memory SAS DATA step code.  Notice that the data being used to 
build these transformations as well as the output table that is being created are both pointing to a caslib.  
When this is the case, the SAS DATA step code is run automatically in-memory without requiring any 
special requests.  This table is then promoted with the PROMOTE=YES option so that it can be used later 
if we want to continue the model building process with these new variables in an environment such as 
Python.  We will show this type of integration in the next section. 
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%let prepped_data = mycaslib.bank_prepped; 

data &prepped_data (promote=YES); 

  set mycaslib.bank_prepped_temp ; 

   

  if (IM_RFM3 > 0) then LOG_IM_RFM3 = LOG(IM_RFM3); 

  else LOG_IM_RFM3 = .; 

   

  if (RFM1 > 0) then LOG_RFM1 = LOG(RFM1); 

  else LOG_RFM1 = .;   

run; 

 

The first model we will build is a Decision Tree model.   Decision Trees use a sequence of simple if-then-
else rules to make a prediction or to classify an output.  We will build this model with PROC TREESPLIT 
using the Entropy growing criterion and then apply the C45 methodology to select the optimal tree, which 
is based on the validation partition.  We store the details of this tree model in the score code file 
treeselect_score.sas.  This score code is applied to the bank data creating new columns that contain the 
predicted value for each observation.   
 

/* Specify the data set inputs and target */ 

%let class_inputs    = cat_input1 cat_input2 demog_ho demog_genf 

             demog_genm; 

%let interval_inputs = IM_demog_age IM_demog_homeval IM_demog_inc  

                       demog_pr log_rfm1 rfm2 log_im_rfm3 rfm4-rfm12 ;  

%let target          = b_tgt; 

 

/* DECISION TREE predictive model                                       */ 

proc treesplit data=&prepped_data.; 

  input &interval_inputs. / level=interval; 

  input &class_inputs. / level=nominal; 

  target &target. / level=nominal; 

  partition rolevar=_partind_(train='1' validate='0'); 

  grow entropy; 

  prune c45; 

  code file="&outdir./treeselect_score.sas"; 

run; 

 

/* Score the data using the generated tree model score code             */ 

data mycaslib._scored_tree; 

  set &prepped_data.; 

  %include "&outdir./treeselect_score.sas"; 

run; 

 

In Figure 10, we see a partial tree diagram that was created from running PROC TREESPLIT.  This 
shows that the first rule applied to the data was based on the predictor rfm5.  Those observations that 
have a value for rfm5 that was less than or equal to 3.6 were passed into the left hand branch; those with 
a value of rfm5 that was greater than 3.6 were passed into the right hand branch.  You can continue to 
follow the rules down the entire branch of a tree until arriving at the final node, which determines your 
classification. 
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Figure 10. Decision Tree Subtree Diagram from SAS Studio 

Note that the misclassification for the validation partition is 0.1447.  The Variable Importance table reports 
the relative importance of all of the predictors that were used in building this model.  We can see from this 
table that rfm5, LOG_RFM1, IM_demog_homeval, and rfm9 were the predictors that contributed the most 
in defining the splitting rules that made up this particular decision tree model.   

 

Figure 11. Decision Tree Fit Statistics and Variable Importance Metrics from SAS Studio 

The next model that we will build is a Forest model.  A Forest is an ensemble of individual trees where the 
final classification is based on an average of the probabilities across the trees that make up the forest.  In 
many cases, finding the correct tuning parameters for a forest model can be quite tricky and time 
consuming.  The autotuning options within PROC FOREST takes all of the guess work out of the tuning 
process and determines the optimal settings for these parameters based on the data.   In this case, we 
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allow PROC FOREST to autotune over the number of trees, the number of variables to try when splitting 
each node in the trees, and the in-bag fraction parameters for this model.   We are using the outmodel 
option in this procedure to store all of the information about the model and to show an alternative to using 
score code.   We can see mycaslib.forest_model being passed into the inmodel option within the second 
PROC FOREST call.  This will be used to create our new output table containing our classifications for 
this model. Note that we could have specified the OUTPUT statement in the first PROC FOREST run 
because we are scoring the original input data.  This approach would be used when you are scoring new 
data with the trained forest.   

/* Autotune ntrees, vars_to_try and inbagfraction in Forest */ 

proc forest data=&prepped_data. intervalbins=20 minleafsize=5 seed=12345 

outmodel=mycaslib.forest_model; 

  input &interval_inputs. / level = interval; 

  input &class_inputs. / level = nominal; 

  target &target. / level=nominal; 

  grow GAIN; 

  partition rolevar=_partind_(train='1' validate='0');   

  autotune maxiter=2 popsize=2 useparameters=custom 

           tuneparms=(ntrees(lb=20 ub=100 init=100) 

                      vars_to_try(init=5 lb=5 ub=20) 

                      inbagfraction(init=0.6 lb=0.2 ub=0.9)); 

  ods output TunerResults=rf_tuner_results;            

run; 

 

/* Score the data using the generated Forest model */ 

proc forest data=&prepped_data. inmodel=mycaslib.forest_model noprint; 

  output out=mycaslib._scored_FOREST copyvars=(b_tgt _partind_ account); 

run; 

 

In order to use this model in a different environment, such as in the next section where we use Python to 
build and compare models, the definition of this model must be promoted. For the Forest model, this 
definition was stored with the OUTMODEL option on the original PROC FOREST call creating the 
forest_model table.   This promotion is done using PROC CASUTIL.   
 

/* Promote the forest_model table */ 

proc casutil outcaslib="public" incaslib="public";                          

   promote casdata="forest_model"; 

quit; 

 
Information about the autotuning process is shown in Figure 12.  The Tuner Summary table details the 
optimization settings used to solve this problem.  For example, the total tuning time of this model took 
942.46 seconds with an Initial Objective Value of 7.3321 resulting in the Best Objective Value of 7.2532.  
The Best Configuration table shows that the optimal parameter settings for this data occurred at the 
second evaluation with 40 Trees, 11 Variables to Try, and a Bootstrap Sample (in-bag fraction) of 0.4027. 
Note that the misclassification for the validation partition is 0.0725.  
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Figure 12. Forest Autotuning Metrics from SAS Studio 

The final model that we will build is a Support Vector Machine.  Support Vector Machines find a set of 
hyperplanes that best separate the levels of a binary target variable.  We will use a polynomial kernel of 
degree 2 and store this complex model within a binary astore table called svm_astore_model. This table 
is then used in the PROC ASTORE call to generate the output table including your predicted 
classifications for this SVM model. 

/* SUPPORT VECTOR MACHINE predictive model */ 

proc svmachine data=&prepped_data. (where=(_partind_=1)); 

  kernel polynom / deg=2; 

  target &target. ; 

  input &interval_inputs. / level=interval; 

  input &class_inputs. / level=nominal; 

  savestate rstore=mycaslib.svm_astore_model (promote=yes); 

  ods exclude IterHistory; 

run; 

 

/* Score data using ASTORE code generated for the SVM model */ 

proc astore; 

  score data=&prepped_data. out=mycaslib._scored_SVM  

        rstore=mycaslib.svm_astore_model  

        copyvars=(b_tgt _partind_  account); 

run; 

 

proc casutil outcaslib="public" incaslib="public";                          

   promote casdata="svm_astore_model"; 

quit; 

 

Now that we have built several candidate models within SAS Studio, we want to compare these to each 
other to determine the best model for fitting this data.  We also want to compare these with the original 
Gradient Boosting model, which was identified as the champion within SAS Visual Analytics.   The details 
of this champion model were stored in an analytic store binary file and exported into the models library 
that is available within SAS Studio. To include this model in our comparisons, PROC ASTORE is run to 
apply this model to the BANK_PART data and to create the associated classifications.  
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proc casutil; 

Load casdata="Gradient_Boosting_VA.sashdat" incaslib="models" 

casout="gstate" outcaslib=casuser replace; 

run; 

 

data mycaslib.bank_part_post; 

  set &partitioned_data.; 

  _va_calculated_54_1=round('b_tgt'n,1.0); 

  _va_calculated_54_2=round('demog_genf'n,1.0); 

  _va_calculated_54_3=round('demog_ho'n,1.0); 

  _va_calculated_54_4=round('_PartInd_'n,1.0); 

run; 

 

proc astore; 

    score data=mycaslib.bank_part_post out=mycaslib._scored_vasgf 

          rstore=casuser.gstate copyvars=(b_tgt _partind_ account ) ; 

run; 

 

These four candidate models are then passed to PROC ASSESS to calculate standard metrics including 
misclassification, lift, ROC, and more.  Figure 13 shows that the best performing model for these 
candidates is the Forest model with a validation misclassification of 0.072532.  This is also confirmed by 
looking at the ROC plot and the Lift values in the upper deciles.   
 

/* Assess */ 

%macro assess_model(prefix=, var_evt=, var_nevt=); 

  proc assess data=mycaslib._scored_&prefix.; 

    input &var_evt.; 

    target &target. / level=nominal event='1'; 

    fitstat pvar=&var_nevt. / pevent='0'; 

    by _partind_; 

   

    ods output 

      fitstat=&prefix._fitstat  

      rocinfo=&prefix._rocinfo  

      liftinfo=&prefix._liftinfo; 

run; 

%mend assess_model; 

 

ods exclude all; 

%assess_model(prefix=TREE, var_evt=p_b_tgt1, var_nevt=p_b_tgt0); 

%assess_model(prefix=FOREST, var_evt=p_b_tgt1, var_nevt=p_b_tgt0); 

%assess_model(prefix=SVM, var_evt=p_b_tgt1, var_nevt=p_b_tgt0); 

%assess_model(prefix=VAGBM, var_evt=p_b_tgt1, var_nevt=p_b_tgt0); 

ods exclude none; 
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Figure 13. Assessment Statistics and ROC Curve for Candidate Models from SAS Studio 

 

Figure 14. Lift Chart for Candidate Models from SAS Studio 

BUILD MODEL PROGRAMMATICALLY USING PYTHON API 

After exploring and modeling interactively in SAS Visual Analytics and programmatically in SAS Studio, 
we move into the open source world and finish this case study with another programmatic interface using 
the Python API. In this section, we will build a logistic regression model, score models that were built 
earlier in SAS Visual Analytics and SAS Studio, and compare them all to select a champion. The code 
and plots below are executed in Jupyter notebook. 



17 

We start by importing the SAS Scripting Wrapper for Analytics Transfer (SWAT) package to enable the 
connection and functionality of CAS. It is available at https://github.com/sassoftware/python-swat. 

# Import packages 

from swat import * 

from pprint import pprint 

from swat.render import render_html 

from matplotlib import pyplot as plt 

import pandas as pd 

import sys 

%matplotlib inline 

 
The next step is to connect to CAS and start a new session. This step requires that you know the server 
host (cashost), port (casport), and authentication (casauth) of your CAS environment. Contact your SAS 
administrator for additional details and ensure that this code executes successfully before proceeding. 

# Start a CAS session 

cashost='cas_server_host.com' 

casport=1234 

casauth='~/_authinfo' 

sess = CAS(cashost, casport, authinfo=casauth, caslib="public") 

 

After execution, your CAS session can be accessed via the sess variable. 

Next we define helper variables. Helper variables are those that are created in one place, at the 
beginning and reused afterward throughout the code. They include variables like the name of your input 
data set, its class and interval inputs, any shared caslibs, and so on.  

# Set helper variables 

gcaslib="public" 

prepped_data="bank_prepped" 

target = {"b_tgt"} 

class_inputs = {"cat_input1", "cat_input2", "demog_ho", "demog_genf", 

"demog_genm"} 

interval_inputs = {"im_demog_age", "im_demog_homeval", "im_demog_inc", 

"demog_pr", "log_rfm1", "rfm2", "log_im_rfm3", "rfm4", "rfm5", "rfm6", 

"rfm7", "rfm8", "rfm9", "rfm10", "rfm11", "rfm12"} 

class_vars = target | class_inputs 

 
We begin by building a logistic regression model with stepwise selection, using the same set of inputs 
and target (b_tgt) used in the SAS Studio interface. Logistic regression models a binary target (0 or 1) 
and computes probabilities of the target event (1) as a function of specified inputs. This model uses the 
training partition of BANK_PREPPED table that was created and promoted to public caslib in SAS Studio. 
Because the table is promoted, it is available to any session on CAS, including ours.  

After the model is run, the parameter estimates, fit statistics, and so on are displayed using render_html 
function from swat.render package. The Selection Summary in Figure 15 below lists the order of input 
variables selected at each step based on the SBC criterion. The misclassification rate for the validation 
partition is 0.1569. Finally, the predicted probabilities p_b_tgt0 and p_b_tgt1 are created using SAS 
DATA step code through the dataStep.runCode CAS action – these are needed later when invoking the 
model assessment function asses_model.  

Note: Before invoking any CAS action, make sure the appropriate CAS actionset is loaded using 
sess.loadactionset. In the code below, notice that the regression actionset is loaded before the logistic 
action is invoked. 

 

# Load action set 

sess.loadactionset(actionset="regression") 

https://github.com/sassoftware/python-swat
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# Train Logistic Regression 

lr=sess.regression.logistic( 

  table={"name":prepped_data, "caslib":gcaslib}, 

  classVars=[{"vars":class_vars}], 

  model={ 

    "depVars":[{"name":"b_tgt", "options":{"event":"1"}}], 

    "effects":[{"vars":class_inputs | interval_inputs}] 

  }, 

  partByVar={"name":"_partind_", "train":"1", "valid":"0"}, 

  selection={"method":"STEPWISE"}, 

  output={"casOut":{"name":"_scored_logistic", "replace":True}, 

"copyVars":{"account", "b_tgt", "_partind_"}} 

) 

 

# Output model statistics 

render_html(lr) 

 

# Compute p_b_tgt0 and p_b_tgt1 for assessment 

sess.dataStep.runCode( 

  code="data _scored_logistic; set _scored_logistic; p_b_tgt0=1-_pred_; 

rename _pred_=p_b_tgt1; run;" 

) 

 

 
Figure 15. Selection Summary of Logistic Regression Model from Python API 

After building a model using the Python API, let us score few models created in SAS Visual Analytics and 
SAS Studio to understand how a model created in one interface can be shared and reused in another. 
We will begin with the Gradient Boosting model created in SAS Visual DATA steps. When this model was 
built, it produced two artifacts: SAS data step code and an astore file that was saved to models caslib.  

To score the Gradient Boosting model using these artifacts, the code does the following: 
1. Loads the astore file into a local user caslib (casuser) 
2. Runs SAS DATA step code created in SAS Visual Analytics – this transforms the input data set 

BANK_PREPPED with any necessary changes made within this interface 
3. Scores the transformed input data set (from step 2) using the loaded astore file (from step 1) that 

contains model parameters 
4. Renames predicted probability variable names for assessment 
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# 1. Load GBM model (ASTORE) created in VA 

sess.loadTable( 

  caslib="models", path="Gradient_Boosting_VA.sashdat",  

  casout={"name":"gbm_astore_model","caslib":"casuser", "replace":True} 

) 

 

# 2. Score code from VA (for data preparation) 

sess.dataStep.runCode( 

  code="""data bank_part_post;  

            set bank_part(caslib='public');  

            _va_calculated_54_1=round('b_tgt'n,1.0); 

            _va_calculated_54_2=round('demog_genf'n,1.0); 

            _va_calculated_54_3=round('demog_ho'n,1.0); 

            _va_calculated_54_4=round('_PartInd_'n,1.0); 

          run;""" 

) 

 

# 3. Score using ASTORE 

sess.loadactionset(actionset="astore") 

 

sess.astore.score( 

  table={"name":"bank_part_post"}, 

  rstore={"name":"gbm_astore_model"}, 

  out={"name":"_scored_gbm", "replace":True}, 

  copyVars={"account", "_partind_", "b_tgt"} 

) 

 

# 4. Rename p_b_tgt0 and p_b_tgt1 for assessment 

sess.dataStep.runCode( 

  code="""data _scored_gbm;  

            set _scored_gbm;  

            rename p__va_calculated_54_10=p_b_tgt0 

                   p__va_calculated_54_11=p_b_tgt1; 

          run;""" 

) 

 

We repeat the scoring process with the autotuned Forest model created in SAS Studio. Remember that 
this model was saved earlier as a CAS table called forest_model in the public caslib. Here the 
decisionTree.forestScore action scores the input data set BANK_PREPPED using the forest_model table. 
The SAS DATA step that follows creates the necessary predicted probability variable names for 
assessment. 

 

# Load action set  

sess.loadactionset(actionset="decisionTree") 

 

# Score using forest_model table 

sess.decisionTree.forestScore( 

  table={"name":prepped_data, "caslib":gcaslib}, 

  modelTable={"name":"forest_model", "caslib":"public"}, 

  casOut={"name":"_scored_rf", "replace":True}, 

  copyVars={"account", "b_tgt", "_partind_"}, 

  vote="PROB" 

) 
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# Create p_b_tgt0 and p_b_tgt1 as _rf_predp_ is the probability of event in 

_rf_predname_ 

sess.dataStep.runCode( 

  code="""data _scored_rf;  

            set _scored_rf;  

            if _rf_predname_=1 then do;  

              p_b_tgt1=_rf_predp_;  

              p_b_tgt0=1-p_b_tgt1;  

            end;  

            if _rf_predname_=0 then do;  

              p_b_tgt0=_rf_predp_;  

              p_b_tgt1=1-p_b_tgt0;  

            end;  

          run;""" 

) 

 

Lastly we score the Support Vector Machine model created in SAS Studio using the analytic store 
(astore) table svm_astore_model located in public caslib.  

# Score using ASTORE 

sess.loadactionset(actionset="astore") 

 

sess.astore.score( 

  table={"name":prepped_data, "caslib":gcaslib}, 

  rstore={"name":"svm_astore_model", "caslib":"public"}, 

  out={"name":"_scored_svm", "replace":True}, 

  copyVars={"account", "_partind_", "b_tgt"} 

) 

 

The final step in the case study is to assess and compare all of the models that were created and scored, 
including both the interactively and programmatically created models. The assessment is based on the 
validation partition of the data. The code below uses the percentile.assess action for Logistic Regression 
model but similar code can be used to generate assessments for all other models.  

# Assess models 

def assess_model(prefix): 

    return sess.percentile.assess( 

      table={ 

        "name":"_scored_" + prefix,  

        "where": "strip(put(_partind_, best.))='0'" 

      }, 

      inputs=[{"name":"p_b_tgt1"}],       

      response="b_tgt", 

      event="1", 

      pVar={"p_b_tgt0"}, 

      pEvent={"0"}       

    ) 

 

lrAssess=assess_model(prefix="logistic")     

lr_fitstat =lrAssess.FitStat 

lr_rocinfo =lrAssess.ROCInfo 

lr_liftinfo=lrAssess.LIFTInfo 

 

To choose a champion, we will use the ROC and Lift plots. Figures 16 and 17 shows that the autotuned 
Forest (SAS Studio) is the winner compared to the Logistic Regression (Python API), Support Vector 
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Machine (SAS Studio) and Gradient Boosting (SAS Visual Analytics) models as it has higher lift and more 
area under the ROC curve.  

 

Figure 16. ROC Chart for Candidate Models 

 

Figure 17. Lift Chart for Candidate Models 

The goal of this case study is to highlight the unified and open architecture of SAS Viya -- how models 
built across various interfaces (SAS Visual Analytics, SAS Studio, and Python API) can seamlessly 
access data sets and intermediary results and easily score across them. Now that you understand the 
basics, you can build the best predictive model possible. 

CONCLUSION 

As previously stated, you should be able to solve business problems using your tool and method of 
choice, with no technological limitations. As shown in this paper, you can interactively build models 
quickly and accurately, and continue your analysis programmatically, without sacrificing inaccuracy from 
inefficient manual handoffs. 

SAS Viya enables you to explore your data deeper, using the latest innovations in in-memory analytics. 
SAS is committed to delivering new, innovative data mining and machine learning algorithms that will 
scale to the size of your business, now and in the future. 
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Interactive Modeling in SAS® Visual Analytics 
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ABSTRACT  
SAS® Visual Analytics has two add-on offerings, SAS® Visual Statistics and SAS® Visual Data Mining 
and Machine Learning, that provide knowledge workers and data scientists an interactive interface for 
data partition, data exploration, feature engineering, and rapid modeling.  These offerings are powered by 
the SAS® Viya™ platform, thus enabling big data and big analytic problems to be solved.  This paper 
focuses on the steps a user would perform during an interactive modeling session. 

INTRODUCTION  
This paper illustrates how the use of the highly interactive, visual SAS Visual Data Mining and Machine 
Learning offering will not only make your data problems manageable but also engaging.  This offering is 
composed of capabilities that range from data preparation to programmatic access to advanced machine 
learning in your language of choice.  Each capability in the offering would require its own paper to do it 
justice, so this paper focuses on integrated data exploration, reporting, and analytical modeling.  SAS® 
Visual Analytics allows collaboration between business analysts, citizen data scientists, and data 
scientists.  This is important because the data scientists apply analytical methods to business data to 
create insights that drive the business direction. 

This paper and the associated presentation will focus on the case study of a day in the life of a data 
scientist who needs to solve a business problem quickly.  How do they acquire the data and get it 
prepared for modeling?  How do they explore the data to understand its characteristics?  How do they 
generate and compare models? How do they document those insights and apply them to solving a 
business problem? 

THE BUSINESS PROBLEM  
Picture yourself pulling into Starbucks on the way to work.  Your manager calls to tell you that she has to 
pitch a plan to increase profits by 5% this year.  She needs you to put together her presentation for an 
executive meeting tomorrow afternoon.  This unfortunately is how too many of your days start.  An 
unplanned request just became your top priority.   

Time for a little background.  You are a data scientist at the Insight Toy Company who works closely with 
a vice president of sales and marketing.  Sales to our vendors have been slowly declining for the last 
couple of years and your manager has been asked to increase profits in her organization by 5% this year.  
It’s time to get Insight Toy back on track. 

THE PLAN 

The first thing you need to do is come up with a plan for tackling this challenging task.  Fortunately for 
you, Insight Toy has been collecting data for several years on all aspects of the business.  They also 
have a great IT department who prepares the data for its analysts and data scientists.  A quick inventory 
of the corporate data shows that you have access to the last two years of sales data.  This data includes 
information on what products are sold to which vendors, the costs associated with the order, along with 
some metrics about the sales representative and the vendor.  

Step one, come up with a plan.  You decide to follow the tried-and-true strategy of: 

1. Review the data and make a quick exploratory pass over the most relevant variables to
understand their characteristics and relationships

2. Feature engineering

3. Start generating models and reviewing their results
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4. Compare your models, and come up with a champion 

5. Validate your model and apply it 

6. Come up with a couple of potential solutions and present them to your manager 

REVIEW AND EXPLORE THE DATA 

Exploring the data is an important step in understanding the relationships within.  A quick pass over the 
data and you see that you have the entire order history for every vendor dating back to January 1st, 2015.  
The first task you tackle is to look at the shape and characteristics of Order Profit, your response variable. 

Next you want to see if there are any linear correlations between Order Profit and other variables you 
think contribute to Insight Toy’s profit.  You create a page and add a correlation matrix, as shown in 
Figure 1, to investigate the relationships.  It reveals that Order Amount has a strong correlation as you 
would expect.  Two other variables, Amount Returned and Vendor Satisfaction have a moderate 
correlation.  You immediately document your findings by adding a comment to the report stating your 
observations. 

 

Figure 1. Correlation of Order Profit to Key Variables 

The advantage you have in solving today’s challenge is that you are using SAS Visual Analytics.  This 
application has integrated data exploration, modeling, and reporting capabilities in a highly visual and 
interactive user interface.  What else can the data tell you?   

One the same page you add a List Table.  A trusty table can convey a lot of information, especially when 
it aggregates the data for you.  Figure 2 shows the aggregated list table you created.  

 

Figure 2. Returns List 
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You quickly see that the Vendor Type and Vendor Satisfaction need further investigation.  The eyeball 
test shows that Discount Stores have the highest dollar amount for returns and you also see that vendor 
satisfaction is low for the vendors making returns.   

On the next page you pull together several charts to quickly visualize the data.  These charts, as seen in 
Figure 3, show you that convenience stores are also troublesome with respect to returns.  They also 
show you that Product Line does not appear to be related to the returns. 

 

Figure 3. Returns Charts 

You now understand the data better and have a good idea that decreasing the number of returned orders 
will help the bottom line.   
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Next you want to see what it will take to increase profits by 5%.  A quick forecast, as shown in Figure 4, 
shows you that going after those returns will help Insight Toy’s bottom line.  You are happy to see the 
forecasting algorithm takes into account the seasonality of your products. 

 

Figure 4. Profit Forecast 

You used what-if analysis, specifically goal seeking as shown in Figure 5, to create this forecast.  You can 
clearly see that Order Amount, which is how much our sales team is selling, needs to increase slightly in 
addition to the decrease in the amount of orders returned. 

 

Figure 5. Goal Seeking 
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FEATURE ENGINEERING 

As a data scientist you need to engineer features using your domain knowledge of Insight Toy and the 
problem at hand.  SAS Visual Statistics and SAS Visual Data Mining and Machine Learning support 
traditional feature engineering such as segmentation.  Calculations and custom categories are two 
features you can interactively create using a drag-and-drop interface or by editing code.  You can create 
calculations based on simple math, for example here is the code for Order Profit: 

( 'Order Amount'n - 'Order Amount Returned'n ) - 'Order Total Cost'n 

You can also create calculations with conditional statements, for example Figure 6 shows the Vendor 
Active calculation in the calculation editor: 

 

Figure 6. Calculation Editor 

You also have the power to create ad-hoc hierarchies on-the-fly, duplicate a variable and change its 
format or aggregation, and even convert a measure to a category.  The Order Date MMYYY data item 
shown in Figure 7 was created by duplicating the Order Date data item and changing its format. 

 

Figure 7. Data Item 
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Some algorithms, such as a linear regression, assume the data comes from a normal distribution.  You 
take a quick look at the shape and distribution of your data since you are interested in Order Amount 
Returned.  The two graphs on the left side of Figure 8 show that the Order Amount Returned variable is 
right-skewed.  

 

Figure 8. Variable Transformation 

A log transformation can easily be created to reduce skewness.  The code for the Order Amount 
Returned (log) calculation is: 

( 'Order Amount Returned'n Log 10 ) 

The two graphs on the right side of Figure 8 show that the Order Amount Returned (log) variable follows a 
more normal distribution. 

All calculations are dynamically constructed when the report is opened.  This means you do not need to 
save a copy of the data for every report you create. 

MODEL, MODEL, MODEL 

Now it is time to start modeling.  You know you have a binary response of either Y(es) or N(o) for Order 
Returned, so good candidate models are logistic regression, decision tree, forest, gradient boosting, 
neural network, and support vector machine.  You want to model the vendors who have an event of Y; 
they are the ones returning orders.  

The corporate data source has a partition variable that will allow you to train your models against a subset 
of the data and validate it against the rest of the data.  By using partioning, you will generate the best 
models without overtraining. 

You decide to start out with a tried-and-true logistic regression model using data on the four costs 
associated with the order, information about the vendor, and the product line as your effect variables.  In 
less than a minute you interactively add the model to the report, assign the response and effect variables, 
and configure modeling options. 
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The model shown in Figure 9 looks good. You can see a summary of how well the effect variables fit, the 
distribution of your residuals, and the model’s misclassification chart.  While the default statistic is the 
validation misclassification, you can also look at a number of other statistics such as AIC or R-Square. 

 

Figure 9. Logistic Regression 

With a click of the mouse, you easily switch the validation misclassification chart to a validation lift chart, 
as shown in Figure 10, and then a validation ROC chart, as shown in Figure 11. 

 

Figure 10. Logistic Regression Lift Chart 

 

Figure 11. Logistic Regression ROC Chart 

You use the same response and effects / target variables for creating additional models.  On individual 
pages you create a decision tree model, forest model, gradient boosting model, neural network model, 
and support vector machine model.  Each of these models is helping you predicted whether a vendor will 
return an order.  The pages containing each of these models are shown in Figure 12 - Figure 16. 

 

Figure 12. Decision Tree 

 

Figure 13. Forest 
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Figure 14. Gradient Boosting 

 

Figure 15. Neural Network 

 

Figure 16. Support Vector Machine 

 

As you create each model, you notice that Vendor Satisfaction is consistently one of the most important 
predictors for when an order is returned.  You make a mental note of this observation. 

MODEL COMPARISON 

Once all the models are created, you can quickly compare all six in the model comparison visualization 
shown in Figure 17.  There are fourteen different fit statistics that can be used to help you determine the 
champion model.  The application guides you through this process by displaying the selected / best 
model for the active fit statistic.   

 

Figure 17. Model Comparison 
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After reviewing several of the fit statistics, you decide the logistic regression model is your champion.  
Don’t forget to annotate the model comparison page with information on how and why you choose this 
model as the champion. 

INTERACTIVELY REVIEW THE MODEL 

This is where the power of having an interactive modeling tool pays dividends.  You flip back to the page 
with your champion model, the logistic regression, and with a click of the mouse you derive the predicted 
value and probability value for the model.  These values, Probability: Order Returned=Y and Predicted: 
Order Returned, are now available as new data items in the report.  This allows you to use them as inputs 
to other models or as data items in report visuals.  The data items for the logistic regression are stored as 
score code in the report.  You also have the option to export the model for use in other applications such 
as SAS® Studio or to place it in your corporate analytics process. 

Time to review our objective: you need to come up with a plan to increase profits by 5% this year.  You 
have narrowed down options to reducing the amount of orders returned by Insight Toy vendors.  You 
have modeled the vendors who have returned orders.  Next you review the model to see if you can 
segment the vendors for a campaign targeted at the vendors that are returning the most orders. 

You decide to review the model’s prediction for Order Returned.  You create a page, see Figure 18, that 
allows you to visualize the actual number of orders returned and the predicted number of orders returned 
based on the Probability Order Returned=Y.  This page includes a parameter to dynamically control the 
prediction cutoff to review different scenarios. 

 

Figure 18. Model Review 

You review the results of your logistic regression model and you feel good about its ability to help you 
predict which vendors are returning orders.   
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You have two analytics that are perfect for segmentation: k-means clustering and decision tree.   You use 
clustering to segment based on Probability Order Returned=Y and Vendor Satisfaction.  You are using 
the results of your logistic regression model, Probability Order Returned=Y, as a cluster input variable.  
The other input variable, Vendor Satisfaction, was consistently one of the most important predictors 
identified during modeling.  Figure 19 shows the results of your segmentation.  

 

Figure 19. K-Means Clustering 

You can interactively change the view in the parallel coordinates plot, as show in Figure 20.  You observe 
from the parallel coordinates plot that the highest probability for an order to be returned is with cluster 4 
and there is some contribution from cluster 1.  You also observe that they have low vendor satisfaction, 
which aligns with everything you have seen so far. 

 

Figure 20. Clustering Parallel Coordinates Plot 
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You easily derive the clusters from the visualization and generate a new feature, Targeted Vendors – 
Cluster, to help you solve your business problem. 

Next you want to visualize the results of your cluster-based segmentation by using Targeted Vendors – 
Cluster.  Figure 21 shows a highly interactive set of visualizations that allow you to filter the entire page 
by Vendor Region and Order Date.  It also allows you to only display a specified number of top vendors.  
On this page you applied a filter to show information about the Midwest starting in January of last year.  
At the bottom of the page is a stacked container that allows you to view details on the amount and 
number of orders returned.   

 

Figure 21. Cluster Targeted Vendors – Geographic 

The stacked container allows you to navigate from the Geo Map view shown at the bottom of Figure 21 to 
the Vendor Type view show in Figure 22. 

 

Figure 22. Cluster Targeted Vendors – Type 
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The Vendor Type view shows you what percentage of the data for each Vendor Type comes from what is 
displayed in the butterfly chart.  It also shows you a box plot of the probability an order was returned by 
the type of vendor. 

Next you use a decision tree to segment Predicted: Order Returned based on Product Line, Vendor Type, 
Vendor Satisfaction, and Vendor State.  Similar to the clustering segmentation, you are using the results 
of your logistic regression model, Predicted: Order Returned, as your response variable in your 
segmentation.  Figure 23 shows the results of your segmentation.  

 

Figure 23. Decision Tree Segmentation 

You observe from the decision tree that one node, the fourth one in from the left on the second level, has 
the highest percentage of Y(es) observations for Predicted: Order Returned.  You easily derive the 
decision tree node IDs from the visualization and generate a new feature, Targeted Vendors – DTree, to 
provide a second segment to help you solve your business problem. 
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To compare the two features you have created, you visualize the results of your decision tree based 
segmentation by using Targeted Vendors – DTree in the same type of visualization you used for Targeted 
Vendors – Cluster.  Figure 24 and Figure 25 show these visualizations.   

 

Figure 24. DTree Targeted Vendors – Geographic 

From these results you confirm that node 4 has the largest contribution to Order Amount Returned. 

 

Figure 25. DTree Targeted Vendors - Type 
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GENERATE PROPOSALS TO THE BUSINESS PROBLEM 

Now it’s time to put your analytics on the line and make your manager look good.  With some additional 
feature engineering you have constructed a page for the cluster proposal and a page for the decision tree 
proposal.  Each page allows you to enter one or two segments and a targeted return rate for every sales 
office.  Based on this information, a bar chart will dynamically show you how the actual profits and 
projected profits would compare to the targeted profits for each quarter over the last couple of years.  A 
set of donut charts will dynamically update to show you how many vendors need to be contacted in each 
state. 

Figure 26 shows you the cluster proposal. 

 

Figure 26. Cluster Proposal 

You enter cluster 4, the segment containing the majority of the orders returned, and a value of 30 for the 
targeted reduction in return rate.  The reduction in return rate specifies the percentage of returns that 
need to be eliminated.  If the sales organization can reduce returns by 30%, then Insight Toy would have 
seen profits exceed the target for every quarter but one. 

The donut chart at the bottom of the page shows you the vendors that should be targeted for this 
campaign.  There are 1,215 vendors to contact and 7,727 that do not need to be contacted.  The state 
that has the most vendors to contact is Texas, and it has 152.  In addition to the overall visualization for 
projected vendors to contact, you can navigate to targeted donut chart based on Vendor Type. 
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Figure 27 shows you the decision tree proposal with the same visualizations as the cluster proposal. 

 

Figure 27. DTree Proposal 

You enter node 4, the segment containing the majority of the orders returned, and a value of 30 for the 
targeted reduction in return rate.  The results for the decision tree proposal are similar to those for the 
cluster proposal.  One difference between the proposals is that fewer vendors need to be contacted for 
the decision tree proposal.   

The stacked container at the bottom of the page also contains a list table with details on the vendors that 
need to be contacted.  In Figure 28 you sorted the list by Order Amount Returned.  Your sales 
organization can access this report to determine which vendors they need to contact.  They can also 
export the list to a spreadsheet. 

 

Figure 28. Contact List 
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You have a solid proposal with two options to present to your manager.  The proposal is to get the sales 
offices to increase sales, but more importantly work with their vendors to decrease the number of orders 
returned.  One aspect of the sales/vendor relationship that contributes to orders being returned is 
dissatisfied vendors.  The sales team needs to engage the vendors to increase satisfaction.  

Your work will help turn Insight Toy into a profitable company again. 

CONCLUSION 

The SAS Visual Statistics and SAS Visual Data Mining and Machine Learning add-on offerings to SAS 
Visual Analytics contain a robust set of tools that allow data scientists to explore their data, engineer 
features, interactively generate models, and use the model’s output all within the same report.  The 
integration of advanced modeling techniques, approachable analytics, and reporting capabilities provide 
the data scientist with a single tool for solving complex business problems and presenting the results in a 
business-friendly format. 
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Paper SAS0747-2017 

Open Your Mind: Use Cases for SAS® and Open-Source Analytics 

Tuba Islam, SAS Institute Inc.  

ABSTRACT  
Data scientists need analytical tools and algorithms, whether commercial or open source, and will always 
have some favourites. But how do you decide when to use what? And how can you integrate their use to 
your maximum advantage? This paper provides best practices for deploying both SAS® and open-source 
analytical tools to increase productivity and efficiency in your enterprise ecosystem. Further, an example is 
provided of an analytical business flow for marketing using SAS and R algorithms in SAS® Enterprise 
Miner™ for developing a predictive model, and then operationalizing and automating that model for 
scoring, performance monitoring and retraining. There are also suggestions for using Python and SAS 
integration in a Jupyter Notebook environment. Seeing these examples will help you decide how to 
improve your analytics with similar integration of SAS and open source. 

INTRODUCTION 

This paper provides you with some examples to show the goodness of using open source and SAS in an 
enterprise ecosystem. Working in an open environment with various tools brings some challenges. It 
sometimes becomes more difficult to execute models in production quickly without extensive recoding. It 
can also become more challenging to automate the complete business flow for model management and to 
enable governance and lineage for analytics. SAS provides the analytical platform that connects the dots 
in the model lifecycle and helps “productionize” open-source models. 

Some of the main benefits of SAS and open source working together: 

 Freedom to use your language of choice as a data scientist, work collaboratively, and be able to
exchange the resources and the analytical assets within the organization.

 Operationalize and automate the execution of your open source and SAS models in production quickly
and increase the value gained from analytics.

 A transparent and easy-to-monitor analytical process and the governance and lineage for your models.

You will find an example of a campaign propensity use case in SAS® 9.4 using SAS® Enterprise Miner™ 
and SAS® Decision Manager for operationalizing open source R models and also the use of Jupyter 
notebook for accessing these models via REST and running post analysis in Python.  

PREREQUISITES 

For R integration on SAS 9.4, you will need to install R and the required packages on the server where 
SAS Enterprise Miner resides and set the required environment parameters such as R_HOME and 
RLANG. The details for the installation and configuration can be found on SAS Communities portal when 
you search for R integration. 

For Python integration on SAS 9.4, you will need to install Python and SASPy package to execute SAS 
code in Jupyter Notebook. The package and the instructions can be found under SASPy repository on 
GitHub. For Python integration on SAS® Viya™, you would install the package in python-swat repository 
on GitHub. This paper will only include examples for SAS 9.4. 

STEP-BY-STEP ANALYTICS WITH SAS AND OPEN SOURCE 

You will find the analytical steps of a marketing use case that builds a campaign propensity model for 
buying an organic product using SAS and open-source analytics. Open Source Integration node in SAS 
Enterprise Miner will be used for creating R models and making them production-ready. The use case will 
include one-click registration of models into SAS Decision Manager with the unique model ID that will 
enable the business users to track the performance of campaign models in production. 
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The marketing data includes customer demographics and historical purchase information about different 
products. The purchase event is flagged as 1/0 and stored in the variable called “Target”. The sample 
dataset and the code snippets shared in the paper are available on GitHub under enlighten-integration 
repository. 

STEP 1. BUILD PRODUCTION MODELS IN SAS® ENTERPRISE MINER™ 

The Open Source Integration node enables the execution of R code within SAS Enterprise Miner. This 
node transfers the data, the metadata, and the results automatically between two systems. It facilitates 
multitasking in R by running models in parallel. The Open Source Integration node enables certain R 
models to be translated into SAS DATA step code and deployed in production.  

The default setting for the output mode in the Open Source Integration node is “PMML”, which is an open 
standard. The R models that are tested and supported for PMML mode are “lm”, “rpart”, “glm”, “multinom”, 
“nnet” and “kmeans”. You can type in any R code in the code editor of Open Source Integration node when 
you set the output mode to “Merge” or “None” in the parameter panel. In this paper, the PMML mode is 
used as it provides a strong integration for model management and automation.  

There are some built-in macros in Open Source Integration node such as &EMR_MODEL, 
&EMR_CLASS_TARGET, &EMR_NUM_INPUT that make the coding in R easier for the data scientists. 
Instead of hardcoding the variable names, the metadata for the input variables can be managed by SAS 
nodes, which makes the modeling process more transparent and easier to follow.   

A simple example for calling R Regression model (glm) in Open Source Integration node:  

# Regression model 

library(glm2) 

library(pmml) 

&EMR_MODEL <- glm(&EMR_CLASS_TARGET ~ &EMR_CLASS_INPUT + &EMR_NUM_INPUT, 

data= &EMR_IMPORT_DATA, family= binomial()) 

 

A simple example for calling R Decision Tree model (rpart) in Open Source Integration node:  

# Decision Tree model 

library(rpart) 

library(pmml) 

&EMR_MODEL <- rpart(&EMR_CLASS_TARGET ~ &EMR_CLASS_INPUT + &EMR_NUM_INPUT, 

data= &EMR_IMPORT_DATA, method = "class") 

 

You can create Ensemble models by joining SAS and R models in SAS Enterprise Miner while searching 
for better accuracy. In the example below, SAS Decision Tree and R Regression models are joined in the 
Ensemble node:  

 

Figure 1. Developing R and SAS Models in SAS® Enterprise Miner™ 

As a result of the model build process with PMML, a DATA step score code is generated automatically, 
which is ready to be deployed in production. 

 



3 

A snippet of the generated code in the Open Source Integration node: 

/********************************************/; 

* PSCORE TIMESTAMP: 2017-23-1 19:3:27.43 ; 

* SAS VERSION: 9.04.01M4P110916 ; 

* SAS HOSTNAME: sasva ; 

* SAS ENCODING: wlatin1 ; 

* SAS USER: sasdemo ; 

* SAS LOCALE: EN_US ; 

* PMML Path: D:\opt\sasinside\SASWORK\_TD30744_SASVA_\emRPMML.xml ; 

* PMML SOURCE: Rattle/PMML; 

* PMML SOURCE VERSION: 1.4; 

* PMML TIMESTAMP: 2017-02-23 19:03:27 ; 

* MODEL TYPE: GeneralRegressionModel ; 

* MODEL FUNCTION NAME: Classification ; 

/********************************************/; 

  

if missing("DemGender"n) then do; 

    PSCR_WARN = 1; 

end; 

else do; 

    "PSCR_AP0"n = "DemGender"n; 

    if ( "PSCR_AP0"n not in ( 'F', 'M', 'U'  )  ) then do; 

  

        PSCR_WARN = 1; 

    end; 

end; 

... 

    

The final step is the comparison of all models and selection of the champion to be deployed in production:  

    

Figure 2. The Comparison of R and SAS Models in SAS® Enterprise Miner™ 

One of the reports generated by Model Comparison node is the Cumulative Captured Response chart 
shown on the left. It gives you the response rate for each decile ordered by the probability score. If you 
want to target top 20% of your customer base, you can explore the response rate for that percentile, which 
is around 65.4% in this example. The Lift chart on the right shows how better this response is compared to 
a random selection.  

The results for the Ensemble model and SAS Decision Tree model are very close. You might set the 
Ensemble model as the champion to see how the automation will be handled for the combination of R and 
SAS model. And the SAS Decision Tree model can be set as the challenger in SAS Decision Manager.  

The modeling process is now completed. In the next step, you will execute the key components in SAS 
Enterprise Miner to enable the lineage and automation for R and SAS models.  

STEP 2. ONE-CLICK AUTOMATION AND LINEAGE  

SAS automatically generates and stores a universally unique identifier (modelUUID) for all models 
including the R models. Using this Model ID, when you want to monitor the performance of your campaign 
and evaluate the impact of the analytical model on the response rate, you will be able to trace it back even 
in a very complex and large-scale marketing environment where you execute hundreds of models with 
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different versions. This feature would also be beneficial for regulated industries like banking where you 
need to explain the reasons for your decisions.   

You can export your model into SAS Decision Manager with one-click using the built-in SAS macros for 
model development and monitoring.  

 

Figure 3. The Simple Flow Providing Model Lineage and Automation in SAS Enterprise Miner  

The unique model ID is automatically extracted from SAS Metadata when you execute your score code in 
SAS.  

If you run in-database scoring, you can create the model ID in your output table by including the following 
code in the scoring editor of the SAS Code node that is connected to the champion model: 

 

Figure 4. The SAS Code to Save the Unique Model ID for In-Database Scoring  

The final node in the diagram above (One-Click to Manage) exports and registers your model into SAS 
Decision Manager.  

The three parameters that will be used by %MM_Register macro are assigned at the beginning of the code 
in SAS Code node: 

 

Figure 5. The One-Click Export SAS Code (Part-1) for Assigning the Parameters  
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The last part of the code in SAS Code node is a generic code that is parametric and can be used for 
exporting any model directly from SAS Enterprise Miner into SAS Decision Manager: 

 

Figure 6. The One-Click Export SAS Code (Part 2) for Exporting and Registering 

This champion model is now stored in SAS Decision Manager, ready to be published and monitored. 

STEP 3. MONITOR PERFORMANCE OF OPEN SOURCE MODELS 

SAS Decision Manager is the centralized management environment for all the models that could be 
developed within different departments of your organization.  

 

Figure 7. The Enterprise-Level Management of SAS and R Models in SAS 

You can view the models that you exported to your &MM_Folder, which is set as a parameter in the SAS 
Code node in SAS Enterprise Miner. You can also import models from SPK files (SAS package) which 
enables the retraining functionality of R models in SAS Decision Manager:  
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Figure 8. Auto-Registered R and SAS Models for New Product Propensity Analysis 

You find the unique model ID (UUID) in the System tab of the model in SAS Decision Manager:  

 

Figure 9. Unique Model ID Automatically Generated for the Ensemble Model 

The same ID is generated in the output table when you execute the score code: 

      

Figure 10. Unique Model ID Saved in the Score Dataset in SAS® Data Integration Studio 

You can now build the monitoring jobs and start tracking the performance of R and SAS models. You can 
either use the GUI or MM macros to accomplish this task.  
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Monitoring the deviations in input characteristics and performance changes in time: 

          

Figure 11. Model Performance Reports Generated for SAS® and R Models 

There is a degradation in the performance of the Ensemble model when you look at the difference in Gini 
between the Q1 and Q3. SAS Decision Manager creates alerts when the models degenerate and sends 
notifications to pre-assigned users so that they can execute the retraining process or retire the model. The 
retraining can also be triggered automatically. 

The next step will show the retraining of R models in SAS.  

STEP 4. RETRAIN OPEN SOURCE MODELS 

After importing the R model from SPK file, you define the retraining job in SAS Decision Manager and 
decide if the retrained model will be added to the existing version or to a new version. 

  

Figure 12. Set up a Retrain Job for R Rpart Model  

After the execution, the final list of SAS and R models in SAS Decision Manager are updated to include the 
retrained models which are automatically renamed with the time stamp: 

 

Figure 13. The List in SAS Decision Manager Including Retrained R and SAS Models 
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You can now compare the existing and retrained model and publish the one that performs better into 
production (in SAS or in-database) using the publish task in SAS Decision Manager or run the model in 
real-time. 

In the next step, an example for an ad hoc analysis on model scores for Python developers is given.  

STEP 5. AD HOC ANALYSIS OF PRODUCTION MODELS FROM PYTHON 

You can download the module called SASPy from GitHub to connect to SAS 9.4 from Python. SASPy is a 
package that provides Python APIs to SAS and opens up all the data manipulation and analytical 
capabilities of your SAS System to the Python interface. It also supports the distributed computing. You 
can start a session and run SAS analytics from Python through the object-oriented methods. You can also 
use Jupyter magics which are available with the SASPy package and enable you to submit your SAS code 
to your SAS session from Python kernel. SASPy allows you to work in collaboration and utilize both SAS 
and Python skills for analytics.  

In this example, you will see the usage of “sas_magic” to execute SAS code and Python together in 
Jupyter notebook. 

 

Figure 15. Import SAS Package for Calling SAS® Code in Python from Jupyter Notebook 

When you include %%SAS magic at the top of the cell in your Jupyter notebook, you can execute any SAS 
code within that cell. In the example below, you extract the list of all projects in the repository under the 
Marketing folder, which also includes “New_Product_Propensity” project. 

 

Figure 16. The REST Call to Extract List of Analytical Projects in Marketing Repository 

When you find the name of your project on that list, you can rerun the same code by updating the path in 
the “projectsModelsURL” until you extract the name of the full path for the score code.  

You then import the score code on your local drive via the following REST call: 
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Figure 17. The REST Call to Extract the Score Code for a Specific Model 

In the next step, you run an ad hoc analysis on your historical campaign data sets. You join data from 
different time periods and score all of them to run a seasonality analysis: 

 

Figure 18. The SAS Code to Extract List of Analytical Projects in Marketing Repository 

Using Python, you can experiment new data from web or other external sources to search for new 
correlations with campaign responses. As an example, you can extract the weather information from web 
and analyze the temperature impact on your target: 

 

Figure 19. The Python Code to Extract Weather Data 

You might run further analysis to investigate your temperature-sensitive products, such as record players 
(might be preferred more in cold weather companied by wine) or bicycles (less tempting in rainy seasons) 
or dehumidifiers (more demand in summer when the laundry doesn’t dry indoors) and so on. 

As a Python coder, you can extract this information and run quick tests. If you decide that some of the new 
variables will add value to your production model, you can then automate the extraction process. The 
utilization of different tools and skills in the organization will bring flexibility that promotes collaboration and 
innovation which improves your analytical efficiency.  

CONCLUSION 

This paper provides examples to demonstrate the integration of open source analytics and SAS 9.4 using 
a marketing use case. SAS serves as the enterprise platform that enables and integrates different tools 
and skillsets within the organization including open source, provides a collaborative working environment 
and automates the analytical life cycle which would ultimately increase the value you get from analytics. 
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ABSTRACT 

Machine learning predictive modeling algorithms are governed by “hyperparameters” that have no clear 
defaults agreeable to a wide range of applications. The depth of a decision tree, number of trees in a 
forest, number of hidden layers and neurons in each layer in a neural network, and degree of 
regularization to prevent overfitting are a few examples of quantities that must be prescribed for these 
algorithms. Not only do ideal settings for the hyperparameters dictate the performance of the training 
process, but more importantly they govern the quality of the resulting predictive models. Recent efforts to 
move from a manual or random adjustment of these parameters include rough grid search and intelligent 
numerical optimization strategies.  

This paper presents an automatic tuning implementation that uses local search optimization for tuning 
hyperparameters of modeling algorithms in SAS® Visual Data Mining and Machine Learning. The 
AUTOTUNE statement in the TREESPLIT, FOREST, GRADBOOST, NNET, SVMACHINE, and 
FACTMAC procedures defines tunable parameters, default ranges, user overrides, and validation 
schemes to avoid overfitting. Given the inherent expense of training numerous candidate models, the 
paper addresses efficient distributed and parallel paradigms for training and tuning models on the SAS® 
Viya™ platform. It also presents sample tuning results that demonstrate improved model accuracy and 
offers recommendations for efficient and effective model tuning. 

INTRODUCTION 

Machine learning is a form of self-calibration of predictive models that are built from training 
data. Machine learning predictive modeling algorithms are commonly used to find hidden value in big 
data. Facilitating effective decision making requires the transformation of relevant data to high-quality 
descriptive and predictive models. The transformation presents several challenges however. For 
example, consider a neural network, as shown in Figure 1. Outputs are predicted by transforming a set of 
inputs through a series of hidden layers that are defined by activation functions linked with 
weights. Determining the activation functions and the weights to determine the best model configuration is 
a complex optimization problem. 

Figure 1. Neural Network 
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The goal in this model-training optimization problem is to find the weights that will minimize the error in 
model predictions based on the training data, validation data, specified model configuration (number of 
hidden layers and number of neurons in each hidden layer), and the level of regularization that is added 
to reduce overfitting to training data. One recently popular approach to solving for the weights in this 
optimization problem is through use of a stochastic gradient descent (SGD) algorithm (Bottou, Curtis, and 
Nocedal 2016). This algorithm is a variation of gradient descent in which instead of calculating the 
gradient of the loss over all observations to update the weights at each step, a “mini-batch” random 
sample of the observations is used to estimate loss, sampling without replacement until all observations 
have been used. The performance of this algorithm, as with all optimization algorithms, depends on a 
number of control parameters for which no default values are best for all problems. SGD parameters 
include the following control parameters (among others): 

 a learning rate that controls the step size for selecting new weights  

 a momentum parameter to avoid slow oscillations 

 an adaptive decay rate and an annealing rate to adjust the learning rate for each weight and time 

 a mini-batch size for sampling a subset of observations 

The best values of the control parameters must be chosen very carefully. For example, the learning rate 
can be adjusted to reach a solution more quickly; however, if the value is too high, the solution diverges, 
and if it is too low, the performance is very slow, as shown in Figure 2(a). The momentum parameter 
dictates whether the algorithm tends to oscillate slowly in ravines where solutions lie (jumping back and 
forth across the ravine) or dives in quickly, as shown in Figure 2(b). But if momentum is too high, it could 
jump past the solution (Sutskever et al. 2013). Similar accuracy-versus-performance trade-offs are 
encountered with the other control parameters. The adaptive decay can be adjusted to improve accuracy, 
and the annealing rate is often necessary to avoid jumping past a solution. Ideally, the size of the mini-
batch for distributed training is small enough to improve performance and large enough to produce 
accurate models. A communication frequency parameter can be used to adjust how often training 
information (such as average weights, velocity vectors, and annealing rates) is synced when training is 
distributed across a compute grid; higher frequency might increase accuracy, but it also reduces 
performance. 

 

 

 

(a) Learning Rate (b) Momentum 

Figure 2. Effect of Hyperparameters on Neural Network Training Convergence 

 

The best values of these parameters vary for different data sets, and they must be chosen before model 
training begins. These options dictate not only the performance of the training process, but more 
importantly, the quality of the resulting model. Because these parameters are external to the training 
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process—that is, they are not the model parameters (weights in the neural network) being optimized 
during training—they are often called hyperparameters. Figure 3 depicts the distinction between training a 
model (solving for model parameters) and tuning a model (finding the best algorithm hyperparameter 
values). Settings for these hyperparameters can significantly influence the resulting accuracy of the 
predictive models, and there are no clear defaults that work well for different data sets. In addition to the 
optimization options already discussed for the SGD algorithm, the machine learning algorithms 
themselves have many hyperparameters. As in the neural network example, the number of hidden layers, 
the number of neurons in each hidden layer, the distribution used for the initial weights, and so on are all 
hyperparameters that are specified up front for model training, that govern the quality of the resulting 
model, and whose ideal values also vary widely with different data sets. 

 

 

Figure 3. Model Training in Relation to Model Tuning 

 

Tuning hyperparameter values is a critical aspect of the model training process and is considered a best 
practice for a successful machine learning application (Wujek, Hall, and Güneş 2016). The remainder of 
this paper describes some of the common traditional approaches to hyperparameter tuning and 
introduces a new hybrid approach in SAS Visual Data Mining and Machine Learning that takes advantage 
of the combination of the powerful machine learning algorithms, optimization routines, and distributed and 
parallel computing that running on the SAS Viya platform offers. 

 

HYPERPARAMETER TUNING 

The approach to finding the ideal values for hyperparameters (tuning a model to a particular data set) has 
traditionally been a manual effort. For guidance in setting these values, researchers often rely on their 
past experience using these machine learning algorithms to train models. However, even with expertise in 
machine learning algorithms and their hyperparameters, the best settings of these hyperparameters will 
change with different data; it is difficult to prescribe the hyperparameter values based on previous 
experience. The ability to explore alternative configurations in a more guided and automated manner is 
needed. 

COMMON APPROACHES 

Grid Search 

A typical approach to exploring alternative model configurations is by using what is commonly known as a 
grid search. Each hyperparameter of interest is discretized into a desired set of values to be studied, and 
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models are trained and assessed for all combinations of the values across all hyperparameters (that is, a 
“grid”). Although fairly simple and straightforward to carry out, a grid search is quite costly because 
expense grows exponentially with the number of hyperparameters and the number of discrete levels of 
each. Even with the inherent ability of a grid search to train and assess all candidate models in parallel 
(assuming an appropriate environment in which to do so), it must be quite coarse in order to be feasible, 
and thus it will often fail to identify an improved model configuration. Figure 4(a) illustrates hypothetical 
distributions of two hyperparameters (X1 and X2) with respect to a training objective and depicts the 
difficulty of finding a good combination with a coarse standard grid search. 

 

  

Figure 4. Common Approaches to Hyperparameter Tuning 

 

Random Search 

A simple yet surprisingly effective alternative to performing a grid search is to train and assess candidate 
models by using random combinations of hyperparameter values. As demonstrated in Bergstra and 
Bengio (2012), given the disparity in the sensitivity of model accuracy to different hyperparameters, a set 
of candidates that incorporates a larger number of trial values for each hyperparameter will have a much 
greater chance of finding effective values for each hyperparameter. Because some of the 
hyperparameters might actually have little to no effect on the model for certain data sets, it is prudent to 
avoid wasting the effort to evaluate all combinations, especially for higher-dimensional hyperparameter 
spaces. Rather than focusing on studying a full-factorial combination of all hyperparameter values, 
studying random combinations enables you to explore more values of each hyperparameter at the same 
cost (the number of candidate models that are trained and assessed). Figure 4(b) depicts a potential 
random distribution with the same budget of evaluations (nine points in this example) as shown for the 
grid search in Figure 4(a), highlighting the potential to find better hyperparameter values. Still, the 
effectiveness of evaluating purely random combinations of hyperparameter values is subject to the size 
and uniformity of the sample; candidate combinations can be concentrated in regions that completely omit 
the most effective values of one or more of the hyperparameters. 

Latin Hypercube Sampling 

A similar but more structured approach is to use a random Latin hypercube sample (LHS) (McKay 1992), 
an experimental design in which samples are exactly uniform across each hyperparameter but random in 
combinations. These so-called low-discrepancy point sets attempt to ensure that points are approximately 
equidistant from one another in order to fill the space efficiently. This sampling allows for coverage across 
the entire range of each hyperparameter and is more likely to find good values of each hyperparameter—
as shown in Figure 4(c)—which can then be used to identify good combinations. Other experimental 
design procedures can also be quite effective at ensuring equal density sampling throughout the entire 
hyperparameter space, including optimal Latin hypercube sampling as proposed by Sacks et al. (1989). 
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Optimization 

Exploring alternative model configurations by evaluating a discrete sample of hyperparameter 
combinations, whether randomly chosen or through a more structured experimental design approach, is 
certainly a fairly straightforward approach. However, true hyperparameter optimization should allow the 
use of logic and information from previously evaluated configurations to determine how to effectively 
search through the space. Discrete samples are unlikely to identify even a local accuracy peak or error 
valley in the hyperparameter space; searching between these discrete samples can uncover 
good combinations of hyperparameter values. The search is based on an objective of minimizing the 
model validation error, so each “evaluation” from the optimization algorithm’s perspective is a full cycle of 
model training and validation. These methods are designed to make intelligent use of fewer evaluations 
and thus save on the overall computation time. Optimization algorithms that have been used for 
hyperparameter tuning include Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Konen et al. 2011), 
covariance matrix adaptation evolution strategy (CMA-ES) (Konen et al. 2011), particle swarm (PS) 
(Renukadevi and Thangaraj 2014; Gomes et al. 2012), tabu search (TS) (Gomes et al. 2012), genetic 
algorithms (GA) (Lorena and de Carvalho 2008), and more recently surrogate-based Bayesian 
optimization (Denwancker et al. 2016).  

 

However, because machine learning training and scoring algorithms are a complex black box to the 
tuning algorithm, they create a challenging class of optimization problems. Figure 5 illustrates several of 
these challenges:  

 Machine learning algorithms typically include not only continuous variables but also categorical 
and integer variables. These variables can lead to very discrete changes in the objective. 

 In some cases, the hyperparameter space is discontinuous and the objective evaluation fails. 

 The space can also be very noisy and nondeterministic (for example, when distributed data are 
moved around because of unexpected rebalancing). 

 Objective evaluations can fail because a compute node fails, which can derail a search strategy. 

 Often the space contains many flat regions where many configurations produce very similar 
models. 

 

Figure 5. Challenges in Applying Optimization to Hyperparameter Tuning 

 

An additional challenge is the unpredictable computation expense of training and validating predictive 
models using different hyperparameter values. For example, adding hidden layers and neurons to a 
neural network can significantly increase the training and validation time, resulting in widely ranging 
potential objective expense. Given the great promise of using intelligent optimization techniques coupled 
with the aforementioned challenges of applying these techniques for tuning machine learning 
hyperparameters, a very flexible and efficient search strategy is needed. 
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AUTOTUNING ON THE SAS VIYA PLATFORM 

SAS Viya is a new platform that enables parallel/distributed computing of the powerful analytics that SAS 
provides. The new SAS Visual Data Mining and Machine Learning offering (Wexler, Haller, and Myneni 
2017) provides a hyperparameter autotuning capability that is built on local search optimization in SAS® 
software. Optimization for hyperparameter tuning typically can very quickly reduce, by several percentage 
points, the model error that is produced by default settings of these hyperparameters. More advanced 
and extensive optimization, facilitated through parallel tuning to explore more configurations and refine 
hyperparameter values, can lead to further improvement. With increased dimensionality of the 
hyperparameter space (that is, as more hyperparameters require tuning), a manual tuning process 
becomes much more difficult and a much coarser grid search is required. An automated, parallelized 
search strategy can also benefit novice machine learning algorithm users. 

 

LOCAL SEARCH OPTIMIZATION 

SAS local search optimization (LSO) is a hybrid derivative-free optimization framework that operates in 
the SAS Viya parallel/distributed environment to overcome the challenges and expense of 
hyperparameter optimization. As shown in Figure 6, it consists of an extendable suite of search methods 
that are driven by a hybrid solver manager that controls concurrent execution of search 
methods. Objective evaluations (different model configurations in this case) are distributed across 
multiple evaluation worker nodes in a compute grid and coordinated in a feedback loop that supplies data 
from all concurrent running search methods. The strengths of this approach include handling of 
continuous, integer, and categorical variables; handling nonsmooth, discontinuous spaces; and ease of 
parallelizing the search strategy.  

 

Figure 6. Local Search Optimization: Parallel Hybrid Derivative-Free Optimization Strategy 

 

The autotuning capability in SAS Visual Data Mining and Machine Learning takes advantage of the LSO 
framework to provide a flexible and effective hybrid search strategy. It uses a default hybrid search 
strategy that begins with a Latin hypercube sample (LHS), which provides a more uniform sample of the 
hyperparameter space than a grid or random search provides. The best samples from the LHS are then 
used to seed a genetic algorithm (GA), which crosses and mutates the best samples in an iterative 
process to generate a new population of model configurations for each iteration. An important note here is 
that the LHS samples can be evaluated in parallel and the GA population at each iteration can be 
evaluated in parallel. Alternate search methods include a single Latin hypercube sample, a purely random 
sample, and an experimental Bayesian search method. 

 

http://support.sas.com/documentation/cdl/en/orlsoug/68155/HTML/default/viewer.htm#titlepage.htm
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AUTOTUNING IN SAS MODELING PROCEDURES 

The hybrid strategy for automatically tuning hyperparameters is used by a number of modeling 
procedures in SAS Visual Data Mining and Machine Learning. Any modeling procedure that supports 
autotuning provides an AUTOTUNE statement, which includes a number of options for specifically 
configuring what to tune and how to perform the tuning process. The following example shows how the 

simple addition of a single line (autotune;) to an existing GRADBOOST procedure script triggers the 

process of autotuning a gradient boosting model. The best found configuration of hyperparameters is 
reported as an ODS table, and the corresponding best model is saved in the specified data table 

(mycaslib.mymodel). 

 

    cas mysess; 

    libname mycaslib sasioca casref=mysess; 

    data mycaslib.dmagecr; 

        set sampsio.dmagecr; 

    run; 

    proc gradboost data=mycaslib.dmagecr outmodel=mycaslib.mymodel; 

        target good_bad / level=nominal; 

        input checking duration history amount savings employed installp 

            marital coapp resident property age other housing existcr job 

            depends telephon foreign / level=interval; 

        input purpose / level=nominal; 

        autotune; 

    run; 

 

Note: If your installation does not include the Sampsio library of examples, you will need to define it 
explicitly by running the following command: 

   libname sampsio '!sasroot/samples/samplesml'; 

 

After you run a modeling procedure that includes the AUTOTUNE statement, you will see (in addition to 
the standard ODS output that the procedure produces) the following additional ODS tables, which are 
produced by the autotuning algorithm:  

 Tuner Information displays the tuner configuration. 

 Tuner Summary summarizes tuner results, which include initial, best, and worst configuration; 
number of configurations; and tuning clock time and observed parallel speed up. (For more 
information, see the section “Autotuning Results and Recommendations.”) 

 Tuner Task Timing displays the time that was used for training, scoring, tuner overhead, and the 
overall CPU time that was required. 

 Best Configuration provides the best configuration evaluation number, final hyperparameter 
values, and best configuration objective value. 

 Tuner Results displays the initial configuration as Evaluation 0 on the first row of the table, 
followed by up to 10 best found configurations, sorted by their objective function value. This table 
enables you to compare the initial and best found configurations and potentially choose a simpler 
model that has nearly equivalent accuracy. 

 Tuner History displays hyperparameter and objective values for all evaluated configurations. 

 

Figure 7 shows some of the tables that result from running the preceding SAS script. Note that random 
seed generation and data distribution in SAS Viya will cause results to vary. 



8 

 

  

  

 

Figure 7. SAS ODS Output Tables Produced by Autotuning 

 

For each modeling procedure that supports autotuning, the autotuning process automatically tunes a 
specific subset of hyperparameters. For any hyperparameter being tuned, the procedure ignores any 
value that is explicitly specified in a statement other than the AUTOTUNE statement; instead the 
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autotuning process dictates both an initial value and subsequent values for candidate model 
configurations, either using values or ranges that are specified in the AUTOTUNE statement or using 
internally prescribed defaults. Table 1 lists the hyperparameters that are tuned and their corresponding 
defaults for the various modeling procedures. 

 

Hyperparameter Initial Value Lower Bound Upper Bound 

Decision Tree (PROC TREESPLIT) 

MAXDEPTH 10 1 19 

NUMBIN 20 20 200 

GROW 

GAIN 
(nominal target) 

GAIN, IGR, GINI, CHISQUARE, CHAID 
(nominal target) 

VARIANCE 
(interval target) 

VARIANCE, FTEST, CHAID 
(interval target) 

Forest (PROC FOREST) 

NTREES 100 20 150 

VARS_TO_TRY sqrt(# inputs) 1 # inputs 

INBAGFRACTION 0.6 0.1 0.9 

MAXDEPTH 20 1 29 

Gradient Boosting Tree (PROC GRADBOOST) 

NTREES 100 20 150 

VARS_TO_TRY # inputs 1 # inputs 

LEARNINGRATE 0.1 0.01 1.0 

SAMPLINGRATE 0.5 0.1 1.0 

LASSO 0.0 0.0 10.0 

RIDGE 0.0 0.0 10.0 

Neural Network (PROC NNET) 

NHIDDEN 0 0 5 

NUNITS1,…,5 1 1 100 

REGL1 0 0 10.0 

REGL2 0 0 10.0 

LEARNINGRATE* 1 E–3 1E–6 1 E–1 

ANNEALINGRATE* 1 E–6 1E–13 1 E–2 

*These hyperparameters apply only when the neural net training optimization algorithm is SGD. 

Support Vector Machine (PROC SVMACHINE) 

C 1.0 1E–10 100.0 

DEGREE 1 1 3 

Factorization Machine (PROC FACTMAC) 

NFACTORS 5 5, 10, 15, 20, 25, 30 

MAXITER 30 10, 20, 30, …, 200 

LEARNSTEP 1 E–3 1 E–6, 1 E–5, 1 E–4, 1 E–3, 1 E–2, 1 E–1, 1.0 

Table 1. Hyperparameters Driven by Autotuning in SAS Procedures 
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In addition to defining what to tune, you can set various options for how the tuning process should be 
carried out and when it should be terminated. The following example demonstrates how a few of these 
options can be added to the AUTOTUNE statement in the script shown earlier: 

 

    proc gradboost data=mycaslib.dmagecr outmodel=mycaslib.mymodel; 

        target good_bad / level=nominal; 

        input checking duration history amount savings employed installp 

            marital coapp resident property age other housing existcr job 

            depends telephon foreign / level=interval; 

        input purpose / level=nominal; 

        autotune popsize=5 maxiter=3 objective=ASE; 

    run; 

 

Table 2 lists all the available AUTOTUNE options with their default values and allowed ranges.  
Descriptions of these options can be found in Appendix A. 

 

Option Default Value Allowed Values 

Optimization Algorithm Options 

MAXEVALS 50 [3–∞] 

MAXITER 5  [1–∞] 

MAXTIME 36,000 [1–∞] 

POPSIZE 10 [2–∞] 

SAMPLESIZE 50 [2–∞] 

SEARCHMETHOD GA GA, LHS ,RANDOM, BAYESIAN 

Validation Type Options 

FRACTION 0.3 [0.01–0.99] 

KFOLD 5 [2–∞] 

Objective Type Options 

OBJECTIVE 

MSE (interval target)  

 

MISC (nominal target) 

MSE, ASE, RASE, MAE, RMAE, MSLE, 
RMSLE (interval target) 

MISC, ASE, RASE, MCE, MCLL, AUC, 
F1, F05, GINI, GAMMA, TAU (nominal 
target) 

TARGETEVENT First event found  

Tuning Parameters Options 

USEPARAMETERS COMBINED COMBINED, STANDARD, CUSTOM 

TUNINGPARAMETERS N/A  

Other Options 

EVALHISTORY TABLE TABLE, LOG, NONE, ALL 

NPARALLEL 0 [0–∞] 

Table 2. Autotuning Options 
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The following example shows how you can use the AUTOTUNE statement to specify several custom 
definitions of hyperparameters to be tuned. You can change the initial value and the range of any tuning 
parameter, or you can prescribe a list of specific values to be used by the autotuning process. 

 

    proc gradboost data=mycaslib.dmagecr outmodel=mycaslib.mymodel; 

        target good_bad / level=nominal; 

        input checking duration history amount savings employed installp 

            marital coapp resident property age other housing existcr job 

            depends telephon foreign / level=interval; 

        input purpose / level=nominal; 

        autotune popsize=5 maxiter=3 objective=ASE 

            tuningparameters=( 

                ntrees(lb=10 ub=50 init=10)  

                vars_to_try(values=4 8 12 16 20 init=4) 

            ); 

    run; 

 

In general, the syntax for specifying custom definitions of hyperparameters to tune is 

TUNINGPARAMETERS=(<suboption> <suboption> …) 

where each <suboption> is specified as: 

<hyperparameter name> (LB=number UB=number VALUES=value-list INIT=number EXCLUDE) 

Descriptions of these options can be found in Appendix A. 

 

PARALLEL EXECUTION ON THE SAS VIYA PLATFORM 

Hyperparameter tuning is ideally suited for the SAS Viya distributed analytics platform. The training of a 
model by a machine learning algorithm can be computationally expensive. As the size of a training data 
set grows, not only does the expense increase, but the data (and thus the training process) must often be 
distributed among compute nodes because they exceed the capacity of a single computer. Also, the 
configurations to be considered during tuning are independent, making a sequential tuning process not 
only expensive but unnecessary, assuming you have an available grid of compute resources. If a cross-
validation process is chosen for model validation during tuning (which is typically necessary for small data 
sets), the tuning process cost is multiplied by a factor of k (the number of approximately equal-sized 
subsets, called folds), making a sequential tuning process even more intractable and reducing the 
number of configurations that can be considered. 

Not only are the algorithms in SAS Visual Data Mining and Machine Learning designed for distributed 
analysis, but the local search optimization framework is also designed to take advantage of the distributed 
analytics platform, allowing distributed and concurrent training and scoring of candidate model 
configurations. When it comes to distributed/parallel processing for hyperparameter tuning, the literature 
typically presents two separate modes: “data parallel” (distributed/parallel training) and “model parallel” 
(parallel tuning). Truly big data requires distribution of the data and the training process. The diagram in 
Figure 8(a) illustrates this process: multiple worker nodes are used for training and scoring each 
alternative model configuration, but the tuning process is a sequential loop, which might also include 
another inner sequential loop for the cross-validation case. Because larger data sets are more expensive 
to train and score, even with a distributed data and training/scoring process, this sequential tuning 
process can be very expensive and restrictive in the number of alternatives that can feasibly be 
considered in a particular period of time. The “model parallel” case is shown in Figure 8(b): multiple 
alternative configurations are generated and evaluated in parallel, each on a single worker node, 
significantly reducing the tuning time. However, the data must fit on a single worker node. 
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(a) “Data Parallel” (Sequential Tuning) (b) “Model Parallel” 

Figure 8. Different Uses of Distributed Computing Resources 

 

The challenge is to determine the best usage of available worker nodes. Ideally the best usage is a 
combination of the “data parallel” and “model parallel” modes, finding a balance of benefit from each. 
Example usage of a cluster of worker nodes for model tuning presents behaviors that can guide 
determination of the right balance. With small problems, using multiple worker nodes for training and 
scoring can actually reduce performance, as shown in Figure 9(a), where a forest model is tuned for the 
popular iris data set (150 observations) for a series of different configurations. The communication cost 
required to coordinate distributed data and training results continually increases the tuning time—from 15 
seconds on a single machine to nearly four minutes on 128 nodes. Obviously this tuning process would 
benefit more from parallel tuning than from distributed/parallel training. 

For large data sets, benefit is observed from distributing the training process. However, the benefit of 
distribution and parallel processing does not continue to increase with an increasing number of worker 
nodes. At some point the cost of communication again outweighs the benefit of parallel processing for 
model training. Figure 9(b) shows that for a credit data set of 70,000 observations, the time for training 
and tuning increases beyond 16 nodes, to a point where 64 nodes is more costly than 1 worker node. 

 

  

(a) Iris data set (105 / 45) (b) Credit data set (49,000 / 21,000) 

Figure 9. Distributed Training with Sequential Tuning for Different Size Data Sets (Training/Validation) 
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When it comes to model tuning, the “model parallel” mode (training different model configurations in 
parallel) typically leads to larger gains in performance, especially with small- to medium-sized data sets. 
The performance gain is nearly linear as the number of nodes increases because each trained model is 
independent during tuning—no communication is required between the different configurations being 
trained. The number of nodes that are used is limited based on the size of the compute grid and the 
search strategy (for example, the population size at each iteration of a genetic algorithm). However, it is 
also possible to use both “data parallel” and “model parallel” modes through careful management of the 
data, the training process, and the tuning process. Because managing all aspects of this process in a 
distributed/parallel environment is very complex, using both modes is typically not discussed in the 
literature or implemented in practice. However, it is implemented in the SAS Visual Data Mining and 
Machine Learning autotune process.  

As illustrated in Figure 10(a), multiple alternate model configurations are submitted concurrently by the 
local search optimization framework running on the SAS Viya platform, and the individual model 
configurations are trained and scored on a subset of available worker nodes so that multiple nodes can 
be used to manage large training data and speed up the training process. Figure 10(b) shows the time 
reduction for tuning when this process is implemented and the number of parallel configurations is 
increased, with each configuration being trained on four worker nodes. The tuning time for a neural 
network model that is tuned to handwritten data is reduced from 11 hours to just over 1 hour when the 
number of parallel configurations being tuned is increased from 2 (which uses 8 worker nodes) to 32 
(which uses 128 worker nodes). 

 

  

(a) Conceptual Framework (b) Timing Results (70k observations) 

Figure 10. Distributed/Parallel Training and Parallel Tuning Combined 

 

AUTOTUNING RESULTS AND RECOMMENDATIONS 

This section presents tuning results for a set of benchmark problems, showing that the tuner is behaving 
as expected—model error is reduced when compared to using default hyperparameter values. This 
section also shows tuning time results for the benchmark problems and compares validation by single 
partition of the data to cross-validation. Finally, a common use case is presented—the tuning of a model 
to recognize handwritten digits. Code samples that demonstrate the application of autotuning to these 
and other problems can be found at https://github.com/sassoftware/sas-viya-machine-learning/autotuning. 
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BENCHMARK RESULTS 

Figure 11 shows model improvement (error reduction or accuracy increase—higher is better) for a suite of 
10 common machine learning test problems.1 For this benchmark study, all problems are tuned with a 
30% single partition for error validation during tuning, and the conservative default autotuning process is 
used: five iterations with only 10 configurations per iteration in LHS and GA. All problems are run 10 
times, and the results that are obtained with different validation partitions are averaged in order to better 
assess behavior. 

Here all problems are binary classification, allowing tuning of decision trees (DT), forests (FOR), gradient 
boosting trees (GB), neural networks (NN), and support vector machines (SVM). Figure 11 indicates that 
the tuner is working—with an average reduction in model error of 2% to more than 8% across all data 
sets, depending on model type, when compared to a baseline model that is trained with default settings of 
each machine learning algorithm. You can also see a hint of the “no free lunch” theorem (Wolpert 1996) 
with respect to different machine learning models for different data sets; no one modeling algorithm 
produces the largest improvement for all problems. Some modeling algorithms show 15–20% benefit 
through tuning. However, note that the baseline is not shown here, only the improvement. The starting 
point (the initial model error) is different in each case. The largest improvement might not lead to the 
lowest final model error. The first problem, the Banana data set, suggests that NN and SVM produce the 
largest improvement. The Thyroid problem shows a very wide range of improvement for different 
modeling algorithms. 

 

 

Figure 11. Benchmark Results: Average Improvement (Error Reduction) after Tuning 

 

Figure 12 shows the final tuned model error—as averaged across the 10 tuning runs that use different 
validation partitions—for each problem and each modeling algorithm. The effect of the “no free lunch” 
theorem is quite evident here—different modeling algorithms are best for different problems. Consider the 
two data sets that were selected previously. For the Banana data set, you can see that although the 
improvement was best for NN and SVM, the final errors are highest for these two algorithms, indicating 
that the default models were worse for these modeling algorithms for this particular data set. All other 
modeling algorithms produce very similar error of around 10%—less than half the error from NN and SVM 
in this case. For the Thyroid data (which showed an even larger range of improvement for all modeling 
algorithms), the resulting model error is actually similar for different algorithms; again the default starting 
point is different, confirming the challenge of setting good defaults. 

Overall, the benchmark results, when averaged across all data sets, are as expected. Decision trees are 
the simplest models and result in the highest overall average model error. If you build a forest of trees (a 

                                                           

1 Data sets from http://mldata.org/repository/tags/data/IDA_Benchmark_Repository/, made available under the Public 
Domain Dedication and License v1.0, whose full text can be found at http://www.opendatacommons.org/licenses/pddl/1.0/ .   

Model  
Type 

Average 
Improvement 

(%) 

NN 8.53 

SVM 8.45 

DT 6.25 

FOR 2.09 

GB 1.91 

http://mldata.org/repository/tags/data/IDA_Benchmark_Repository/
http://www.opendatacommons.org/licenses/pddl/1.0/
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form of an ensemble model), you can reduce the error further, and for these data sets, the more complex 
gradient boosting training process leads to the lowest model error. The average errors for NN and SVM 
fall between the simple single decision tree and tree ensembles. Kernels other than linear or polynomial 
might be needed with SVM for these data sets, and neural networks might require more internal iterations 
or evaluation of more configurations, given the discrete combinations of hidden layers and units. So why 
not always use gradient boosting? Aside from fact that it might not be best for all data sets and the desire 
to use the simplest model that yields good predictions, there is a trade-off between resulting model 
accuracy and tuning time. 

 

 

 

Model 
Type 

Average Error 
After Tuning 

(%) 

GB 9.9 

FOR 10.7 

SVM 13.1 

NN 13.5 

DT 13.9 

Figure 12. Benchmark Results: Average Error after Tuning 

 

TUNING TIME 

For the tree-based algorithms, the trade-off is exactly the inverse ranking of machine learning algorithms 
with time compared to accuracy on average, as shown in Figure 13. Decision trees are the simplest and 
most efficient—only 14.4 seconds here for full tuning with this conservative tuning process. Building a 
forest of trees increases the time to over 23 seconds, and the complex gradient boosting process is more 
expensive at 30 seconds average tuning time. NN and SVM tuning times are similar for several problems, 
but higher for some, leading to a higher overall average tuning time; both use iterative optimization 
schemes internally to train models, and convergence might take longer for some data sets.  

 

 

 

Model 
Type 

Average 
Tuning 
Time 

(Seconds) 

Average 
Parallel 
Speed-

Up 

DT 14.4 3.6 

FOR 23.7 5.1 

GB 30.0 4.7 

NN 42.7 4.1 

SVM 45.6 4.6 

Figure 13. Benchmark Results: Average Total Tuning Time in Seconds 
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For these benchmark data sets, the tuning time is manageable—less than 30 seconds for fully tuning 
most models. Even the worst case, a neural network tuned to the wide Splice data set (which has 60 
attributes) is tuned in just over two minutes. Note here again that all configurations are trained in parallel 
during each iteration of tuning. The total CPU time for this worst-case tuning is closer to eight minutes. 
With the default tuning process of 10 configurations during each of five iterations, one configuration is 
carried forward each iteration; so up to nine new configurations are evaluated in parallel at each iteration 
(by default). Figure 13 also shows parallel speed-up time (which is the total CPU time divided by the tuner 
clock time) of 3X–5X speed-up with parallel tuning. Why is the speed-up not 9X with nine parallel 
evaluations? Putting aside some overhead of managing parallel model training, the longest running 
configuration of the nine models that are trained in parallel determines the iteration time. For example, if 
eight configurations take 1 second each for training, and the ninth takes 2 seconds, a sequential training 
time of 10 seconds is reduced to 2 seconds, the longest-running model training. A 5X speed-up is 
observed rather than the average of the nine training times (1.1 seconds), which would be a 9X speed-up. 

For larger data sets, longer-running training times, and an increased number of configurations at each 
iteration, the parallel speed-up will increase. For these benchmark problems, running in parallel on a 
compute grid might not be necessary; for a 30-second tuning time, 5X longer sequentially might not be a 
concern. Eight minutes for tuning the longer-running data sets might not even be a concern. Before you 
consider parallel/distributed training and tuning for larger data sets, however, you need to consider 
another tuning cost with respect to the validation process: cross-validation. 

CROSS-VALIDATION 

For small data sets, a single validation partition might leave insufficient data for validation in addition to 
training. Keeping the training and validation data representative can be a challenge. For this reason, 
cross-validation is typically recommended for model validation. With cross-validation, the data are 
partitioned into k approximately equal subsets called folds; training/scoring happens k times—training on 
all except the current holdout fold, and scoring on the holdout fold. The cross-validation error is then an 
average of the errors obtained from each validation fold. 

This process can produce a better representation of error across the entire data set, because all 
observations are used for training and scoring. Figure 14 shows a comparison of cross-validation errors 
and the errors from a single partition, where both are compared to errors from a separate test set. The 
three smallest data sets are chosen, and the value in parentheses indicates the size of the holdout test 
set. Gradient boosting tree models are tuned in this case. The plot shows the absolute value of the error 
difference, where lower is better (validation error closer to test error). For the Breast Cancer data set, the 
single partition results and the cross-validation results are nearly equal. However, for the other two data 
sets, the cross-validation process that uses five folds produces a better representation of test error than 
the single validation partition does—in both cases, the cross-validation error is more than 5% closer to the 
test error. 

 

   

Figure 14. Benchmark Results: Single Partition versus Cross-Validation 
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With this cross-validation process, the trade-off is again increased time. The model training time, and 
therefore the overall tuning time, is increased by a factor of k. Thus, a 5X increase in time with sequential 
tuning for a small data set and a 5X increase with five-fold cross-validation becomes a 25X increase in 
tuning time. So tuning a model to even a small data set can benefit from parallel tuning. 

 

TUNING MODELS FOR THE MNIST DIGITS DATA 

In this section, the power of combined distributed modeling training and parallel tuning enabled by the 
SAS Viya distributed analytics platform is demonstrated by using the popular MNIST (Mixed National 
Institute of Standards and Technologies) database of handwritten digits (Lecun, Cortes, and Burges 
2016). This database contains digitized representations of handwritten digits 0–9, in the form of a 28 × 28 
image for a total of 784 pixels. Each digit image is an observation (row) in the data set, with a column for 
each pixel containing a grayscale value for that pixel. The database includes 60,000 observations for 
training, and a test set of 10,000 observations. Like many studies that use this data set, this example 
uses the test set for model validation during tuning. 

The GRADBOOST procedure is applied to the digits database with autotuning according to the 
configuration that is specified in the following statements: 

 

    proc gradboost data=mycaslib.digits; 

        partition rolevar=validvar(train=’0’ valid=’1’); 

        input &inputnames; 

        target label / level=nominal; 

        autotune popsize=129 maxiter=20 maxevals=2560  

                 nparallel=32 maxtime=172800 

                 tuningparameters=(ntrees(ub=200)); 

    run; 

 

In this example, the training and test data sets have been combined, with the ROLEVAR= option 
specifying the variable that indicates which observations to use during training and which to use during 
scoring for validation. The PARTITION statement is used in conjunction with the AUTOTUNE statement 
to specify the validation approach—a single partition in this case, but using the ROLEVAR= option 
instead of a randomly selected percentage validation fraction. Because there are 784 potential inputs 
(pixels) and some of the pixels are blank for all observations, the list of input pixels that are not blank is 
preprocessed into the macro variable &inputnames, resulting in 719 inputs (see the code in Appendix B). 
For tuning, the number of configurations to try has been significantly increased from the default settings. 
Up to 20 iterations are requested, with a population size (number of configurations per iteration) of 129. 
Recall that one configuration is carried forward each iteration, so this specification results in up to 128 
new configurations evaluated in each iteration.  

A grid with 142 nodes is employed and configured to use four worker nodes per model training. Why four 
instead of eight or 16 worker nodes per training as suggested in Figure 9? There is a trade-off here for 
node assignment: training time versus tuning time. Using four worker nodes per training and tuning 32 
models in parallel uses 128 worker nodes in total. If the number of worker nodes for training is doubled, 
the number of parallel models might need to be reduced in order to balance the load. Here it is decided 
that the gain from doubling the parallel tuning is larger than the reduced training time from doubling the 
number of worker nodes for each model training. Using four worker nodes, the training time for a default 
gradient boosting model is approximately 21.5 minutes. With eight worker nodes, the training time is 
approximately 13 minutes.  

With up to 20 iterations and 128 configurations per iteration, the MAXEVALS= option is increased to 
2,560 to accommodate these settings (the default for this option is 50, which would lead to termination 
before the first iteration finishes). The MAXTIME= option is also increased to support up to 48 hours of 
tuning time; many of the configurations train in less than the time required for the default model training. 
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Finally, the upper bound on the tuning range for the NTREES hyperparameter is increased to 200 from 
the default value of 150. The syntax enables you to override either or both of the hyperparameter bounds; 
in this example, the default lower bound for NTREES is unchanged and PROC GRADBOOST uses 
default settings for the other five tuning parameters. Increasing the upper bound for the number of trees 
hyperparameter will increase the training time for some models (and thus increase the tuning time) but 
might allow better models to be identified. 

Some of the challenges of hyperparameter tuning discussed earlier can be seen in Figure 15, which 
shows the error for the configurations that are evaluated in the first iteration of tuning. Recall that the first 
iteration uses a Latin hypercube sample (which is more uniform than a pure random sample) to obtain an 
initial sample of the space. Two key points can be seen very clearly in this plot: 

 The majority of the evaluated configurations produce a validation error larger than that of the 
default configuration, which is 2.57%. 

 As you look across the plot, you can clearly see that many different configurations produce very 
similar error rates. These similar error rates indicate flat regions in the space, which are difficult 
for an optimizer to traverse and make it difficult for random configurations to identify an improved 
model. 

 

 

 

Figure 15. The GRADBOOST Procedure Tuning to MNIST Digits Data—Iteration 1 

 

An improved model is found in the first iteration, with an error of 2.21%. Figure 16 shows the results of 
applying the genetic algorithm in subsequent iterations. The error is reduced again in 11 of the remaining 
19 iterations. The tuning process is terminated when the maximum requested number of iterations is 
reached, after evaluating 2,555 unique model configurations. Here the final error is 1.74%. Details of the 
final model configuration are shown in Figure 17. The number of trees hyperparameter (which starts with 
a default of 100 trees) is driven up to 142 trees, still below the default upper bound of 150. Only 317 
variables are used, well below the default of all (719) variables. Learning rate is increased from a default 
of 0.1 to 0.19, and sampling rate is increased from 0.5 to 1.0, its upper bound. Both lasso and ridge 
regularization begin at 0; lasso is increased to 0.14 and ridge is increased to 0.23. 

Also shown in Figure 17 are tuning timing information and a tuning process summary. You can see that 
the tuning time of just over 28 hours (101,823 seconds) actually uses more than 760 hours of CPU time 
(the sum of all parallel training/scoring time for each objective evaluation), which results in a parallel 
speed-up of nearly 27X—much more than the 5X best case speed-up that is seen with the benchmark 
problems, and a much better ratio of 0.84 (with 32 parallel evaluations) compared to 0.56 (5X speed-up 
with 9 parallel evaluations). 
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Figure 16. The GRADBOOST Procedure Tuning Iteration History, MNIST Digits Data 

 

  

 

 

 

Figure 17. The GRADBOOST Procedure Tuning Results, MNIST Digits Data 

 

CONCLUSION 

The explosion of digital data is generating many opportunities for big data analytics, which in turn 
provides many opportunities for tuning predictive models to capitalize on the information contained in the 
data—to make better predictions that lead to better decisions. The tuning process often leads to 
hyperparameter settings that are better than the default values.  But even when the default settings do 
work well, the hyperparameter tuning process provides a heuristic validation of these settings, giving you 
greater assurance that you have not overlooked a model configuration that has higher accuracy.  This 
validation is of significant value itself. 

The SAS Viya distributed analytics platform is ideally suited for tuning predictive models because many 
configurations often need to be evaluated. The TREESPLIT, FOREST, GRADBOOST, NNET, 
SVMACHINE, and FACTMAC procedures implement a fully automated tuning process that requires only 
the AUTOTUNE keyword to perform a conservative tuning process. This implementation includes the 
most commonly tuned parameters for each machine learning algorithm. You can adjust the ranges or list 
of values to try for these hyperparameters, exclude hyperparameters from the tuning process, and 
configure the tuning process itself. The local search optimization framework that is used for tuning is also 
ideally suited for use on the SAS Viya platform; alternate search methods can be applied and combined, 
with the framework managing concurrent execution and information sharing. With the complexity of the 
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model-fitting space, many search strategies are under investigation for both effective and efficient 
identification of good hyperparameter values. Bayesian optimization is currently popular for 
hyperparameter optimization, and an experimental algorithm is available in the local search optimization 
framework. However, the key feature of local search optimization is its ability to build hybrid strategies 
that combine the strengths of multiple methods; no one search method will be best for tuning for all data 
sets and all machine learning algorithms—there is “no free lunch.” 

The distributed execution capability provided by the SAS Viya platform is fully exploited in this autotuning 
implementation. With small data sets that might not require distributed training, the need for and added 
expense of cross-validation support the use of parallel tuning to balance the added expense. For large 
data sets, distributed/parallel training and parallel model tuning can be applied concurrently within the 
platform for maximum benefit. One challenge is selecting the right combination of the number of worker 
nodes per model training and the number of parallel model configurations. With small data sets, the 
number of workers per training should be set as low as possible and the number of parallel configurations 
as high as possible, allowing the compute grid nodes to be used for parallel tuning. With larger data sets, 
such as the MNIST digits data set, a balance must be struck. Usually hundreds of worker nodes are not 
needed for a single model training (even with truly big data) and there is always a communication cost 
that can be detrimental if too many nodes are used for training. With the number of configurations 
evaluated in parallel, there are never “too many”—the more configurations that are evaluated in parallel, 
the closer to 100% efficiency the tuning process becomes, given that many parallel configurations are not 
all evaluated on the same worker nodes (evaluating hundreds of configurations on four worker nodes 
simultaneously will slow the process down). Approximately 84% efficiency was achieved when the PROC 
GRADBOOST tuning process was used to model the MNIST digits data set. 

What is not discussed and demonstrated in this paper is a comparison of the implemented hybrid strategy 
with a random search approach for hyperparameter tuning. Random search is popular for two main 
reasons: a) the hyperparameter space is often discrete, which does not affect random search, and b) 
random search is simple and all configurations could potentially be evaluated concurrently because they 
are all independent. The latter reason is a strong argument when a limited number of configurations is 
considered or a very large grid is available. In the case of the GRADBOOST procedure tuning a model to 
the MNIST digits data, four nodes per training and 32 parallel configurations uses 128 nodes. The best 
solution was identified at evaluation 2,551. These evaluations could not have all been performed in 
parallel. With a combination of discrete and continuous hyperparameters, the hybrid strategy that uses a 
combination of Latin hypercube sampling (LHS) and a genetic algorithm (GA) is powerful; this strategy 
exploits the benefits of a uniform search of the space and evolves the search using knowledge gained 
from previous configurations. The local search optimization framework also supports random, LHS, and 
Bayesian search methods. 

With an ever-growing collection of powerful machine learning algorithms, all governed by 
hyperparameters that drive their fitness quality, the “no free lunch” theorem presents yet another 
challenge: deciding which machine learning algorithm to tune to a particular data set. This choice is an 
added layer of tuning and model selection that could be managed in a model tuning framework, with 
parallel tuning across multiple modeling algorithms in addition to multiple configurations. Combining 
models of different types adds a dimension of complexity to explore with tuning. With so many variations 
to consider in this process, careful management of the computation process is required. 
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APPENDIX A: DESCRIPTION OF AUTOTUNE STATEMENT OPTIONS 

 

You can specify the following options in the AUTOTUNE statement: 

 

MAXEVALS=number specifies the maximum number of configuration evaluations allowed for the 
tuner. 

MAXITER=number specifies the maximum number of iterations of the optimization tuner. 

MAXTIME=number specifies the maximum time (in seconds) allowed for the tuner. 

POPSIZE=number specifies the maximum number of configurations to evaluate in one iteration 
(population). 

SAMPLESIZE=number specifies the total number of configurations to evaluate when 
SEARCHMETHOD=RANDOM or SEARCHMETHOD=LHS. 

SEARCHMETHOD=search-method-name specifies the search method to be used by the tuner. 

FRACTION=number specifies the fraction of all data to be used for validation. 

KFOLD=number specifies the number of partition folds in the cross-validation process. 

EVALHISTORY=eval-history-option specifies the location in which to report the complete evaluation 
(the ODS table only, the log only, both places, or not at all). 

NPARALLEL=number specifies the number of configurations to be evaluated by the tuner 
simultaneously. 

OBJECTIVE=objective-option-name specifies the measure of model error to be used by the tuner 
when it searches for the best configuration. 

TARGETEVENT=target-event-name specifies the target event to be used by the ASSESS algorithm 
when it calculates the error metric (used only for nominal target parameters). 

USEPARAMETERS=use-parameter-option specifies the set of parameters to tune, with use-
parameter-option specified as:  

STANDARD tunes using the default bounds and initial values for all parameters. 

CUSTOM tunes only the parameters that are specified in the TUNINGPARAMETERS= option. 

COMBINED tunes the parameters that are specified in the TUNINGPARAMETERS= option and 
uses default bounds and initial values to tune all other parameters. 

TUNINGPARAMETERS=(suboption . . . <suboption>) specifies the hyperparameters to tune and 
which ranges to tune over, with suboption specified as: 

NAME (LB=number UB=number VALUES=value-list INIT=number EXCLUDE), where  

 LB specifies a custom lower bound to override the default lower bound. 

 UB specifies a custom upper bound to override the default upper bound. 

 VALUES specifies a list of values to try for this hyperparameter 

INIT specifies the value to use for training a baseline model. 

EXCLUDE specifies that this hyperparameter should not be tuned; it will remain fixed at 
the value specified for the procedure (or default if none is specified). 
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APPENDIX B: CODE TO CREATE A LIST OF NONEMPTY PIXELS FOR MNIST DIGITS 

 

proc cardinality data=mycas.digits outcard=mycas.digitscard; 

run; 

 

proc sql; 

  select _varname_ into :inputnames separated by ' ' 

    from mycas.digitscard 

    where _mean_ > 0 

 and _varname_ contains "pixel" 

    ; 

quit; 
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Paper 242-2017 

Random Forests with Approximate Bayesian Model Averaging 
Tiny du Toit, North-West University, South Africa; André de Waal, SAS Institute Inc. 

ABSTRACT 

A random forest is an ensemble of decision trees that often produce more accurate results than a single 
decision tree. The predictions of the individual trees in the forest are averaged to produce a final 
prediction. The question now arises whether a better or more accurate final prediction cannot be obtained 
by a more intelligent use of the trees in the forest. In particular, in the way random forests are currently 
defined, every tree contributes the same fraction to the final result (e.g. if there are 50 trees, each tree 
contributes 1/50th to the final result). This ignores model uncertainty as less accurate trees are treated 
exactly like more accurate trees. Replacing averaging with Bayesian Model Averaging will give better 
trees the opportunity to contribute more to the final result which may lead to more accurate predictions. 
However, there are several complications to this approach that have to be resolved, such as the 
computation of a SBC value for a decision tree. Two novel approaches to solving this problem are 
presented and the results compared to that obtained with the standard random forest approach.  

INTRODUCTION 

Random forests (Breiman, 2001; Breiman, 2001b) occupies a leading position amongst ensemble models 
and have shown to be very successful in data mining and analytics competitions such as KDD Cup 
(Lichman, 2013) and Kaggle (2016). One of the reasons for its success is that each tree in the forest 
provides part of the solution which, in the aggregate, produces more accurate results than a single tree.  

In the bagging and random forest approaches, multiple decision trees are generated and their predictions 
are combined into a single prediction. For random forests, the predictions of the individual trees are 
averaged to obtain a final prediction. All trees are treated equally and each tree makes exactly the same 
contribution to the final prediction. In this paper we question the supposition as model uncertainty is 
ignored. 

Random forests are successful because the approach is based on the idea that the underlying trees 
should be different (if the trees were equal only one tree would be needed to represent the forest). This 
tree mixture is achieved by injecting randomness into the trees (this is explained in more detail in the 
following section). The resulting trees are diverse (by design) with varying levels of predictive power.  

A goodness-of-fit statistic such as misclassification rate or average squared error may be used to judge 
the quality of each tree. Should the more predictive/accurate trees not carry more weight towards the final 
prediction? If the answer is affirmative, a second question needs to be answered: how should the trees be 
aggregated/amalgamated to get the best result?  

In the rest of the paper a method of intelligent tree combination/aggregation, based on the theory of 
Bayesian Model Averaging, is proposed. Forests in SAS® Enterprise Miner is described in Section 2. The 
theory of Bayesian Model Averaging is explained in Section 3.  For the theory of Bayesian Model 
Averaging to be applicable to decision trees, each tree’s SBC value needs to be approximated. Neural 
networks are used to approximate the decision trees and this is explained in Section 4. A new weighting 
scheme is introduced in Section 5. Directly computing the degrees of freedom of a tree is reviewed in 
Section 6. The paper ends with a discussion and conclusions.   

FORESTS IN SAS ENTERPRISE MINER 

A random forest is an ensemble of decision trees. Multiple decision trees are constructed, each tree 
based on a random sample of observations from the training data set. The trees are then combined into a 
final model. For an interval target, the predictions of the individual trees in the forest are averaged. For a 
categorical target, the posterior probabilities are also averaged over the trees. A second step usually 
involves some kind of majority voting to predict the target category.  

In SAS Enterprise Miner, the HPFOREST procedure (De Ville and Neville, 2013) takes a random sample 
(without replacement) of the observations in the training data set. This is done for each tree in the forest. 
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When each node in a tree is constructed, a subset of inputs is selected at random from the set of 
available inputs. Only the variable with the highest correlation with the target is then selected from this 
subset and used to split the node. Because many decision trees are grown, the expectation is that the 
better variables are more likely to be selected and that random errors introduced from overfitting will 
cancel when the predictions are averaged. 

Our first attempt at Bayesian Model Averaging centered on the use of the HP Forest node in SAS 
Enterprise Miner (see Figure 1).  

 

Figure 1. HP Forest node 

However, because the node is “locked down”, the user is unable to get access to the individual trees in 
the forest. Furthermore, the bagged sample (training data set) as well as the out-of-bag sample (testing 
data set) constructed by the HP Forest node are inaccessible. It is therefore impossible to use the output 
of one HP Forest node (in its current state) to implement our new approach. After some experimentation 
we decided on a different strategy.  

The data set that is analyzed in this paper is the HMEQ data set. The data set contains 13 variables with 
loan default status (BAD) as the dependent variable and 12 independent variables, e.g. years at current 
job (YOJ), number of derogatory reports (Derogatories), number of delinquent trade lines (Delinquencies), 
etc. The data partition node was used to partition the raw data set into a training data set containing 80% 
of the data and a validation data set containing 20% of the data (see Figure 2). As the HMEQ data set is 
relatively small (only 5960 observations), and the training data set is again going to be divided into 
bagged and out-of-bag samples, the training data set was kept as large as possible without compromising 
the various model building steps that will follow. 

 

Figure 2. Data partitioning of the raw data set 

N different trees are constructed using N Decision Tree nodes. The trees are then aggregated as needed. 
But, the trees have to be different (as would have been the case if the HP Forest node was used). The 
solution is to use the HP Forest node for variable selection.  

N HP Forest nodes (with different seeds) are used to construct N different forests, each containing a 
single tree. As each forest is built using different bagged (0.8) and out-of-bag samples (0.2), the trees in 
the forests should be very different from each other. Also to restrict the number of variables, the maximum 
depth of the trees in the forest has been set to three. 

Although N trees (one from each forest) have been built, the details of the trees are hidden and access to 
the bagged and out-of-bag samples that were used to construct the trees are unavailable. But, 
information on the subsets of variables used to construct the forests (and therefore the trees) is 
accessible. These subsets are now used to construct N trees using Decision Tree nodes (see Figure 3). 
This strategy will force the N trees to be different.  

 

Figure 3. HP Forest node used for variable selection 

The HP Forest nodes are basically used as variable selection nodes so that the N decision trees that are 
constructed will be different from each other (simulating the strategy used by the HP Forest node). The 
trees will most probably not be exactly the same as that constructed by the HP Forest node (because the 
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order of the splits are unknown and not all variables in the subset are available at each split), but the 
trees are built on the same subsets of variables used in the forests. The result is N different trees that can 
now be used to compare the different weighting schemes.  

It might be tempting to use the N trees in the N forests to implement our new weighting scheme on. The 
problem is that each tree was built on a different bagged sample and also has an associated out-of-bag 
sample. Because the samples are not known, it is impossible to compute the goodness-of-fit statistics for 
the bagged or out-of-bag samples. The best that can be done is to consider the union of the different 
bagged and out-of-bag samples, which is the training data set. 

As the HMEQ data set is small, partitioning the raw data set into three data sets to obtain a test data set 
is not practical (this would have been ideal to obtain an independent estimate of the performance of the 
models). The scoring data set therefore consists of the union of the training and the validation data sets, 
thus the raw hmeq data set (see Figure 4).  

 

Figure 4. Scoring with a decision tree 

This is a compromise and the fit statistics may therefore be optimistic. As only the relative performance of 
the models are important, all models are treated equally by scoring this data set.   

The standard averaging implemented by the HP Forest node is now coded in a SAS Code node (see 
Figure 5) and the results computed on the scoring (hmeq) data set. 

 

Figure 5. Computing goodness-of-fit measures 

In this example, N=5 trees are constructed. Details of the number of leaves in each tree, the number of 
variables used in splitting and the depth of each tree are given in Table 1. 

 

Tree #Leaves #Variables Depth 

1 10 3 5 

2 5 2 4 

3 16 4 6 

4 14 4 6 

5 16 4 6 

Table 1. Five Trees 

The c-statistic for the random forest based on these 5 trees is 88.3015, the misclassification rate is 
14.89% and the sum of squared errors (sse) is 646.50. This is our baseline model and we will 
demonstrate in the following sections that a more intelligent amalgamation of the trees in the forest could 
result in a much better model with higher c-statistic, lower misclassification rate and smaller sum of 
squared errors (an indication of the variance of the errors). 
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BAYESIAN MODEL AVERAGING  

When a single model is selected for predictive modeling, uncertainty about the structure of the model and 
the variables that must be included are ignored. This leads to uncertainty about the quantities of interest 
being underestimated (Madigan and Raftery, 1994). Regal and Hook (1991) and Miller (1984) showed in 
the contexts of regression and contingency tables that this underestimation can be large which can lead 
to decisions that have too high risk (Hodges, 1987).  

In principle, the standard Bayesian formalism (Learner, 1978) provides a universal solution to all these 
difficulties. Let Δ be the quantity of interest, such as a future observation, a parameter or the utility of a 
course of action. Given data D, the posterior distribution of Δ is 

𝑝𝑟(Δ|𝐷) = ∑ 𝑝𝑟(Δ|𝑀𝑘 , 𝐷)𝑝𝑟(𝑀𝑘|𝐷)𝐾
𝑘=1  (3.1).  

The latter expression is the mean of the posterior distributions under each of the models, weighted by 
their posterior model probabilities. The models that are considered are 𝑀1, 𝑀2, … , 𝑀𝑘 and  

𝑝𝑟(𝑀𝑘|𝐷) =  
𝑝𝑟(𝐷|𝑀𝑘)𝑝𝑟(𝑀𝑘)

∑ 𝑝𝑟(𝐷|𝑀𝑙)𝑝𝑟(𝑀𝑙)𝐾
𝑙=1

 (3.2) 

where  

𝑝𝑟(𝐷|𝑀𝑘) = ∫ 𝑝𝑟(𝐷|𝜃𝑘 , 𝑀𝑘)𝑝𝑟(𝜃𝑘|𝑀𝑘)𝑑𝜃𝑘 (3.3) 

is the marginal likelihood of model 𝑀𝑘, 𝜃𝑘 is the parameter vector of 𝑀𝑘, 𝑝𝑟(𝑀𝑘) is the prior probability of 
𝑀𝑘, 𝑝𝑟(𝐷|𝜃𝑘, 𝑀𝑘) is the likelihood, and 𝑝𝑟(𝜃𝑘|𝑀𝑘) is the prior distrubution of 𝜃𝑘.  

When averaging over all the models, a better predictive ability is obtained compared to using any single 
model 𝑀𝑗, as measured by a logarithmic scoring rule:  

−𝐸[log{∑ 𝑝𝑟(Δ|𝑀𝑘, 𝐷)𝑝𝑟(𝑀𝑘|𝐷)𝐾
𝑘=1 }] ≤ −𝐸[𝑙𝑜𝑔{𝑝𝑟(Δ|𝑀𝑗 , 𝐷)}] (𝑗 = 1,2, … , 𝐾)  

where Δ is the observable to be predicted and the expectation is with respect to  

∑ 𝑝𝑟(Δ|𝑀𝑘)𝑝𝑟(𝑀𝑘|𝐷)

𝐾

𝑘=1

. 

This latter result follows from the nonnegativity of the Kullback-Leibler information divergence.  

In practice, the Bayesian model averaging (BMA) approach in general has not been adapted due to a 
number of challenges involved (Hoeting, Madigan, Raftery and Volinsky, 1999). Firstly, the posterior 
model probabilities 𝑝𝑟(𝑀𝑘|𝐷) involve the very high dimensional integrals in (3.3) which typically do not 
exist in closed form. This makes the probabilities hard to compute. Secondly, as the number of models in 
the sum of (3.1) can be very large, exhaustive summation is rendered infeasible. Thirdly, as it is 
challenging, little attention has been given to the specification of 𝑝𝑟(𝑀𝑘), the prior distribution over 
competing models. The problem of managing the summation in (3.1) for a large number of models has 
been investigated by a number of researchers. Hoeting (n.d.) discussed the historical developments of 
BMA, provided an additional description of the challenges of carrying out BMA, and considered solutions 
to these problems for a number of model classes. More recent research in this area are described by 
Hoeting (n.d).  

Lee (1999) and Lee (2006) considered a number of methods for estimating the integral of (3.3) and came 
to the conclusion that the SBC may be the most reliable way of estimating this quantity. The SBC defined 
as 

𝑆𝐵𝐶𝑖 = log (ℒ(𝜃̂|𝑦)) − 𝐾𝑖log (𝑛) 

is used. In addition, a noninformative prior is exploited that puts equal mass on each model, i.e. 𝑃(𝑀𝑖) =
𝑃(𝑀𝑗) for all 𝑖 and 𝑗. The SBC approximation to (3.2) then becomes 

𝑝𝑟(𝑀𝑖|𝐷) ≈
𝑃(𝐷|𝑀𝑖)

∑ 𝑃(𝐷|𝑀𝑗)𝑗

≈
𝑒𝑆𝐵𝐶𝑖

∑ 𝑒
𝑆𝐵𝐶𝑗

𝑗

 (3.4). 
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The Bayesian approach automatically manages the balance between improving fit and not overfitting, as 
additional variables that do not sufficiently improve the fit will dilute the posterior, resulting in a lower 
posterior probability for the model. This approach is conceptually straightforward and has the advantage 
of being used simultaneously on both the problem of choosing a subset of explanatory variables, and the 
problem of choosing the architecture for the neural network (Du Toit, 2006).  

When the SBC defined as  

𝑆𝐵𝐶𝑖 = −2 log (ℒ(𝜃̂|𝑦)) + 𝐾𝑖log (𝑛) 

is used, (3.4) becomes  

𝑝𝑟(𝑀𝑖|𝐷) ≈
𝑃(𝐷|𝑀𝑖)

∑ 𝑃(𝐷|𝑀𝑗)𝑗

≈
𝑒−𝑆𝐵𝐶𝑖

∑ 𝑒
−𝑆𝐵𝐶𝑗

𝑗

. 

APPROXIMATING SBC WITH A NEURAL NETWORK 

It is well-known that a decision tree can be used to approximate a neural network. This is usually done to 
gain some understanding of the neural network, as a neural network can be a black box. The converse, 
which is using a neural network to approximate a decision tree, is less obvious.  

Just as with surrogate models (a surrogate model approximates an inscrutable model’s 
predictions/decisions in order to facilitate interpretation), a neural network may be used to approximate 
the decision boundaries of the decision tree. As a neural network retains any non-linear relationships that 
are present in the decision tree, it is a good candidate for approximating a decision tree.  

To apply the Bayesian Model Averaging formula of Section 3 to the trees in a forest, each tree’s SBC is 
needed. This is not available as the degrees of freedom K for a decision tree is in general undefined. It is 
furthermore known that objective model selection criteria such as SBC cannot be used to compare 
models across different modeling techniques. It can only be used as a relative measure ranking models 
based on the same modeling technique. The expectation now is that the ranking of the decision trees 
from better to worse will be preserved in the SBC values computed by the neural networks. 

 Assume there are N decision trees in the forest. N neural networks are now constructed: each neural 
network approximating one tree. The number of hidden nodes in each neural network is adjusted to 
produce a neural network that closely shadows (in ROC curve and misclassification rate) the relevant tree 
(see Figure 6). As SBC is defined for neural networks in SAS Enterprise Miner, the neural network 
models’ SBCs are now used as proxies for the decision trees’ SBCs. Note also that SBC is only 
computed for the training data set by the Neural Network node, so this is what is used. 

 

Figure 6. Approximating a decision tree with a neural network 

The Neural Network node should be connected in parallel to the Decision Tree node and should have all 
the variables selected by the HP Forest node as inputs. If the Neural Network node is connected to the 
Decision Tree node, the Decision Tree node could do additional variable selection which may be 
undesirable. The training data set is used to construct the decision trees and the neural networks and the 
validation data set is used to optimize the decision trees as well as for stopped training in the neural 
networks. 

Details of the N=5 constructed neural networks sorted by SBC are given in Table 2. All neural networks 
are multilayer perceptrons with one hidden layer and M hidden nodes. 
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Rank Tree  # Hidden Nodes SBC 

1 2 4 3322 

2 5 2 4032 

3 3 4 4061 

4 4 5 4393 

5 1 5 4400 

Table 2. MLP architectures 

As the SBC values computed by the neural networks for the training data set used in this paper are large 
(3322 and greater), the base (e) used in the Bayesian Model Averaging formula, e.g.  

𝑒−3322

𝑒−3322 + 𝑒−4032 + 𝑒−4061 + 𝑒−4393 + 𝑒−4400
 

 creates computational difficulties and needs to be adjusted to make the computations viable.  

When the base e is replaced by base 1, we get averaging: 

 
1−3322

1−3322+1−4032+1−4061+1−4393+1−4400 =  
1

5
 

as implemented in the HP Forest node in SAS Enterprise Miner (although SAS Enterprise Miner most 
definitely did not use the above formula to arrive at 1/5). 

We therefore need a base greater than 1, but smaller than e to make the computations feasible. In this 
example, the base is adjusted to 1.002 (some experimentation might be needed to find and to adjust the 
base used in the formula so that reasonable weights are produced). The final weight computed for the 
best model is: 

1.002−3322

1.002−3322 + 1.002−4032 + ⋯ + 1.002−4400
= 0.5867 

Table 3 ranks the five models from good to bad giving their SBC values (smaller is better) as well as final 
weight contribution to the forest. 

 

Rank SBC Weight 

1 3322 0.5867 

2 4032 0.1420 

3 4061 0.1340 

4 4393 0.0690 

5 4400 0.0680 

Table 3. Bayesian Model Averaging 

The c-statistic for this model is 89.3474, the misclassification rate is 13.37% and the sse is 565.61. This 
gives an improvement of more than 1.18% in the c-statistic over the standard method used to construct 
the forest.  The misclassification rate is reduced by 10.2% and the sse decreased by 12.5%. Because we 
do not have the degrees of freedom for the decision tree, we cannot compute the error variance (as is 
usually done for linear regression), but sse gives a good indication that the size of the errors decreased 
(the computed probabilities are more precise). 

It is worth noting that the SBC is only used to weigh the contributions of each tree and that the underlying 
trees in the forest are not modified at all.  The trees are only amalgamated in a more intelligent way using 
the computed weights. 
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A NEW WEIGHTING SCHEME 

Approximating a decision tree with a neural network has its drawbacks: extra computation time is needed 
to train and adjust the neural network and the approximation may be imprecise. Finding the appropriate 
base to get a reasonable spread of the final weight might be an issue.  

As we are only interested in the relative ordering of the models (from good to bad), sse or validation 
misclassification rate might also suffice. Table 4 lists the SBC and sse on the training data set for the 
neural networks as well as the sse on the training data set for the decision trees and the validation 
misclassification rate also for the decision trees. 

 

 

 

Rank 

TRAIN 

SBC 

NN 

TRAIN 

SSE 

NN 

TRAIN 

SSE 

DT 

VALID 

MISC 

DT 

1 3322 992 952 12.98 

2 4032 1214 1168 15.74 

3 4061 1185 1168 15.74 

4 4393 1282 1280 16.41 

5 4400 1296 1313 16.75 

Table 4. SBC, SSE and MISC 

Note how closely the neural network sse approximates the decision tree sse. Except for the tie in the 2nd 
and 3rd models, the decision tree misclassification rate on the validation data set mimics the ordering of 
SBC computed with the neural network. A simplification of the whole process is therefore to use the 
validation misclassification rate computed for each decision tree to rank the models. 

But, the formula used to compute the final weights depends on SBC and this is now missing if we omit 
constructing the neural networks. The following weighting scheme can be used as an approximation to 
the formula of the previous section, and this only depends on the ordering of the models (as given in 
Table 4), not the absolute values of the computed SBCs. 

If there are N trees in the forest, the weight for each tree i (i = 1, 2, …, N) should be: 

{ 
2𝑖−1

∑ 2𝑘𝑛−1
𝑘=0

 } 

For the hmeq data set with five trees in the forest, the weights are 

 { 
1

31
 ,

2

31
 ,

4

31
 ,

8

31
 ,

16

31
 } 

which seems reasonable and not that different from the weight computed with Bayesian Model Averaging. 
The table in the previous section is therefore updated to (see Table 5): 
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Rank 

VALID 

MISC 

DT 

 

 

Weight 

1 12.98 0.5161 

2 15.74 0.2580 

3 15.74 0.1290 

4 16.41 0.0645 

5 16.75 0.0322 

Table 5. Weights based on VALID MISC of DT 

Note how closely these weights resemble the weights computed with SBC (see Table 2). The c-statistic 
for this model is 89.4178, the misclassification rate is 13.65% and the sse is 569.20. This gives a 1.12% 
improvement in the c-statistic, a 8.32% improvement in the misclassification rate and a 11.9% decrease in 
the sse.  

Although not as good as the previous model, it is still a significant improvement over our baseline model. 
Furthermore, this is an extremely simple computation that would require very little time to compute.  

The formula also generalizes to larger N as the contributions of the inferior models in the forest tend to 
approach 0. This makes intuitive sense as the effect of random errors are mitigated. If the 
misclassification rate on the validation data set is replaced with misclassification rate on the out-of-bag 
sample, it would be a simple step to update the HP Forest node with this new result. 

APPROXIMATING THE DEGREES OF FREEDOM K 

The problem when trying to compute SBC values for decision trees (highlighted in Section 2) is that we 
do not have the degrees of freedom K for a decision tree. The AIC and SBC information criteria considers 
the tradeoff between fit and complexity. The principle is to penalize the fit for the complexity. For a 
decision tree we need to count the number of independent parameters. In Ritschard and Zighed (2003) 

𝐾 = (𝑟 − 1)(𝑐 −  𝑞) 

is given as the degrees of freedom for a induced/constructed tree, where q is the number of leaves in the 
tree, r the number of variables in the tree and c the product of the number of distinct levels for each of the 
r variables in the tree.  

Although the formula for K looks simple, for any tree of reasonable complexity with multiple occurrences 
of the same variable, and with continuous variables added, the formula became increasingly difficult to 
apply. K can also become extremely large for a seemingly simple tree.  

However, this approach of directly computing K seems promising and will be further investigated in a 
follow-up paper.  

DISCUSSION 

The theory of Bayesian Model Averaging is well-developed and provides a coherent mechanism for 
accounting for model uncertainty. It is therefore surprising that it has not been applied directly to random 
forests. 

Bayesian additive regression (Heranádez, 2016) was an attempt to create a Bayesian version of machine 
learning tree ensemble methods where decision trees are the base learners. BART-BMA attempted to 
solve some of the computational issues by incorporating Bayesian model averaging and a greedy search 
algorithm into a modelling algorithm.  

The method proposed in this paper does not attempt to turn an ensemble of decision trees into a 
statistical model (with corresponding probability estimates and predictions). Furthermore, the base 
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learners (e.g. decision trees) are only combined in a novel way to produce a more accurate final 
prediction.  

The way the decision trees are combined depends on the ordering of the decision trees from more 
accurate to less accurate. This was first achieved by building a surrogate neural network model for each 
tree and using the neural network models’ ordering as a proxy for the decision trees’ ordering.  

The improvement in c-statistic, misclassification rate and sse confirmed our supposition that there is a 
better way of combining trees than the standard averaging used in random forests. The improvement is 
summarized in Table 6. 

 

 

Model 

 

c-statistic 

MISC 

Rate 

 

sse 

Random Forest 

(Ave) 

 

88.30 

 

14.89% 

 

646.50 

Random Forest (SBC)  

89.34 

 

13.37% 

 

565.61 

Random Forest (Scheme)  

89.41 

 

13.65% 

 

569.20 

Table 6. Results 

The Bayesian Model Averaging on surrogate neural networks introduced in this paper elegantly mitigates 
the reliance on the expectation that random errors introduced from overfitting will cancel when the 
predictions are averaged. Complex models where overfitting might be an issue are penalized in their SBC 
values (because of the large degrees of freedom value K in the surrogate neural network) with a resulting 
reduction in weight or contribution to the final model. Smaller errors are introduced into the system than is 
the case with random forests and it pays off in a better final model with improved fit statistics.  

A Bayesian approach for finding CART models was presented in Chipman, George and McCulloch 
(1998). The approach consists of two basic components: prior specification and stochastic search. The 
procedure is a sophisticated heuristic for finding good models, rather than a full Bayesian analysis.    

In a sense the procedure outlined in this paper is also a sophisticated heuristic that is used to compute 
the contribution of each tree to the forest, but with full Bayesian Model Averaging implemented on 
surrogate neural networks instead of the actual decision trees. 

CONCLUSIONS 

Although only a small change was proposed to the random forest algorithm, the improvements as shown 
in this paper could be substantial. However, the method depends on computing SBC values for decision 
trees which is problematic as a decision tree is not regarded as a statistical model.  

The way around this problem is to use the SBC computed by a surrogate neural network. This gave an 
ordering of the models from good to bad. This information was then used to vary the contribution of each 
decision tree to the final model. Although a smart approximation, it still required a neural network to be 
built.  

In a further simplification, validation misclassification rate was used to rank models and the contribution of 
each model to the final prediction was computed with a novel weighting scheme. The last results were still 
substantially better than that of the standard random forest approach, but not as good as when a neural 
network was used to approximate SBC. 
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ABSTRACT  
Many practitioners of machine learning are familiar with support vector machines (SVMs) for solving 
binary classification problems. Two established methods of using SVMs in multinomial classification are 
the one-versus-all approach and the one-versus-one approach. This paper describes how to use SAS® 
software to implement these two methods of multinomial classification, with emphasis on both training the 
model and scoring new data. A variety of data sets are used to illustrate the pros and cons of each 
method. 

INTRODUCTION 

The support vector machine (SVM) algorithm is a popular binary classification technique used in the fields 
of machine learning, data mining, and predictive analytics. Since the introduction of the SVM algorithm in 
1995 (Cortes and Vapnik 1995), researchers and practitioners in these fields have shown significant 
interest in using and improving SVMs. 

Support vector machines are supervised learning models that provide a mapping between the feature 
space and the target labels. The aim of supervised learning is to determine how to classify new or 
previously unseen data by using labeled training data. Specifically, SVMs are used to solve binary 
classification problems, in which the target has only one of two possible classes. 

The SVM algorithm builds a binary classifier by solving a convex optimization problem during model 
training. The optimization problem is to find the flat surface (hyperplane) that maximizes the margin 
between the two classes of the target. SVMs are also known as maximum-margin classifiers, and the 
training data near the hyperplane are called the support vectors. Thus, the result of training is the support 
vectors and the weights that are given to them. When new data are to be scored, the support vectors and 
their weights are used in combination with the new data to assign the new data to one of the two classes. 

Many real-world classification problems have more than two target classes. There are several methods in 
the literature (Hsu and Lin 2002), such as the one-versus-all and one-versus-one methods, that extend 
the SVM binary classifier to solve multinomial classification problems. 

This paper shows how you can use the HPSVM procedure from SAS® Enterprise Miner™ to implement 
both training and scoring of these multinomial classification extensions to the traditional SVM algorithm. It 
also demonstrates these implementations on several data sets to illustrate the benefits of these methods. 

The paper has three main sections: training, scoring, and experiments, followed by the conclusions. The 
training section describes how to set up the multinomial SVM training schema. The scoring section 
discusses how to score new data after you have trained a multinomial SVM. The experiments section 
illustrates some examples by using real-world data. Finally, the appendices present the SAS macro code 
that is used to run the experiments. 

SUPPORT VECTOR MACHINE TRAINING 

Support vector machines (SVMs) are a binary classifier that seeks to find the flat surface (a straight line in 
two dimensions) that separates the two levels of the target. Figure 1 shows an example of a binary 
classification problem and the SVM decision surface. In this example, the support vectors consist of the 
two triangular observations that touch one of the dotted lines and the one hexagonal observation that 
touches the other dotted line. The dotted lines represent the margin, which indicates the maximum 
separation between the two classes in the data set. 
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Figure 1. Support Vector Machine Decision Surface and Margin 

 

SVMs also support decision surfaces that are not hyperplanes by using a method called the kernel trick. 
For the purposes of the examples in this section and the “Support Vector Machine Scoring” section, this 
paper is limited to referencing only linear SVM models. These sections equally apply to nonlinear SVMs 
as well. Figure 2 shows an example of two classes that are separated by a nonlinear SVM decision 
boundary. 

 

Figure 2. Nonlinear Support Vector Machine Decision Surface and Margin 

 

Multiclass SVMs are used to find the separation when the target has more than two classes. Figure 3 
shows an example of a three-class classification problem. Here the classes are triangle, diamond, and 
hexagon. 
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Figure 3. Example of Three Classes: Triangles, Diamonds, and Hexagons 

 

When the data contain more than two classes, a single flat surface cannot separate each group from the 
others. However, several surfaces can partition the observations from each other. How you find the 
surfaces depends on your approach in the multiclass SVM: one-versus-all or one-versus-one. 

When you are using the HPSVM procedure to solve multinomial classification problems, you first need to 
create a dummy variable for each class of the target variable. The dummy variable for a particular class is 
defined to be either 0 when an observation is not of that class or 1 when an observation is of that class. 
Code to create the dummy variables is presented in the SAS_SVM_ONE_VS_ALL_TRAIN and 
SAS_SVM_ONE_VS_ONE_TRAIN macros in Appendix B. An example that uses the data in Figure 3 
might look something like this: 

data ModifiedInput;  

set Input;  

   if (class = "Triangle") then do; 

      class_triangle = 1; 

   end; 

   else do; 

      class_triangle = 0; 

   end; 

   if (class = "Diamond") then do; 

      class_diamond = 1; 

   end; 

   else do; 

      class_diamond = 0; 

   end; 

   if (class = "Hexagon") then do; 

      class_hexagon = 1; 

   end; 

   else do; 

      class_hexagon = 0; 

   end; 

run; 

 

When the input data have the dummy variables, the data are ready for you to train using the one-versus-
all or one-versus-one method. 
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One-versus-All Training 

The one-versus-all approach to multiclass SVMs is to train k unique SVMs, where you have k classes of 
the target. Figure 4, Figure 5, and Figure 6 show the three one-versus-all scenarios for training a 
multiclass SVM on the example from Figure 3. 

 

 

 

Figure 4. One-versus-All Training: Triangles versus All 

 

 

 

Figure 5. One-versus-All Training: Diamonds versus All 
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Figure 6. One-versus-All Training: Hexagons versus All 

 

To set up the one-versus-all training by using the HPSVM procedure, you first need to add dummy 
variables to the input data set, as described previously. The dummy variable that corresponds to Figure 4 
has a 1 for each triangular observation and a 0 for each diamond-shaped or hexagonal observation. The 
HPSVM procedure code for Figure 4 might look like this: 

proc hpsvm data=ModifiedInput(where=(class=triangle OR class=hexagon)); 

   input <input variables>; 

   target class_triangle; 

run; 

 

You also need to save the procedure score code by using the CODE statement. This enables you to 
score new observations based on the training that you have already completed. For the one-versus-all 
method of multinomial SVM training, you need to run the HPSVM procedure k times, and each run will 
have a different dummy variable as the target variable for the SVM. The output that you need for scoring 
is k different DATA step score code files. You can find a discussion of scoring the one-versus-all method 
in the section “One-versus-All Scoring.” 

One-versus-One Training 

The one-versus-one approach to multiclass SVMs is to train an SVM for each pair of target classes. 
When you have k classes, the number of SVMs to be trained is k*(k–1)/2. Figure 7, Figure 8, and Figure 9 
show the three one-versus-one scenarios for training a multiclass SVM on the example from Figure 3. 
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Figure 7. One-versus-One Training: Triangles versus Hexagons 

 

Figure 8. One-versus-One Training: Hexagons versus Diamonds 

 

Figure 9. One-versus-One Training: Diamonds versus Triangles 
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As these three figures show, when you are using the one-versus-one training method of multinomial 
classification, you ignore any of the data that are not in the current comparison. For this example, you 
have three comparisons: triangular versus hexagonal observations, hexagonal versus diamond-shaped 
observations, and diamond-shaped versus triangular observations. In each of these cases, the third class 
is ignored when you create the SVM model. 

To perform this method by using the HPSVM procedure, you first need to create the dummy variables as 
previously indicated. To ensure that you compare only the proper observations, you also need to subset 
the input data by using the WHERE= option. An example of the code for triangular versus hexagonal 
observations might look like this: 

proc hpsvm data=ModifiedInput(where=(class=triangle OR class=hexagon); 

   input <input variables>; 

   target class_triangle; 

run; 

 

As in the one-versus-all method, you need to save the procedure score code by using the CODE 
statement. This enables you to score new observations based on the training that you have already 
completed. For the one-versus-one method of multinomial SVM training, you need to run PROC HPSVM 
k*(k–1)/2 times. Each run consists of a different pair of target classes that are compared. The output that 
you need for scoring is k*(k–1)/2 different DATA step score code files. There are two ways to score the 
one-versus-one training; they are detailed in the sections “One-versus-One Scoring” and “Directed Acyclic 
Graph Scoring.” 

SUPPORT VECTOR MACHINE SCORING 

Scoring by using SVMs is the process of using a trained model to assign a class label to a new 
observation. In the case of the HPSVM procedure, the DATA step score code contains the information 
from the SVM model and enables you to score new observations. A new example observation, star, has 
been added to the previous example to illustrate scoring. This is shown in Figure 10. 

 

Figure 10. Example Data, with a New Observation (Star) to Be Scored 

One-versus-All Scoring 

The output from the one-versus-all scoring is k DATA step score code files, one for each class of the 
multinomial target. When you are determining the class of a new data observation, you need to score the 
observation by using each saved score code. 

To assign a class label to a new observation, you need to score the observation scored according to each 
SVM model. In this way, the new observation will have an assigned probability for each class of the 
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target. If the observation is on the negative side of the dividing hyperplane, then its probability is less than 
0.5. If it is on the positive side of the dividing hyperplane, then its probability is greater than 0.5. 

In this example, the hyperplanes shown in Figure 4, Figure 5, and Figure 6 illustrate that the star point will 
have the highest probability of assignment to the triangular class. 

When you are using the PROC HPSVM score code for each class of the target, new data are assigned a 
probability that the observation is of that target class. To determine which target class is the correct label, 
you choose the one that has the highest probability. SAS macro code to do this is presented in the 
SAS_SVM_ONE_VS_ALL_SCORING macro in Appendix B. 

One-versus-One Scoring 

The output from one-versus-one scoring is k*(k–1)/2 DATA step score code files, one for each pairwise 
comparison of target classes of the multinomial target. When you are determining the class label of a new 
data observation, you need to score the observation by using each saved score code. 

In one-versus-all scoring, each SVM model answers the question, Does this belong to the class or not? In 
one-versus-one scoring, each SVM model answers a different question: Is this more of class A or class 
B? Thus, using the maximum probability, as in one-versus-all scoring, is not the appropriate way to 
determine the class label assignment. 

In one-versus-one scoring, a common method of determining this assignment is by voting. Each 
observation is assigned a class label for each SVM model that is produced. The label that the observation 
is assigned the most is considered the true label. 

When you are using PROC HPSVM, use the score code to score the new data for each one-versus-one 
SVM model. Then, for each class of the multinomial target, check to see whether that class has the most 
votes. If it does, then assign that class as the label for the target. When you have a tie, you can assign 
the class randomly, or as shown in this paper, you can assign the class by using the first class in the 
sorted order. SAS macro code to perform one-versus-one scoring is presented in the 
SAS_SVM_ONE_VS_ONE_SCORING macro in Appendix B. 

Directed Acyclic Graph Scoring 

The directed acyclic graph (DAG), which was first presented in Platt, Cristianini, and Shawe-Taylor 
(2000), is a scoring approach that uses the same training as the one-versus-one scoring method. In this 
case, each observation is scored only k–1 times, even though k*(k–1)/2 SVM models are trained. The 
training scheme for a four-class example is shown in Figure 11. In this illustration, a new observation 
starts at the top of the graph and is scored using the 1 vs. 4 SVM model. Then, depending on the 
outcome, the observation traverses the graph until it reaches one of the four class labels. 

 

Figure 11. Directed Acyclic Graph Scoring Flow 

The DAG method first runs the scoring from the one-versus-one SVM model that compared the first and 
last classes of the target (the order should be fixed, but the order does not matter). If the SVM model 
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assigns the observation to the first class, then the last class can be ruled out. Thus the DAG method 
seeks to recursively exclude possible target class labels until only one label is left. That label becomes 
the class label for the new observation. 

Each one-versus-one model is represented in the DAG. However, the number of times the observation is 
scored is only k–1, because as it is scored, it flows down the graph. 

When you are using PROC HPSVM score code to run the DAG method, you need all the score code files 
from the one-versus-one training. To score recursively, you need to create two output data sets from each 
input set, in which you assign each observation to one of the two output data sets based on the predicted 
target class from the SVM model. SAS macro code to perform DAG scoring is presented in the 
SAS_SVM_DAG_SCORING macro in Appendix B. 

EXPERIMENTS 

This section presents a few brief examples that were run using the setup code in Appendix A and the 
macro code in Appendix B. All the runs of the HPSVM procedure use the procedure defaults, except that 
the kernel is chosen to be polynomial with degree 2 instead of linear, which is the default. 

Table 1 lists the data sets that are used in the experiments. Many of these data sets are available in SAS 
Enterprise Miner. The Wine data set is from the UCI Machine Learning Repository (Lichman 2013). 

Simulated data were created to run experiments with larger numbers of observations, input variables, and 
target classes. The target variable in the simulated data has approximately equal class sizes among the 
seven classes. In addition, only 9 of the 27 variables are correlated with the target levels, but these 
correlated variable also have large amounts of randomness. 

The HPSVM procedure supports multithreading on a single machine as well as distributed computation. 
These experiments were run using a single desktop machine. Absolute times vary with hardware and 
setup, but the relative times provide important insight into how the different methods of multinomial 
classification compare with each other. 

 

Data Set Number of 
Observations 

Number of 
Input 
Variables 

Target 
Variable 

Number of 
Target 
Classes 

Location 

Iris 150 4 Species 3 SASHELP.IRIS 

Wine 178 13 Cultivar 3 UCI ML Repository 

Cars 428 12 Type 6 SASHELP.CARS 

German 
Credit 

1000 20 employed 5 SAMPSIO.DMAGECR 

Simulated 10K 10000 27 t 7 Simulated data 

Table 1. Data Sets Used in the Experiments, along with Table Metadata 

 

Table 2 shows the training and scoring times for each method on each data set. One-versus-one training 
is used for both one-versus-one scoring and DAG scoring. When the number of target classes is larger, 
such as in the Cars data set or the simulated data, the one-versus-one training requires more time to 
complete than the one-versus-all training. This is because there are k*(k–1)/2 models that require training 
for the one-versus-one method, compared to only k models for the one-versus-all method. The number of 
models that are trained is slightly offset by the fact that each of the models trained in the one-versus-one 
method uses fewer data than the models trained in the one-versus-all method, but as the number of 
target classes increases, the one-versus-one method takes more time. 
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Data Set Training (sec) Scoring (sec) 

 One-versus-
All Method 

One-versus-
One Method 

One-versus-
All Method 

One-versus-
One Method 

DAG Method 

Iris 1 1 1 1 1 

Wine 1 1 < 1 1 < 1 

Cars 3 4 1 3 2 

German Credit 11 7 1 3 2 

Simulated 10K 67 76 2 7 5 

Table 2. Timing for Running the Two Training and Three Scoring Methods on the Data Sets 

 

Table 3 shows the misclassification rate for each data set and each scoring method. For each data set, 
the one-versus-one method has the best classification rate, followed very closely by the DAG method’s 
classification rate. The one-versus-all method’s classification rate is lower than that of the one-versus-one 
and DAG methods, especially on the larger data sets. 

 

Data Set One-versus-All 
Classification Rate 
(%) 

One-versus-One 
Classification Rate 
(%) 

DAG Classification 
Rate (%) 

Iris 96.00 96.67 96.67 

Wine 100 100 100 

Cars 84.81 87.38 87.38 

German Credit 72.5 76.6 76.3 

Simulated 10K 70.07 78.06 78.04 

Table 3. Classification Rate for Running the Three Different Scoring Methods on the Data Sets 

 

CONCLUSION 

This paper explains how to extend the HPSVM procedure for scoring multinomial targets. Two 
approaches to extending the SVM training are the one-versus-all and one-versus-one methods. When 
you are scoring the SVM model, you also have the option to use directed acyclic graphs (DAGs) to score 
the one-versus-one trained models. 

The paper applies one-versus-all and one-versus-one training to several data sets to illustrate the 
strengths and weaknesses of the methods. The one-versus-one method does better at classifying 
observations than the one-versus-all method. This benefit is balanced by the fact that as the number of 
target classes increases, one-versus-one training takes longer than one-versus-all training. The scoring 
times are also longer for the one-versus-one and DAG methods than for the one-versus-all method. The 
DAG method runs faster than one-versus-one scoring, with only a marginal decrease in accuracy. 

The paper also presents SAS macro code to perform the various multinomial classifications. 
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APPENDIX A 

Before running the SAS macro code in Appendix B, you need to run the setup information. The following 
example does this for the Iris data set: 

*** the training macros create several SAS data sets and some files; 

*** to ensure that nothing is overwritten, create a new directory; 

***     or point to an existing empty directory; 

*** set the output directory below; 

%let OutputDir = U:\SGF2017\; *change as needed; 

x cd "&OutputDir"; 

libname l "&OutputDir"; 

*** set the target variable; 

*** also set the input and score data sets; 

*** you can change the score data every time you want to score new data; 

%let Target    = Species; *case-sensitive; 

%let InputData = sashelp.iris; 

%let ScoreData = sashelp.iris; 

proc contents data =&InputData out=names (keep = name type length); 

run; 

data names; 

    set names; 

    if name = "&Target" then do; 

        call symput("TargetLength", length); 

        delete; 

    end; 

run; 

*** manually add names to interval or nominal type; 

*** id variables are saved from the input data to the scored output data; 

%let ID        = PetalLength PetalWidth SepalLength SepalWidth; 

%let INPUT_NOM = ; 

%let INPUT_INT = PetalLength PetalWidth SepalLength SepalWidth; 

%let ID_NUM        = 4; 

%let INPUT_NOM_NUM = 0; 

%let INPUT_INT_NUM = 4; 

*** PROC HPSVM options for the user (optional); 

%let Maxiter   = 25; 

%let Tolerance = 0.000001; 

%let C         = 1; 

APPENDIX B 

The following macros include the one-versus-all training, one-versus-one training, one-versus-all scoring, 
one-versus-one scoring, and DAG scoring macros. The dummy variable creation is included in the one-
versus-all and one-versus-one training macros and has been commented. 

%macro SAS_SVM_ONE_VS_ALL_TRAIN(); 

*** separate the target for information-gathering purposes; 

data l.TargetOnly; 

    set &InputData; 

    keep &Target; 

    if MISSING(&Target) then delete; 

run; 

proc contents data = l.TargetOnly out=l.TType(keep = type); 

run; 

data _NULL_; 

    set l.TType; 
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    call symput("TargetType", type); 

run; 

*** get the number of levels of the target; 

proc freq data=l.TargetOnly nlevels; 

    ods output nlevels=l.TargetNLevels OneWayFreqs=l.TargetLevels; 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** create a column for each level of the target; 

*** the value of the column is 1 if the target is that level, 0 otherwise; 

data l.ModifiedInput; 

    set &InputData; 

    _MY_ID_ = _N_; 

    %do i=1 %to &n; 

        %if (&TargetType = 1) %then %do; 

      if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = &&level&i) then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

        %else %if (&TargetType = 2) %then %do; 

            if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = "&&level&i") then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

    %end; 

run; 

*** run an svm for each target. also save the scoring code for each svm; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

 

    data _NULL_; 

        length svmcode $2000; 

        svmcode  = "&OutputDir"!!"svmcode"!!"&i"!!".sas"; 

        call symput("svmcode"||left(trim(&i)), trim(svmcode)); 

    run; 
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    proc hpsvm data = l.ModifiedInput tolerance = &Tolerance c = &C 

maxiter = &Maxiter nomiss; 

        target &&Target&i; 

        %if &INPUT_INT_NUM > 0 %then %do; 

            input &INPUT_INT / level = interval; 

        %end; 

        %if &INPUT_NOM_NUM > 0 %then %do; 

            input &INPUT_NOM / level = nominal; 

        %end; 

        *kernel linear; 

        kernel polynomial / degree = 2; 

        id _MY_ID_ &Target; 

        code file = "&&svmcode&i"; 

    run; 

%end; 

*** this table lists all the svm scoring files; 

data l.CodeInfoTable; 

    length code $2000; 

    %do i=1 %to &n; 

        code = "&&svmcode&i"; 

        output; 

    %end; 

run; 

%mend SAS_SVM_ONE_VS_ALL_TRAIN; 

 

%macro SAS_SVM_ONE_VS_ONE_TRAIN(); 

*** separate the target for information-gathering purposes; 

data l.TargetOnly; 

    set &InputData; 

    keep &Target; 

    if MISSING(&Target) then delete; 

run; 

proc contents data = l.TargetOnly out=l.TType(keep = type); 

run; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** get the number of levels of the target; 

proc freq data=l.TargetOnly nlevels; 

    ods output nlevels=l.TargetNLevels OneWayFreqs=l.TargetLevels; 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** create a column for each level of the target; 

*** the value of the column is 1 if the target is that level, 0 otherwise; 

data l.ModifiedInput; 
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    set &InputData; 

    _MY_ID_ = _N_; 

    %do i=1 %to &n; 

        %if (&TargetType = 1) %then %do; 

      if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = &&level&i) then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

        %else %if (&TargetType = 2) %then %do; 

            if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = "&&level&i") then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

    %end; 

run; 

*** run an svm for each target. also save the scoring code for each svm; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        %let Target&i = &Target.&&level&i; 

        %let Target&j = &Target.&&level&j; 

 

        data _NULL_; 

            length svmcode $2000; 

            svmcode  = "&OutputDir"!!"svmcode"!!"&i"!!"_"!!"&j"!!".sas"; 

            call symput("svmcode&i._"||trim(left(&j)), trim(svmcode)); 

        run; 

 

        proc hpsvm data = l.ModifiedInput(where=(&&Target&i=1 OR 

&&Target&j=1)) tolerance = &Tolerance c = &C maxiter = &Maxiter nomiss; 

            target &&Target&i; 

            %if &INPUT_INT_NUM > 0 %then %do; 

                input &INPUT_INT / level = interval; 

            %end; 

            %if &INPUT_NOM_NUM > 0 %then %do; 

                input &INPUT_NOM / level = nominal; 

            %end; 

            *kernel linear; 

            kernel polynomial / degree = 2; 

            id _MY_ID_ &Target; 

            code file = "&&svmcode&i._&j"; 

        run; 

    %end; 

%end; 

*** this table lists all the svm scoring files; 

data l.CodeInfoTable; 
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    length code $2000; 

    %do i=1 %to &n; 

        %do j=%eval(&i+1) %to &n; 

            code = "&&svmcode&i._&j"; 

            output; 

        %end; 

    %end; 

run; 

%mend SAS_SVM_ONE_VS_ONE_TRAIN; 

 

%macro SAS_SVM_ONE_VS_ALL_SCORE(); 

*** record the target type: 1 = numeric, 2 = character; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** read the code info table and create macro variables for each code 

file; 

data _NULL_; 

    set l.CodeInfoTable; 

    i = _N_; 

    call symput("svmcode"||left(trim(i)), trim(left(right(code)))); 

run; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

%end; 

*** score the data by using each score code; 

%MakeScoredOneVsAll(); 

%mend SAS_SVM_ONE_VS_ALL_SCORE; 

 

%macro MakeScoredOneVsAll(); 

data l.ScoredOutput; 

    set &ScoreData; 

    %if (&TargetType = 2) %then %do; 

        length I_&Target $ &TargetLength; 

    %end; 

    %do i=1 %to &n; 

        %inc "&&svmcode&i"; 

    %end; 

    keep  

    %do i=1 %to &n; 

        P_&&Target&i..1 

    %end;     

    %if (&ID_NUM > 0) %then %do; 

        &ID 
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    %end;     

    I_&Target &Target; 

    _P_ = 0; 

    %do i=1 %to &n; 

        %if (&TargetType = 1) %then %do; 

            if (P_&&Target&i..1 > _P_) then do; 

                _P_ = P_&&Target&i..1; 

                I_&Target = &&level&i; 

            end; 

        %end; 

        %else %if (&TargetType = 2) %then %do; 

            if (P_&&Target&i..1 > _P_) then do; 

                _P_ = P_&&Target&i..1; 

                I_&Target = "&&level&i"; 

            end; 

        %end; 

    %end; 

run; 

%mend MakeScoredOneVsAll; 

 

%macro SAS_SVM_ONE_VS_ONE_SCORE(); 

*** record the target type: 1 = numeric, 2 = character; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** read the code info table and create macro variables for each code 

file; 

data _NULL_; 

    set l.CodeInfoTable; 

    i = _N_; 

    call symput("svmcode"||left(trim(i)), trim(left(right(code)))); 

    call symput("numCode", i); 

run; 

%let k=1; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        %let svmcode&i._&j =&&svmcode&k; 

        %let k =%eval(&k+1); 

    %end; 

%end; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

%end; 

*** score the data by using each score code; 
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%MakeScoredOneVsOne(); 

%mend SAS_SVM_ONE_VS_ONE_SCORE; 

 

%macro MakeScoredOneVsOne(); 

data l.ScoredOutput; 

    set &ScoreData; 

    %do k=1 %to &n; 

        V_&&level&k = 0; 

    %end; 

    %if (&TargetType = 2) %then %do; 

        length I_&Target $ &TargetLength; 

    %end; 

    %else %do; 

        length I_&Target 8; 

    %end; 

run; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        data l.ScoredOutput; 

            set l.ScoredOutput; 

            %inc "&&svmcode&i._&j"; 

            if (P_&Target&&level&i..1 >= 0.5) then do; 

                V_&&level&i = V_&&level&i+1; 

            end; 

            else do; 

                V_&&level&j = V_&&level&j+1; 

            end; 

            _P_ = 0; 

            %if (&TargetType = 1) %then %do; 

                %do k=1 %to &n; 

                    if (V_&&level&k > _P_) then do; 

                        _P_ = V_&&level&k; 

                        I_&Target = &&level&k; 

                    end; 

                %end; 

            %end; 

            %else %if (&TargetType = 2) %then %do; 

                %do k=1 %to &n; 

                    if (V_&&level&k > _P_) then do; 

                        _P_ = V_&&level&k; 

                        I_&Target = "&&level&k"; 

                    end; 

                %end; 

            %end; 

             

            drop P_&Target&&level&i..1 P_&Target&&level&i..0 

I_&Target&&level&i _P_; 

        run; 

    %end; 

%end; 

data l.ScoredOutput; 

    set l.ScoredOutput; 

    keep 

    %do i=1 %to &n; 

        V_&&level&i 

    %end; 

    %if (&ID_NUM > 0) %then %do; 
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        &ID 

    %end; 

    I_&Target &Target; 

run; 

%mend MakeScoredOneVsOne; 

 

%macro SAS_SVM_DAG_SCORE(); 

*** record the target type: 1 = numeric, 2 = character; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** read the code info table and create macro variables for each code 

file; 

data _NULL_; 

    set l.CodeInfoTable; 

    i = _N_; 

    call symput("svmcode"||left(trim(i)), trim(left(right(code)))); 

    call symput("numCode", i); 

run; 

%let k=1; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        %let svmcode&i._&j =&&svmcode&k; 

        %let k =%eval(&k+1); 

    %end; 

%end; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

%end; 

*** score the data by using each score code; 

%MakeScoredDAG(); 

%mend SAS_SVM_DAG_SCORE; 

 

%macro MakeScoredDAG(); 

data ScoredOutput1_&n; 

    set &ScoreData; 

    _temp_IDvar_ensure_not_existing_ = _N_; 

run; 

%do k=1 %to %eval(&n-1); 

    %let i=&k; 

    %let j=&n; 

    %do m=1 %to &k; 

        %let left =%eval(&i+1); 

        %let right=%eval(&j-1); 
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        data tempL tempR; 

            set ScoredOutput&i._&j; 

            %inc "&&svmcode&i._&j"; 

            if (I_&Target&&level&i = 1) then do; 

                output tempR; 

            end; 

            else do; 

                output tempL; 

            end; 

        run; 

        %if &m=1 %then %do; 

            data ScoredOutput&left._&j; 

                set tempL; 

            run; 

        %end; 

        %else %do; 

            data ScoredOutput&left._&j; 

                set ScoredOutput&left._&j tempL; 

            run; 

        %end; 

        data ScoredOutput&i._&right; 

            set tempR; 

        run; 

        %let i=%eval(&i-1); 

        %let j=%eval(&j-1); 

    %end; 

%end; 

data ScoredOutput; 

    set 

    %do i=1 %to &n; 

        ScoredOutput&i._&i.(in = in&i.) 

    %end; 

    ; 

    %if (&TargetType = 2) %then %do; 

        length I_&Target $ &TargetLength; 

    %end; 

    %if (&TargetType = 1) %then %do; 

        %do i=1 %to &n; 

            if (in&i.) then do; 

                I_&Target = &&level&i; 

            end; 

        %end; 

    %end; 

    %if (&TargetType = 2) %then %do; 

        %do i=1 %to &n; 

            if (in&i.) then do; 

                I_&Target = "&&level&i"; 

            end; 

        %end; 

    %end; 

    keep  

    %if (&ID_NUM > 0) %then %do; 

        &ID 

    %end; 

    I_&Target &Target _temp_IDvar_ensure_not_existing_; 

run; 
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proc sort data=ScoredOutput 

out=l.ScoredOutput(drop=_temp_IDvar_ensure_not_existing_); 

    by _temp_IDvar_ensure_not_existing_; 

run; 

%do i=1 %to &n; 

    %do j=&i %to &n; 

        proc delete data=ScoredOutput&i._&j; 

        run; 

    %end; 

%end; 

%mend MakeScoredDAG; 
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ABSTRACT  
Factorization machines are a new type of model that is well suited to very high-cardinality, sparsely 
observed transactional data. This paper presents the new FACTMAC procedure, which implements 
factorization machines in SAS® Visual Data Mining and Machine Learning. This powerful and flexible 
model can be thought of as a low-rank approximation of a matrix or a tensor, and it can be efficiently 
estimated when most of the elements of that matrix or tensor are unknown. Thanks to a highly parallel 
stochastic gradient descent optimization solver, PROC FACTMAC can quickly handle data sets that 
contain tens of millions of rows. The paper includes examples that show you how to use PROC 
FACTMAC to recommend movies to users based on tens of millions of past ratings, predict whether fine 
food will be highly rated by connoisseurs, restore heavily damaged high-resolution images, and discover 
shot styles that best fit individual basketball players. 

INTRODUCTION 

Factorization models, which include factorization machines as a special case, are a broad class of 
models popular in statistics and machine learning. For example, principal component analysis is a well-
known type of factorization model that has long been a staple of dimensionality reduction. For another 
example, matrix factorization has been widely used in text analysis and recommender systems. More 
recently, Rendle (2010, 2012) has proposed factorization machines for recommender systems and click-
through rate prediction. Factorization machines are a powerful model that significantly extends matrix 
factorization. 

Factorization machines are included in SAS Visual Data Mining and Machine Learning. The initial release 
supported matrix factorization with biases, and the latest implementation supports pairwise-interaction 
tensor factorization and nonnegative factorization. A macro is provided in the Appendix so that you can 
still perform pairwise-interaction tensor factorization even if you have PROC FACTMAC from the first 
release of SAS Visual Data Mining and Machine Learning. 

This paper begins by briefly explaining the most relevant technical details of factorization machines for 
data scientists. Then it focuses on applications of factorization machines to solve real-world business 
problems. The application sections, which can be read by non-experts, include usage tips as well as 
code. The following application examples are presented: 

 recommending movies to users based on tens of millions of past ratings

 predicting whether a fine food item will be highly rated by connoisseurs

 restoring heavily damaged high-resolution images

 discovering shot styles that best fit individual basketball players

From these examples, you will learn how to spot which types of problems are good candidates for 
factorization machines, how to prepare data for PROC FACTMAC, how to score new data by using score 
code or PROC ASTORE, and what strategies to use for choosing parameters and training the best 
factorization machine models. 

THE FACTORIZATION MACHINE MODEL 

This section begins with a brief mathematical description of factorization machines. Assuming a training 
set 𝐷 = {(𝒙𝑖 , 𝑦𝑖)}, with 𝑖 = 1, … , 𝑛, where 𝒙𝑖 refers to the ith observation and 𝑦𝑖 refers to the ith target 
value, the factorization machine model of order 2 is written as 
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𝑦̂(𝑥) = 𝑤0 + ∑ 𝑤𝑗𝑥𝑗

𝑝

𝑗=1

+ ∑ ∑ 𝑥𝑗𝑥𝑗′

𝑝

𝑗′=1

𝑝

𝑗=1

∑ 𝑣𝑗𝑓𝑣𝑗′𝑓

𝑘

𝑓=1

 

where 𝒙 = (𝑥1, … , 𝑥𝑝) is an observed p-dimensional input feature vector, 𝑦̂ is the predicted target,  

𝑤0 is a global bias, 𝑤𝑗 are per-feature biases, and 𝑣𝑗𝑓 denotes coordinate f of the k-dimensional factor 

vector 𝒗𝑗.  

The overall factor matrix 𝑽 of size 𝑝 × 𝑘 is the concatenation of the row vectors 𝒗𝑗 for 𝑗 = 1, … , 𝑝.  

The number of factors is k. The model parameters to be estimated are 𝑤0, 𝑤1, … , 𝑤𝑝 and 𝑽.  

The estimation is done by minimizing the root mean square error (RMSE), which is defined as 

RMSE =  √
1

𝑛
∑(𝑦̂(𝑥𝑖) − 𝑦𝑖)2

𝑛

𝑖=1

 

over the training set 𝐷. 

Interestingly, it is known that factorization machines approximate polynomial-kernel support vector 
machines and are more resistant to overfitting when the design matrix is sparse (Rendle 2010). 

FACTORIZATION MACHINES FOR RECOMMENDATIONS 

Recommender systems are a diverse class of algorithms that aim to learn user preferences in order to 
recommend items such as movies, books, or songs. The purpose is to predict which ratings a user would 
hypothetically give to a set of items and then to recommend items that the user is likely to prefer the most. 
As illustrated in Figure 1, users and items form a matrix. This matrix is potentially very large, because 
there can be millions of users and items. Moreover, it is very sparsely observed, because usually only a 
very small fraction of historical ratings are available. 

  

Figure 1. Matrix factorization for a recommender system. Users and items are characterized by 
their respective k-dimensional factor vectors. 

 

You can overcome these challenges by factorizing the matrix into lower-dimensional user and item 
factors, which can be used to predict new ratings. For recommender systems, the input vector is typically 
constructed using binary indicator variables for user u and item i, as illustrated in Figure 2. 
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Figure 2. Input vector for recommender systems. 

 

The factorization machine model is then equivalent to the following equation for predicting new ratings: 

𝑦̂(𝒙) = 𝑦̂(𝑢, 𝑖) = 𝑤0 + 𝑤𝑢 + 𝑤𝑖 + ∑ 𝑣𝑢𝑓𝑣𝑖𝑓

𝑘

𝑓=1

 

EXAMPLE: RECOMMENDING MOVIES 

This example draws on data that are derived from companies that provide movies for online viewing. A 
company wants to offer its customers recommendations of movies that they might like. These 

recommendations are based on ratings that users provide.The MovieLens data set, which contains 

movie ratings, was developed by the GroupLens project at the University of Minnesota and is available at 

http://grouplens.org/datasets/movielens (Harper and Konstan 2015). This example uses the MovieLens 

100K version.  

The MovieLens 100K data set has four columns: user ID, item ID (each item is a movie), timestamp, and 

rating. This example predicts the rating for a specified user ID and an item ID. The data set is very sparse 
because most combinations of users and movies are not rated.  

You can download the compressed archive file from the URL 
http://files.grouplens.org/datasets/movielens/ml-100k.zip and use any third-party unzip tool to extract all 
the files from the archive and store them in the destination directory of your choice. The file that contains 

the ratings is named u.data. Assuming that your destination directory is ~/data, the following DATA 

step loads the data table from the directory into your CAS session:  

   proc casutil; 

      load file="~/data/u.data"    /*or other user-defined location*/ 

      casout="movlens" 

      importoptions=(filetype="CSV" delimiter="TAB" getnames="FALSE" 

                   vars=("userid" "itemid" "rating" "timestamp")); 

   run; 

 

The following statements show how to use PROC FACTMAC to predict movie ratings:  

   proc factmac data=mycas.movlens nfactors=10 learnstep=0.15 

                                    maxiter=20  outmodel=factors; 

 

      input userid itemid /level=nominal; 

      target rating /level=interval; 

      output out=mycas.out1 copyvars=(userid itemid rating); 

   run; 

 

The NFACTORS parameter corresponds to k in the model equations. The LEARNSTEP parameter is an 
optimization parameter that controls how fast the stochastic gradient descent solver learns. Smaller 
values increase accuracy but might require a larger number of iterations to reach a good solution. 

The following statements print the first 10 observations in the Factors data table, which is specified in 

the OUTMODEL= option in the PROC FACTMAC statement. The output is shown in Figure 3. 

   proc print data=factors(obs=10); 

   run; 

http://grouplens.org/datasets/movielens
http://files.grouplens.org/datasets/movielens/ml-100k.zip
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Figure 3. Factors data table for the MovieLens data set. 

 

When the model is saved in the mycaslib.astore data table, you can predict new ratings by using the 

ASTORE procedure, as in the following statements: 

 

   proc astore;  

      score data = mycaslib.valid  

      out=mycaslib.ScoreValid copyvar = rating 

      rstore = mycaslib.astore; 

   run;  

 

The first 20 predicted ratings are shown in Figure 4. 
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Figure 4. Predicted movie ratings. The predictions are in the P_rating column. 

 

EXAMPLE: RECOMMENDING FINE FOODS 

In this example, you can use PROC FACTMAC to analyze fine food reviews. The Amazon Fine Foods 
data set, available at https://snap.stanford.edu/data/web-FineFoods.html, consists of ratings and text 
reviews of gourmet foods sold by Amazon (Leskovec and Krevl 2014). The data span a period of more 
than 10 years, including all ~500,000 reviews up to October 2012. The data include product and user 
information, ratings, and a plaintext review. 

The input variables are product/productId, review/userId, review/profileName, review/helpfulness, 
review/score, review/time, review/summary and review/text. Here is an example of content in the 
review/text field: 

I have bought several of the Vitality canned dog food products and have found them all to be of good 
quality. The product looks more like a stew than a processed meat and it smells better. My Labrador is 
finicky and she appreciates this product better than most. 

 

Unlike the data set in the movie recommendation example, this data set include more than two nominal 
input variables. In this situation, the factorization machine model is equivalent to the following pairwise-
interaction tensor factorization equation: 

https://snap.stanford.edu/data/web-FineFoods.html
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𝑦̂(𝒙) = 𝑦̂(𝑢𝑠𝑒𝑟, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑡𝑖𝑚𝑒, ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠 ) 
           = 𝑤0 + 𝑤𝑢𝑠𝑒𝑟 + 𝑤𝑝𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑤𝑡𝑖𝑚𝑒 + 𝑤ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠 

                +〈𝒗𝑢𝑠𝑒𝑟 , 𝒗𝑝𝑟𝑜𝑑𝑢𝑐𝑡〉 + 〈𝒗𝑢𝑠𝑒𝑟 , 𝒗𝑡𝑖𝑚𝑒〉 + ⋯ + 〈𝒗𝑢𝑠𝑒𝑟 , 𝒗ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠〉 

 

This model considers every interaction between pairs of input variables. Although you might find this 
equation cumbersome, the corresponding PROC FACTMAC syntax is actually quite simple to specify. 
After importing the data into SAS, you can train the model by using the following code: 

   proc factmac data=mycas.amazon_foods 

      nFactors=20 learnStep=0.01 maxIter=50 outModel=mycas.factors; 

      input userId productId time helpfulness /level=nominal; 

      target reviewScore /level=interval; 

      output out=mycas.out1 copyvars=(userId productId time helpfulness); 

   run; 

 

If you have PROC FACTMAC from the initial release of SAS Visual Data Mining and Machine Learning, 
you can alternatively use the following code: 

   %pairwiseFactMac(inputVarList=userId productId time helpfulness, 

                 target=reviewScore, 

                 dataset=amazon_foods, 

                 maxIter=50, 

                 nFactors=20, 

                 learnStep=0.01, 

                 configFile=); 

 

The pairwiseFactMac macro is provided in the Appendix at the end of this paper. 

The model achieves an RMSE of 0.91, which is competitive with other methods. You can visit 
https://github.com/sassoftware/enlighten-apply for additional code snippets and tips for incorporating the 
text of the reviews into the analysis. Interestingly, the Amazon Fine Food reviews are overwhelmingly 
positive, and coffee is by far the most popular product, well ahead of chocolate. 

FACTORIZATION MACHINES FOR IMAGE RECONSTRUCTION 

In image processing, it is sometimes necessary to perform reconstruction based on damaged copies of 
an image. You can use PROC FACTMAC for this purpose, by using the following code example: 

   proc factmac data=mycaslib.sparsePixels 

      outmodel=factors 

      maxiter=500 

      nfactors=100 

      learnstep=0.01 

      seed=12345; 

      input x y  /level=nominal; 

      target pixelValue /level=interval; 

      output out=mycaslib.FactMacScore copyvar = (x y pixelValue); 

   run; 

https://github.com/sassoftware/enlighten-apply


7 

 

The sparsePixels data table consists of three columns: x, y, and pixelValue. Each row corresponds to 

a nonmissing pixel. The results are shown in Figure 5. In this example, the corrupted image has 50% 
missing pixels. 

Note that factorization machines are suitable for imputing many other types of data besides images. 

 

 

     

Figure 5. Image reconstruction. Left: Original image. Center: 50% missing pixels. Right: Image 
reconstructed using PROC FACTMAC. 

 

FACTORIZATION MACHINES FOR PREDICTIVE MODELING IN BASKETBALL 

The data for this example consist of basketball shots recorded during the 2015–2016 NBA season, from 
October 2015 through March 2016. The data set was downloaded using the API available from 
Sportradar.com. Every shot taken by every player is recorded, excluding free throws. Figure 6 shows how 
shot success varies by where on the court the shot was taken and whether the player is a center, forward, 
or guard. 

The input variables that are used for the analysis are player_name, action_type, shot_zone_area, and 
shot_zone_range. The target variable is constructed by computing the log-odds of shot success per 
player. 

In this example, as in the food reviews example, there are more than two nominal variables. Hence, you 
can perform pairwise-interaction tensor factorization. 

 



8 

 

Figure 6. Shot success by court location and player position. Data from Sportradar.com. 

 

The following code performs pairwise-interaction tensor factorization for this data set: 

 

   proc factmac data=mycaslib.nbaShooting_summarized 

      outmodel=factors 

      maxiter=50 

      nfactors=10 

      learnstep=0.03 

      input player_name action_type shot_zone_area shot_zone_range 

                   /level=nominal; 

      target logit /level=interval; 

      output out=mycaslib.ScoreTrain copyvar=logit; 

      savestate rstore=mycaslib.astore; 

   run; 

 

You can score a held-out data set by using the following statements: 

   proc astore;  

      score data = mycaslib.valid  

      out=mycaslib.ScoreValid&i copyvar = (&target.) 

      rstore = mycaslib.astore&i.; 

   run; 
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Alternatively, if PROC FACTMAC in your release of SAS Visual Data Mining and Machine Learning does 
not support tensor factorization, you can use the following code to perform pairwise-interaction tensor 
factorization and score a held-out validation data set: 

   %pairwiseFactMac(inputVarList=player_name action_type shot_zone_area 

                       shot_zone_range, 

                 target=logit, 

                 dataset=ray.nbaShooting_Summarized, 

                 maxIter=50, 

                 nFactors=10, 

                 learnStep=0.03, 

                 configFile=); 

 

The pairwiseFactMac macro is provided in the Appendix at the end of this paper. 

In addition to achieving an RMSE value of 0.93, which favorably compares to 1.39 for a support vector 
machine used with the same data, the factorization machine analysis reveals multiple insights. The 
following action types are most associated with shot success (they have the highest estimated bias 
values): 

 running dunk shot 

 running layup 

 driving layup 

 alley-oop dunk shot 

 dunk shot 

 cutting dunk shot 

 putback layup 

 driving dunk shot 

 tip dunk shot 

 driving dunk shot 

 

As you can see, a large proportion of these action types are dunk shots. In contrast, the following action 
types are most associated with shot failure: 

 turnaround hook shot 

 turnaround jump shot 

 fadeaway jump shot 

 driving floating layup 

 turnaround fadeaway shot 

 running jump shot 

 hook shot 
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 step-back jump shot 

 pull-up jump shot 

 jump shot 

 

These action types are known to represent difficult, acrobatic shots. In addition, Figure 7 shows a 
visualization of the player and action factor vectors on the same plot. Because these are high-
dimensional vectors, a 2D visualization is created using the t-distributed stochastic neighbor embedding 
(t-SNE) method (Van der Maaten and Hinton 2008). Blue points are actions, and red points are players. 
Similar shots appear close together, as do players who have similar shot profiles (such as Kobe Bryant 
and Russell Westbrook). Also, it appears from the figure that Manu Ginobili is proficient at driving floating 
layups, because his latent factor vector is embedded very near that of the corresponding action. 

 

 

Figure 7. Visualization of player (red) and action (blue) factors. Data from Sportradar.com. 

CONCLUSION 

The FACTMAC procedure implements factorization machines in SAS Visual Data Mining and Machine 
Learning. This new model enables you to solve a variety of tasks, from recommendation to predictive 
modeling and image processing, all of which involve sparse data. Thanks to a highly parallel optimization 
solver, PROC FACTMAC can handle very large data sets. This powerful and flexible method provides not 
only predictions but also meaningful factor representations that can give you insights into many types of 
business problems. 
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APPENDIX 

The following macro implements pairwise-interaction tensor factorization by combining multiple pairwise 
factorization machine models. 

 

      %macro pairwisefactMac( 

         inputVarList=, 

         target=, 

         dataset=, 

         partitionFraction=.7, 

         maxIter=100, 

         nFactors=25, 

         learnStep=0.10, 

         configFile= 

      ); 

 

      %let nInputs = %sysfunc(countw(&inputVarList.)); 

      %put nInputs = &nInputs.; 

      %let k = 2; /*k=2 requests pairs*/ 

 

      %let nCombo = %sysfunc(comb(&nInputs.,&k.)); 

      %put nCombo = &nCombo.; 

 

      %let listQuoted = ; 

 

    *identify each pair inputs; 

      data pairs (keep=pairs); 

            length pairs $65.; 

            array V{&nInputs.} $32 ( 

 

                /*quote each input*/ 

                        %do i = 1 %to &nInputs.; 

                              %let currentVar = %scan(&inputVarList.,&i.); 
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                              "&currentVar." 

                        %end;  

               ); 

 

                     do j=1 to &nCombo.; 

                         call allcomb(j,&k.,of V[*]); 

                         do i = 1 to &k.; 

                            if i=1 then  

                            do;  

                                          pairs=""; 

                                counter=0; 

                            end; 

                            counter=counter+1; 

                            pairs=cat(compress(pairs),' ',compress(V[i])); 

                            if counter=&k. then output; 

                         end; 

                    end; 

      run; 

 

      *save pairs as macro variables; 

      data _null_; 

            set pairs end = eof; 

          call symput ('pair'||strip(_n_),pairs); 

      run;  

 

      *call proc factmac, looping over the pairs;   

     libname mycaslib sasioca ; 

 

      data mycaslib.train mycaslib.valid; 

            set &dataset.; 

            if ranuni(0) le &partitionFraction. then output mycaslib.train; 

                  else output mycaslib.valid; 

      run;  

 

      %do i = 1 %to &nCombo.; 

            proc factmac data=mycaslib.train  

                   maxiter=&maxIter. 
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                  nfactors=&nFactors. 

                  learnstep=&learnStep.; 

                  input &&pair&i. /level=nominal; 

                  target &target. /level=interval; 

                  output out=mycaslib.ScoreTrain&i. copyvar = (&target.); 

                  savestate rstore=mycaslib.astore&i.; 

            run; 

 

            proc astore;  

            score data = mycaslib.valid  

            out=mycaslib.ScoreValid&i copyvar = (&target.) 

                  rstore = mycaslib.astore&i.; 

            run;  

      %end;  

 

      data mycaslib.ScoreTrain; 

            merge  

            %do i = 1 %to &nCombo.; 

                  mycaslib.ScoreTrain&i. (rename=(p_&target. = 

p_&target._&i.)) 

            %end;  

          ; 

            _partInd_ = 1;  

      run;  

 

      data mycaslib.ScoreValid; 

            merge  

            %do i = 1 %to &nCombo.; 

                  mycaslib.ScoreValid&i. (rename=(p_&target. = 

p_&target._&i.)) 

            %end;  

          ; 

 

            _partInd_ = 0; 

      run;  

 

      data mycaslib.ScoreCombined; 

            set mycaslib.ScoreTrain  
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            mycaslib.ScoreValid 

        ; 

      run;  

 

   *build a regression model to predict target using predicted values for all 

pairs;  

   proc regselect  data = mycaslib.scoreCombined; 

      model &target.= 

       %do i=1 %to &nCombo.;    

                  p_&target._&i. 

         %end;  

      ; 

      partition rolevar=_partInd_ (TRAIN="1" VALIDATE="0"); 

   run;  

   quit; 

%mend pairwiseFactMac; 
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Building Bayesian Network Classifiers Using the HPBNET Procedure Ye 

Liu, Weihua Shi, and Wendy Czika, SAS Institute Inc. 

ABSTRACT 

A Bayesian network is a directed acyclic graphical model that represents probability relationships and 
conditional independence structure between random variables. SAS® Enterprise Miner™ implements a 
Bayesian network primarily as a classification tool; it supports naïve Bayes, tree-augmented naïve Bayes, 
Bayesian-network-augmented naïve Bayes, parent-child Bayesian network, and Markov blanket Bayesian 
network classifiers. The HPBNET procedure uses a score-based approach and a constraint-based 
approach to model network structures. This paper compares the performance of Bayesian network 
classifiers to other popular classification methods such as classification tree, neural network, logistic 
regression, and support vector machines. The paper also shows some real-world applications of the 
implemented Bayesian network classifiers and a useful visualization of the results. 

INTRODUCTION 

Bayesian network (BN) classifiers are one of the newest supervised learning algorithms available in SAS 
Enterprise Miner.  The HP BN Classifier node is a high-performance data mining node that you can select 
from the HPDM toolbar; it uses the HPBNET procedure in SAS® High-Performance Data Mining to learn a 
BN structure from a training data set. This paper show how the various BN structures that are available in 
PROC HPBNET can be used as a predictive model for classifying a binary or nominal target.   

Because of the practical importance of classification, many other classifiers besides BN classifiers are 
commonly applied. These classifiers include logistic regression, decision tree, support vector machines, 
and neural network classifiers. Recent research in supervised learning has shown that the prediction 
performance of the BN classifiers is competitive when compared to these other classifiers.  However, BN 
classifiers can surpass these competitors in terms of interpretability. A BN can explicitly represent 
distributional dependency relationships among all available random variables; thus it enables you to 
discover and interpret the dependency and causality relationships among variables in addition to the 
target’s conditional distribution. In contrast, support vector machines and neural network classifiers are 
black boxes and logistic regression and decision tree classifiers only estimate the conditional distribution 
of the target. Therefore, BN classifiers have great potential in real-world classification applications, 
especially in fields where interpretability is a concern. 

SAS Enterprise Miner implements PROC HPBNET to build BN classifiers that can take advantage of 
modern multithreaded distributed-computing platforms. The HPBNET procedure can build five types of 
BN classifiers: naïve BN, tree-augmented naïve BN, BN-augmented naïve BN, parent-child BN, and 
Markov blanket BN. This paper introduces the basic structure of these five types of BN classifiers, 
explains the key programming techniques and outputs of the HPBNET procedure, and demonstrates 
useful visualization methods for displaying the structures of the output BN classifiers. This paper also 
compares the prediction performance of BN classifiers to that of the previously mentioned competitor 
classifiers by using 25 data sets in the UCI Machine Learning Repository (Lichman 2013). 
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BAYESIAN NETWORKS 

A Bayesian network is a graphical model that consists of two parts, <G, P>: 

 G is a directed acyclic graph (DAG) in which nodes represent random variables and arcs between 
nodes represent conditional dependency of the random variables. 

 P is a set of conditional probability distributions, one for each node conditional on its parents. 

The following example explains these terms in greater detail. 

 

EXAMPLE OF A SIMPLE BAYESIAN NETWORK 

Figure 1 shows a Bayesian network for a house alarm from Russell and Norvig (2010). It describes the 
following scenario: Your house has an alarm system against burglary. You live in a seismically active 
area, and the alarm system can be set off occasionally by an earthquake. You have two neighbors, Mary 
and John, who do not know each other. If they hear the alarm, they might or might not call you.   

 

 
 

Figure 1. House Alarm Bayesian Network 

 

In the house alarm Bayesian network, E, B, A, M, and J are called nodes, and the links between those 
five nodes are called edges or arcs. Node A is the parent of nodes J and M because the links point from 
A to J and M; nodes J and M are called the children of node A. Similarly, nodes E and B are the parents 
of node A; node A is the child of nodes E and B. Those nodes and edges constitute the graph (G) part of 
the Bayesian network model. The conditional probability tables (CPTs) that are associated with the nodes 
are the probability distribution (P) part of the Bayesian network model. 

 

PROPERTIES OF BAYESIAN NETWORK 

Two important properties of a Bayesian network are the following: 

 Edges (arcs between nodes) represent “causation,” so no directed cycles are allowed.  

 Each node is conditionally independent of its ancestors given its parents. This is called Markov 
property. 
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According to the Markov property, the joint probability distribution of all nodes in the network can be 
factored to the product of the conditional probability distributions of each node given its parents. That is,  

Pr(G) = Pr(𝑋1,𝑋2,… , 𝑋𝑝) = ∏𝑃𝑟(𝑋𝑖|𝜋(𝑋𝑖))

𝑝

𝑖=1

 

where 𝜋(𝑋𝑖) are the parents of node 𝑋𝑖. 

In the simplest case, where all the 𝑋𝑖 are discrete variables as in the following example, conditional 
distribution is represented as CPTs, each of which lists the probability that the child node takes on each 
of its different values for each combination of values of its parents.  
 
 
In the house alarm example, observe that whether Mary or John calls is conditionally dependent only on 
the state of the alarm (that is, their parent node). Based on the graph, the joint probability distribution of 
the events (E,B,A,M, and J) is 

Pr(E, B,A, M,J) = Pr(J|A) ⋅ Pr(M|A) ⋅ Pr(𝐴|𝐸, 𝐵) ⋅ Pr(B) ⋅ Pr (E) 

The network structure together with the conditional probability distributions completely determine the 
Bayesian network model. 

 

SUPERVISED LEARNING USING A BAYESIAN NETWORK MODEL 

Now consider this question:  

Suppose you are at work, the house is burglarized (B = True), there is no earthquake (E = False), 
your neighbor Mary calls to say your alarm is ringing (M = True), but neighbor John doesn’t call 
(J = False). What is the probability that the alarm went off (A = True)? 

In other words, what is the value of 

Pr(A = T|B = T,E = F, M = T,J = F)  

To simplify the appearance of these equations, T and F are used to represent True and False, 
respectively. 

From the definition of conditional probability,  

Pr(A = T|B = T,E = F, M = T,J = F)  =
Pr(A = T,B = T,E = F, M = T,J = F)

Pr(B = T,E = F, M = T,J = F)
 

According to the equation for Pr(E, B,A,M,J) from the preceding section and using the values from the 
conditional probability tables that are shown in Figure 1, 

Pr(A = T,B = T,E = F,M = T,J = F)
= Pr(J = F|A = T) Pr (M = T|A = T)Pr (𝐴 = 𝑇|𝐸 = 𝐹,𝐵 = 𝑇)Pr (B = T)Pr (E = F)
= 0.1 ∗ 0.01 ∗ 0.7 ∗ 0.94 ∗ (1 − 0.02) = 0.00064484 

Pr(B = T,E = F,M = T,J = F) = Pr(A = T,B = T,E = F,M = T,J = F) + Pr(A = F, B = T,E = F, M = T,J = F)
= 0.00064484+ Pr(A = F,B = T,E = F,M = T,J = F)
= 0.00064484
+ Pr(J = F|A = F) Pr(B = T)Pr(M = T|A = F) Pr(𝐴 = 𝐹|𝐸 = 𝐹, 𝐵 = 𝑇) Pr(E = F)
= 0.00064484+ (1 − 0.05) ∗ 0.01 ∗ 0.01 ∗ (1 − 0.94) ∗ (1 − 0.02) = 0.000650426 

Pr(A = T|B = T,E = F, M = T,J = F)  =
0.00064484

0.000650426
≈ 0.99 
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Thus, the conditional probability of the alarm having gone off in this situation is about 0.99. This value can 
be used to classify (predict) whether the alarm went off. 

In general, based on a Bayesian network model, a new observation 𝑋 = (𝑥1,𝑥2,…, 𝑥𝑝 ) is classified by 
determining the classification of the target Y that has the largest conditional probability, 

arg max
𝑘

Pr (𝑌 = 𝑘|𝑥1 ,𝑥2 ,…, 𝑥𝑝 ) 

where 

Pr(𝑌 = 𝑘|𝑥1,𝑥2,… ,𝑥𝑝) ∝ Pr(𝑌 = 𝑘,𝑥1 ,𝑥2 ,…, 𝑥𝑝) = ∏Pr(𝑥𝑖|𝜋(𝑋𝑖))𝑃𝑟(𝑌 = 𝑘|𝜋(𝑌))

𝑖

 

 

Because the target is binary (True or False) in this example, when the value of the preceding equation is 
greater than 0.5, the prediction is that the alarm went off (A = True). 

HPBNET PROCEDURE 

The HPBNET procedure is a high-performance procedure that can learn different types of Bayesian 
networks—naïve, tree-augmented naïve (TAN), Bayesian network-augmented naïve (BAN), parent-child 
Bayesian network (PC), or Markov blanket (MB)—from an input data set. PROC HPBNET runs in either 
single-machine mode or distributed-computing mode. In this era of big data, where computation 
performance is crucial for many real-world applications, the HPBNET procedure’s distributed-computing 
mode is very efficient in processing large data sets. 

The HPBNET procedure supports two types of variable selection: one by independence tests between 
each input variable and the target (when PRESCREENING=1), and the other by conditional 
independence tests between each input variable and the target given any subset of other input variables 
(when VARSELECT=1, 2, or 3). PROC HPBNET uses specialized data structures to efficiently compute 
the contingency tables for any variable combination, and it uses dynamic candidate generation to reduce 
the number of false candidates for variable combinations. If you have many input variables, structure 
learning can be time-consuming because the number of variable combinations is exponential. Therefore, 
variable selection is strongly recommended. 
 
To learn a TAN structure, the HPBNET procedure constructs a maximum spanning tree in which the 
weight for an edge is the mutual information between the two nodes. A maximum spanning tree is a 
spanning tree of a weighted graph that has maximum weight. If there are K variables in a system, then 

the corresponding tree structure will have K nodes, and K–1 edges should be added to create a tree 
structure that connects all the nodes in the graph. Also, the sum of the weights of all the edges needs to 
be the maximum weight among all such tree structures. 
 

To learn the other BN types, PROC HPBNET uses both of the following approaches: 

 The score-based approach uses the BIC (Bayesian information criterion) score to measure how well 
a structure fits the training data and then tries to find the structure that has the best score. The BIC is 
defined as 

BIC(𝐺, 𝐷) = 𝑁 ∑∑ ∑ 𝑝(𝜋𝑖𝑗)𝑝(𝑋𝑖 = 𝑣𝑖𝑘|𝜋𝑖𝑗) ln𝑝(𝑋𝑖 = 𝑣𝑖𝑘|𝜋𝑖𝑗) −
𝑀

2
ln𝑁

𝑟𝑖

𝑘=1

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 

where 𝐺 is a network, 𝐷 is the training data set, 𝑁 is the number of observations in 𝐷, 𝑛 is the number 
of variables, 𝑋𝑖 is a random variable, 𝑟𝑖 is the number of levels for 𝑋𝑖, 𝑣𝑖𝑘 is the 𝑘th value of 𝑋𝑖, 𝑞𝑖 is 
the number of value combinations of 𝑋𝑖’s parents, 𝜋𝑖𝑗is the 𝑗th value combination of 𝑋𝑖’s parents, and 
𝑀 = ∑ (𝑟𝑖 − 1) × 𝑞𝑖

𝑛
𝑖=1  is the number of parameters for the probability distributions. 
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 The constraint-based approach uses independence tests (such as a chi-square test or mutual 
information test) to determine the edges and directions among the nodes as follows: Assume that you 
have three variables, 𝑋, 𝑌 and 𝑍, and that it has been determined (using independence tests) that 
there are edges between 𝑋 and 𝑍 and 𝑌 and 𝑍, but no edge between 𝑋 and 𝑌. If 𝑋 is conditionally 
independent of 𝑌 given any subset of variables 𝑆 = {𝑍} ∪ 𝑆′, 𝑆 ′ ⊆ {𝑋, 𝑌, 𝑍}, then the directions 
between 𝑋 and 𝑍 and between 𝑌 and 𝑍 are 𝑋 → 𝑍 and 𝑌 →  𝑍, respectively. Notice that using only 
independence tests might not be able to orient all edges because some structures are equivalent with 
respect to conditional independence tests. For example, 𝑋 ← 𝑌 ← 𝑍, 𝑋 → 𝑌 → 𝑍, and 𝑋 ← 𝑌 → 𝑍 
belong to the same equivalence class. In these cases, PROC HPBNET uses the BIC score to 
determine the directions of the edges.  

 
For the PC and MB structures, PROC HPBNET learns the parents of the target first. Then it learns the 
parents of the input variable that has the highest BIC score with the target. It continues learning the 
parents of the input variable that has the next highest BIC score, and so on. When learning the parents of 
a node, it first determines the edges by using independence tests. Then it orients the edges by using both 
independence tests and the BIC score. PROC HPBNET uses the BIC score not only for orienting the 
edges but also for controlling the network complexity, because a complex network that has more parents 
is penalized in the BIC score. Both the BESTONE and BESTSET values of the PARENTING= option try 
to find the local optimum structure for each node. BESTONE adds the best candidate variable to the 
parents at each iteration, whereas BESTSET tries to choose the best set of variables among the 
candidate sets. 
 

TYPES OF BAYESIAN NETWORK CLASSIFIERS SUPPORTED BY THE HPBNET PROCEDURE  

The HPBNET procedure supports the following types of Bayesian network classifiers: 

 Naïve Bayesian network classifier: As shown in Figure 2, the target node (Y) has a direct edge to 
each input variable, the target node is the only parent for all other nodes, and there are no other 
edges. This structure assumes that all input variables are conditionally independent of each other 
given the target.  
 

 

 

Figure 2. Naïve Bayesian Network Classifier 

 

  

X1 X2 Xp

Y
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 Tree-augmented naïve Bayesian network classifier: As shown in Figure 3, in addition to the edges 
from the target node Y to each input node, the edges among the input nodes form a tree. This 
structure is less restrictive than the naïve Bayes structure. 
 

 

 

Figure 3. Tree-Augmented Naïve Bayesian Network Classifier 

 

 Bayesian network-augmented naïve Bayesian network classifier: As shown in Figure 4, the 
target node Y has a direct edge to each input node, and the edges among the input nodes form a 
Bayesian network. 
 

 

 

Figure 4. Bayesian Network-Augmented Naïve Bayesian Network Classifier 

 

 Parent-child Bayesian network classifier: As shown in Figure 5, input variables can be the parents 
of the target variable Y. In addition, edges from the parents of the target to the children of the target 
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and among the children of the target are also possible. 

 

Figure 5. Parent-Child Bayesian Network Classifier  
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 Markov blanket Bayesian network classifier: As shown in Figure 6, the Markov blanket includes 
the target’s parents, children, and spouses (the other parents of the target’s children). 
 

 

 

Figure 6. Markov Blanket Bayesian Network Classifier 

 

One advantage of PROC HPBNET is that you can specify all the structures that you want to consider for 
training and request (by specifying the BESTMODEL option) that the procedure automatically choose the 
best structure based on each model’s performance on validation data.  

 

EXAMPLE OF USING PROC HPBNET TO ANALYZE DATA 

This example uses PROC HPBNET to diagnose whether a patient has breast cancer, based on the 
Breast Cancer Wisconsin data set from the UCI Machine Learning Repository (Lichman 2013). 

Table 1 lists the details of the attributes found in this data set. 

Variables  Attribute Domain Description of 
Benign Cells 

Description of 
Cancerous Cells 

1 Sample code number  ID number  N/A N/A 
2 Clump thickness 1–10  Tend to be grouped 

in monolayers 
Often grouped in 
multiple layers 

3 Uniformity of cell size 1–10  Evenly distributed  Unevenly distributed 
4 Uniformity of cell shape 1–10  Evenly distributed  Unevenly distributed 
5 Marginal adhesion 1–10  Tend to stick 

together 
Tend not to stick 
together 

6 Single epithelial cell size 1–10  Tend to be normal-
sized 

Tend to be significantly 
enlarged 

7 Bare nuclei 1–10  Typically nuclei are 
not surrounded by 
cytoplasm of 
benign cells 

Nuclei might be 
surrounded by 
cytoplasm  

8 Bland chromatin 1–10  Uniform “texture” of 
nucleus 

Coarser “texture” of 
nucleus 

9 Normal nucleoli 1–10  Very small, if visible More prominent, and 
greater in number 

10  Mitoses 1–10  Grade of cancer determined by counting the 
number of mitoses (nuclear division, the 
process by which the cell divides and 
replicates) 

11  Class 2 or 4 2 4 

Table 1.  Attributes of Breast Cancer Wisconsin Data Set   

X1

Y

X2

X3 X4

X5
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The RENAME statement in the following DATA step enables you to assign a name to each variable so 
that you can understand it more easily: 
 

data BreastCancer; 

set BreastCancer; 

rename var1=ID 

       var2=Clump_Thickness 

       var3=Uniformity_of_Cell_Size 

       var4=Uniformity_of_Cell_Shape 

       var5=Marginal_Adhesion 

       var6=Single_Epithelial_Cell_Size 

       var7=Bare_Nuclei 

       var8=Bland_Chromatin 

       var9=Normal_Nucleoli 

       var10=Mitoses 

       var11=Class; 

run; 

 

 
The following SAS program shows how you can use PROC HPBNET to analyze the BreastCancer 
data set: 
 
proc hpbnet data=BreastCancer nbin=5 structure=Naive TAN PC MB bestmodel; 

target Class; 

id ID; 

input Clump_Thickness Uniformity_of_Cell_Size  Uniformity_of_Cell_Shape 

Marginal_Adhesion Single_Epithelial_Cell_Size Bare_Nuclei Bland_Chromatin  

Normal_Nucleoli Mitoses/level=INT; 

output network=net validinfo=vi varselect=vs 

     varlevel=varl parameter=parm fit=fitstats pred=prediction; 

partition fraction(validate=0.3 seed=12345); 

code file="c:\hpbnetscorecode.sas" ; 

run; 

 
The TARGET statement specifies Class as the target variable. The ID statement specifies ID as the ID 

variable. The INPUT statement specifies that all the other variables are to be used as interval inputs. The 

NBIN= option in the PROC HPBNET statement specifies 5 for the number of equal-width bins for interval 

inputs. Four different structures are specified in the STRUCTURE= option (so each structure is trained), 

and the BESTMODEL option requests that PROC HPBNET automatically choose the best model to 

minimize the validation misclassification rate. The FRACTION option in the PARTITION statement 

requests that 30% of the data be used for validation (leaving 70% to be used for training). The OUTPUT 

statement specifies multiple output tables to be saved in the Work directory. The CODE statement 

specifies a filename (hpbnetscorecode.sas) where the generated score code is to be stored. 

 

After you run PROC HPBNET, you can visualize the final model by using the %createBNCdiagram 

macro in the Appendix to view the selected Bayesian network structure. This macro takes the target 

variable and the output network data as arguments. 

 

Figure 7 shows the generated diagram, which indicates that the naïve Bayes network is selected as the 
best structure for this data set, because the input variables are all conditionally independent of each other 
given the target. 
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Figure 7. Bayesian Network Diagram 
  
Table 2 through Table 7 show all the other output tables, which are stored in the Work directory. 
 
The Best Model column in Table 2 shows that a naïve Bayesian network model with a maximum of one 
parent is selected, and the Misclassification Errors column shows that five validation observations are 
misclassified. 
 

 
 

Table 2.  Validation Information Table 
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Table 3 shows that the number of observations for validation is 178. Together with the misclassification 
errors shown in Table 2, you can calculate the validation accuracy as 1 – 5/178 = 97.19%. In PROC 
HPBNET, continuous variables are binned to equal-width discrete levels in order to simplify the model. If 
you want to improve this accuracy, you can discretize the interval inputs differently. For example, you 
could use entropy binning instead of equal-width binning. 

 

 
 
Table 3. Fit Statistics Table 
 
Table 4 shows the variable selection results. In the preceding PROC HPBNET call, the VARSELECT= 
option is not specified in the PROC statement, so its default value is applied. By default, each input 
variable is tested for conditional independence of the target variable given any other input variable, and 
only the variables that are conditionally dependent on the target given any other input variable are 
selected. Table 4 shows that all the nine input variables are selected into the model. 
 

 
 
Table 4. Selected Variables Table 
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Table 5 shows the details for each level of the target and input variables. The values of 0–4 in the Level 
Index column indicate that PROC HPBNET bins each interval input variable into five equal-width levels 
The number of bins can be specified in the NBIN= option; by default, NBIN=5.  
 

 
 
Table 5. Variable Levels Table 
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Table 6 shows the parameter values for the resulting model. 
 

 
 
Table 6. Parameter Table 
 
Table 7 shows the prediction results for the first 20 observations of the training data. The Predicted: 

Class= columns contain the conditional probabilities for the Class variable, where Class=2 indicates a 

benign cell and Class=4 indicates a malignant cell. The conditional probabilities are then used to predict 

the target class.  Here the target is known because these are the training data, but you can use this 

information to see how well the model is performing. The model is considered to perform well when the 

actual target class matches the target class that is predicted based on the conditional probabilities. 

 

 
 
Table 7. Prediction Results Table 
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PREDICTION ACCURACY COMPARISON 

This section compares the prediction accuracy of Bayesian classifiers to that of their four popular 
competitor classifiers (decision tree, neural network, logistic regression, and support vector machines) for 
25 data sets that were downloaded from the UCI Machine Learning Repository (Lichman 2013). Table 8 
summarizes these data sets.  

 
Data Set Attributes 

Target 

Levels 

Number of 

Observations 

Total Validation 

1 Adult 13 2 48,842 16,116 
2 Statlog (Australian Credit Approval) 14 2 690 CV-5 
3 Breast Cancer Wisconsin (Original) (Mangasarian 

and Wolberg 1990) 
9 2 699 CV-5 

4 Car Evaluation 6 4 1,728 CV-5 
5 Chess (King-Rook vs. King-Pawn) 36 2 3,196 1,066 
6 Diabetes 8 2 768 CV-5 
7 Solar Flare 10 2 1,066 CV-5 
8 Statlog (German Credit Data) 24 2 1,000 CV-5 
9 Glass Identification 9 6 214 CV-5 

10 Heart Disease 13 2 270 CV-5 
11 Hepatitis 19 2 155 CV-5 
12 Iris 4 3 150 CV-5 
13 LED Display Domain + 17 Irrelevant Attributes 24 10 3,190 1,057 
14 Letter Recognition 16 26 20,000 4,937 
15 Lymphography 18 4 148 CV-5 
16 Nursery 8 5 12,960 4,319 
17 Statlog (Landsat Satellite) 36 6 6,435 1,930 
18 Statlog (Image Segmentation) 19 7 2,310 770 
19 Soybean (Large) 35 19 683 CV-5 
20 SPECT Heart 22 2 267 CV-5 
21 Molecular Biology (Splice-Junction Gene 

Sequences) 
60 3 3,190 1,053 

22 Tic-Tac-Toe Endgame 9 2 958 CV-5 
23 Statlog (Vehicle Silhouettes) 18 4 846 CV-5 
24 Congressional Voting Records 16 2 435 CV-5 
25 Waveform Database Generator  

(Version 1) 
21 3 5,000 4,700 

 

Table 8 Summary of 25 UCI Data Sets 

 

For the larger data sets, the prediction accuracy was measured by the holdout method (that is, the 

learning process randomly selected two-thirds of the observations in the data set for building the 

classifiers, and then evaluated their prediction accuracy on the remaining observations in the data set). 

For smaller data sets, the prediction accuracy was measured by five-fold cross validation (CV-5). Each 

process was repeated five times. Observations that have missing values were removed from the data 

sets. All continuous variables in the data set were discretized with a tree-based binning method. The final 

average prediction accuracy values and their standard deviations are summarized in Table 9. The best 

accuracy values for each data set are marked in bold in each row of the table. You can see that PC and 

TAN in the five BN structures claim most of the wins and are competitive to the other classifiers.   
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     Data Set 

BN Classifiers Competitor Classifiers 

 
Naïve 

Bayes  
BAN TAN PC MB Logistic NN Tree  SVM* 

1 Adult 78.06+- 0.24 80.93+- 0.34 79.81+- 0.42 85.00+- 0.25 49.61+- 0.37 81.17+- 6.24 85.84+- 0.27 85.28+- 0.13 85.73+- 0.29 

2 Statlog (Australian 

Credit Approv al) 

86.43+- 0.33 86.29+- 0.30 85.88+- 0.33 86.20+- 0.54 85.51+- 0.00 82.38+- 4.71 85.59+- 0.78 84.96+- 0.42 85.65+- 0.27 

3 Breast Cancer 
Wisconsin (Original) 
(Mangasarian and 
Wolberg 1990) 

97.42+- 0.00 97.42+- 0.00 96.65+- 0.39 97.17+- 0.12 96.88+- 0.40 95.82+- 0.57 96.54+- 0.45 94.11+- 0.40 96.42+- 0.20 

4 Car Ev aluation 80.01+- 0.21 86.56+- 1.03 87.52+- 0.10 88.24+- 0.90 86.52+- 1.27 77.26+- 0.26 93.07+- 0.49 96.89+- 0.36   

5 Chess (King-Rook v s. 
King-Pawn) 

90.41+- 0.72 95.31+- 0.38 95.12+- 0.38 95.01+- 0.56 92.25+- 0.91 52.25+- 0.00 96.92+- 0.56 99.04+- 0.39 97.17+- 0.54 

6 Diabetes 76.07+- 0.67 76.02+- 0.69 74.97+- 1.17 78.10+- 0.70 72.71+- 1.22 75.86+- 2.98 77.29+- 1.03 75.94+- 0.95 77.63+- 0.89 

7 Solar Flare 73.58+- 0.79 73.94+- 0.92 73.60+- 0.78 80.02+-1.08 77.60+- 1.81 81.54+- 0.22 81.69+- 0.56 81.07+- 0.45 82.18+- 0.42 

8 Statlog (German Credit 

Data) 

71.60+- 0.55 71.28+- 1.02 71.94+- 1.29 76.18+- 0.37 66.40+- 1.47 75.24+- 0.50 75.04+- 0.34 72.18+- 0.59 75.86+- 0.76 

9 Glass Identification 65.61+- 2.28 65.61+- 2.28 71.68+- 1.02 69.53+- 1.42 69.53+- 1.42 62.80+- 3.70 70.37+- 3.54 69.81+- 1.43   

10 Heart Disease 82.89+- 1.21 83.56+- 1.35 82.74+- 1.07 83.33+- 0.69 80.52+- 1.19 83.26+- 2.05 84.67+- 1.30 81.41+- 1.32 84.15+- 1.66 

11 Hepatitis 86.60+- 1.86 86.61+- 1.20 88.73+- 2.60 90.56+- 1.34 92.11+- 1.94 88.69+- 3.25 91.59+- 1.85 92.12+- 1.35 91.06+- 1.22 

12 Iris 95.86+- 0.30 95.86+- 0.30 95.19+- 0.74 95.86+- 0.30 95.86+- 0.30 80.37+- 0.72 94.92+- 1.40 94.53+- 0.86   

13 LED Display Domain + 

17 Irrelev ant Attributes 

73.96+- 1.22 73.96+- 1.22 74.25+- 0.88 74.27+-1.17 74.70+- 1.21 19.79+- 0.73 73.25+- 0.39 74.08+- 0.92   

14 Letter Recognition 68.33+- 0.58 73.19+- 0.77 78.75+- 0.63 72.07+- 0.63 70.80+- 5.37 10.98+- 0.27 78.69+- 0.46 77.66+- 0.43   

15 Lymphography 80.81+- 1.56 81.49+- 1.83 79.32+- 0.77 83.78+- 1.51 74.19+- 3.71 61.62+- 3.89 81.35+- 1.56 74.86+- 0.88   

16 Nursery 82.92+- 0.65 86.46+- 0.69 89.25+- 0.39 91.45+- 0.63 91.02+- 0.25 90.86+- 0.34 92.27+- 0.47 97.41+- 0.16   

17 Statlog (Landsat 

Satellite) 

81.39+- 0.73 86.36+- 0.51 86.31+- 0.79 86.58+- 0.49 84.56+- 0.65 72.78+- 0.29 87.84+- 0.60 85.55+- 0.38   

18 Statlog (Image 
Segmentation) 

89.45+- 0.71 91.09+- 1.71 93.04+- 0.81 91.09+- 1.71 67.01+- 2.34 58.83+- 3.24 92.78+- 0.90 93.56+- 0.74   

19 Soybean (Large) 89.78+- 0.35 89.78+- 0.35 92.97+- 0.99 89.43+- 0.44 60.97+- 2.80 44.22+- 3.67 91.80+- 0.51 91.65+- 1.01   

20 SPECT Heart 72.06+- 1.65 75.36+- 1.04 73.41+- 1.38 80.60+- 1.25 69.96+- 2.74 78.35+- 1.66 82.25+- 1.20 79.33+- 1.51 81.95+- 1.97 

21 Molecular Biology 

(Splice-Junction Gene 
Sequences) 

95.31+- 0.51 95.38+- 0.47 95.71+- 0.71 96.05+- 0.16 92.61+- 7.13 80.46+- 1.61 95.48+- 0.70 94.17+- 0.62   

22 Tic-Tac-Toe Endgame 66.08+- 1.49 79.04+- 1.58 72.03+- 0.70 77.14+- 0.82 75.03+- 3.02 77.10+- 0.80 98.10+- 0.09 93.28+- 0.67 98.33+- 0.00 

23 Statlog (Vehicle 
Silhouettes) 

62.01+- 0.84 70.26+- 1.29 71.25+- 0.80 70.26+- 1.39 58.96+- 5.60 63.55+- 1.77 70.09+- 0.91 69.36+- 0.48   

24 Congressional Voting 

Records 

94.80+- 0.53 95.17+- 0.16 95.13+- 0.72 94.90+- 0.10 94.99+- 0.38 93.79+- 2.11 95.82+- 0.99 95.08+- 0.42 95.40+- 0.43 

25 Wav eform Database 

Generator(Version 1) 

78.31+- 1.48 78.31+- 1.48 73.68+- 1.77 78.35+- 1.33 78.62+- 1.50 62.43+- 3.43 81.78+- 0.85 70.27+- 3.06   

*SVM for binary target only 

Table 9. Classification Accuracy on 25 UCI Machine Learning Data Sets 
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CONCLUSION 

This paper describes Bayesian network (BN) classifiers, introduces the HPBNET procedure, and shows 
how you can use the procedure to build BN classifiers. It also compares the competitive prediction power 
of BN classifiers with other state-of-the-art classifiers, and shows how you can use a SAS macro to 
visualize the network structures.  
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APPENDIX 

%macro createBNCdiagram(target=Class, outnetwork=net); 

 

   data outstruct; 

        set &outnetwork; 

        if strip(upcase(_TYPE_)) eq 'STRUCTURE' then output; 

        keep _nodeid_   _childnode_  _parentnode_; 

   run; 

 

   data networklink; 

       set outstruct; 

        linkid = _N_; 

        label linkid ="Link ID"; 

   run; 

 

   proc sql; 

      create table work._node1 as 

         select distinct  _CHILDNODE_ as  node 

         from networklink; 

      create table work._node2  as 

         select distinct _PARENTNODE_  as node 

         from networklink; 

   quit; 

 

   proc sql; 

      create table work._node as 

         select node 

         from work._node1 

         UNION 

         select node 

         from work._node2; 

   quit; 

 

   data bnc_networknode; 

       length NodeType $32.; 

       set work._node; 

       if strip(upcase(node)) eq strip(upcase("&target")) then do; 

         NodeType = "TARGET"; 

         NodeColor=2; 

       end; 

       else  do; 

         NodeType = "INPUT"; 

         NodeColor = 1; 

       end; 

       label NodeType ="Node Type" ; 

       label NodeColor ="Node Color" ; 

 

   run; 

 

   data parents(rename=(_parentnode_ = _node_)) children(rename=(_childnode_ 

= _node_)) links; 

       length _parentnode_ _childnode_ $ 32; 

       set networklink; 

       keep _parentnode_ _childnode_ ; 

   run; 
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   /*get list of all unique nodes*/ 

   data nodes; 

       set parents children; 

   run; 

 

   proc sort data=nodes; 

       by _node_; 

   run; 

 

   data nodes; 

       set nodes; 

       by _node_; 

       if first._node_; 

      _Parentnode_ = _node_; 

      _childnode_ = ""; 

   run; 

 

   /*merge node color and type */ 

   data nodes; 

       merge nodes bnc_ 

 networknode (rename=(node=_node_ nodeColor=_nodeColor_ 

nodeType=_nodeType_)); 

       by _node_; 

   run; 

 

   /*sort color values to ensure consistent color mapping across networks */ 

   /*note that the color mapping is HTML style dependent though */ 

   proc sort data=nodes; 

       by  _nodeType_; 

   run; 

 

   /*combine nodes and links*/ 

   /* need outsummaryall for model report*/ 

   data bnc_networksummary(drop=_shape_ _nodecolor_ _nodepriority_ _shape_  

_nodeID_ _nodetype_ _linkdirection_) bnc_networksummaryall; 

       length _parentnode_ _childnode_ $ 32; 

       set nodes links; 

       drop _node_; 

       if _childnode_ EQ "" thendo; 

               _nodeID_ = _parentnode_; 

               _nodepriority_ = 1; 

               _shape_= "OVAL"; 

           end; 

       else do; 

         _linkdirection_ = "TO"; 

         output bnc_networksummary; 

       end; 

       output bnc_networksummaryall; 

       label _linkdirection_="Link Direction"; 

   run; 

 

    proc datasets lib=work nolist nowarn; 

         delete _node _node1 _node2 nodes links parents children; 

   run; 

 

   quit; 

 



19 

   proc template; 

      define statgraph bpath; 

         begingraph / DesignHeight=720 DesignWidth=720; 

            entrytitle "Bayesian Network Diagram"; 

            layout region; 

              pathdiagram fromid=_parentnode_ toid=_childnode_ / 

              arrangement=GRIP 

              nodeid=_nodeid_ 

              nodelabel=_nodeID_ 

              nodeshape=_shape_ 

              nodepriority=_nodepriority_ 

              linkdirection=_linkdirection_ 

              nodeColorGroup=_NodeColor_ 

                        textSizeMin = 10 

               ; 

            endlayout; 

         endgraph; 

      end; 

   run; 

 

   ods graphics; 

   proc sgrender data=bnc_networksummaryall template=bpath; 

   run; 

 

%mend; 

 

%createBNCdiagram; 
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ABSTRACT 

Ensemble modeling is now a well-established means for improving prediction accuracy; it enables you to 
average out noise from diverse models and thereby enhance the generalizable signal. Basic stacked 
ensemble techniques combine predictions from multiple machine learning algorithms and use these 
predictions as inputs to second-level learning models. This paper shows how you can generate a diverse 
set of models by various methods such as forest, gradient boosted decision trees, factorization machines, 
and logistic regression and then combine them with stacked-ensemble techniques such as hill climbing, 
gradient boosting, and nonnegative least squares in SAS® Visual Data Mining and Machine Learning. The 
application of these techniques to real-world big data problems demonstrates how using stacked 
ensembles produces greater prediction accuracy and robustness than do individual models. The 
approach is powerful and compelling enough to alter your initial data mining mindset from finding the 
single best model to finding a collection of really good complementary models. It does involve additional 
cost due both to training a large number of models and the proper use of cross validation to avoid 
overfitting. This paper shows how to efficiently handle this computational expense in a modern SAS® 
environment and how to manage an ensemble workflow by using parallel computation in a distributed 
framework. 

INTRODUCTION 

Ensemble methods are commonly used to boost predictive accuracy by combining the predictions of 
multiple machine learning models. Model stacking is an efficient ensemble method in which the 
predictions that are generated by using different learning algorithms are used as inputs in a second-level 
learning algorithm. This second-level algorithm is trained to optimally combine the model predictions to 
form a final set of predictions (Sill et al. 2009).  

In the last decade, model stacking has been successfully used on a wide variety of predictive modeling 
problems to boost the models’ prediction accuracy beyond the level obtained by any of the individual 
models. This is sometimes referred to as a “wisdom of crowds” approach, pulling from the age-old 
philosophy of Aristotle. Ensemble modeling and model stacking are especially popular in data science 
competitions, in which a sponsor posts training and test data and issues a global challenge to produce 
the best model for a specified performance criterion. The winning model is almost always an ensemble 
model. Often individual teams develop their own ensemble model in the early stages of the competition 
and then join forces in the later stages. One such popular site is Kaggle, and you are encouraged to 
explore numerous winning solutions that are posted in the discussion forums there to get a flavor of the 
state of the art.   

The diversity of the models in a library plays a key role in building a powerful ensemble model. Dietterich 
(2000) emphasizes the importance of diversity by stating, “A necessary and sufficient condition for an 
ensemble model to be more accurate than any of its individual members is if the classifiers are accurate 
and diverse.” By combining information from diverse modeling approaches, ensemble models gain more 
accuracy and robustness than a fine-tuned single model can gain. There are many parallels with 
successful human teams in business, science, politics, and sports, in which each team member makes a 
significant contribution and individual weaknesses and biases are offset by the strengths of other 
members. 

Overfitting is an omnipresent concern in ensemble modeling because a model library includes so many 
models that predict the same target. As the number of models in a model library increases, the chances 
of building overfitting ensemble models increases greatly. A related problem is leakage, in which 
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information from the target inadvertently and sometimes surreptitiously works its way into the model-
checking mechanism and causes an overly optimistic assessment of generalization performance. The 
most efficient techniques that practitioners commonly use to minimize overfitting and leakage include 
cross validation, regularization, and bagging. This paper covers applications of these techniques for 
building ensemble models that can generalize well to new data. 
 
This paper first provides an introduction to SAS Visual Data Mining and Machine Learning in SAS® 
Viya™, which is a new single, integrated, in-memory environment. The section following that discusses 
how to generate a diverse library of machine learning models for stacking while avoiding overfitting and 
leakage, and then shows an approach to building a diverse model library for a binary classification 
problem. A subsequent section shows how to perform model stacking by using regularized regression 
models, including nonnegative least squares regression. Another section demonstrates stacking with the 
scalable gradient boosting algorithm and focuses on an automatic tuning implementation that is based on 
efficient distributed and parallel paradigms for training and tuning models in the SAS Viya platform. The 
penultimate section shows how to build powerful ensemble models with the hill climbing technique. The 
last section compares the stacked ensemble models that are built by each approach to a naïve ensemble 
model and the single best model, and also provides a brief summary.  

OVERVIEW OF THE SAS VIYA ENVIRONMENT 

The SAS programs used in this paper are built in the new SAS Viya environment. SAS Viya uses SAS® 
Cloud Analytic Services (CAS) to perform tasks and enables you to build various model scenarios in a 
consistent environment, resulting in improved productivity, stability, and maintainability. SAS Viya 
represents a major rearchitecture of core data processing and analytical components in SAS software to 
enable computations across a large distributed grid in which it is typically more efficient to move 
algorithmic code rather than to move data.   
 
The smallest unit of work for the CAS server is a CAS action. CAS actions can load data, transform data, 
compute statistics, perform analytics, and create output. Each action is configured by specifying a set of 
input parameters. Running a CAS action in the CAS server processes the action's parameters and the 
data to create an action result. 
 
 In SAS Viya, you can run CAS actions via a variety of interfaces, including the following: 
 

 SAS session, which uses the CAS procedure. PROC CAS uses the CAS language (CASL) for 
specifying CAS actions and their input parameters. The CAS language also supports normal program 
logic such as conditional and looping statements and user-written functions. 

 Python or Lua, which use the SAS Scripting Wrapper for Analytics Transfer (SWAT) libraries 

 Java, which uses the CAS Client class 

 Representational state transfer (REST), which uses the CAS REST APIs 

CAS actions are organized into action sets, where each action set defines an application programming 
interface (API). SAS Viya currently provides the following action sets: 

 Data mining and machine learning action sets support gradient boosted trees, neural networks, 
factorization machines, support vector machines, graph and network analysis, text mining, and more. 

 Statistics action sets compute summary statistics and perform clustering, regression, sampling, 
principal component analysis, and more. 

 Analytics action sets provide additional numeric and text analytics.   

 System action sets run SAS code via the DATA step or DS2, manage CAS libraries and tables, 
manage CAS servers and sessions, and more. 

SAS Viya also provides CAS-powered procedures, which enable you to have the familiar experience of 
coding traditional SAS procedures. Behind each statement in these procedures is one or more CAS 

http://documentation.sas.com/#/?softwareId=pgm&softwareVersion=production.a&softwareContextId=CASprocedure&showBanner=develop
http://documentation.sas.com/#/?softwareId=pgm&softwareVersion=production.a&softwareContextId=casl&showBanner=develop
http://developer.sas.com/guides/python.html
http://developer.sas.com/guides/lua.html
http://developer.sas.com/guides/java.html
http://developer.sas.com/apis/cas/actions/guides/redirects/cas-api-redirect.html
http://documentation.sas.com/#/?softwareId=pgm&softwareVersion=production.a&softwareContextId=DMMLprogramming&showBanner=develop
http://documentation.sas.com/#/?softwareId=pgm&softwareVersion=production.a&softwareContextId=statProgramming&showBanner=develop
http://documentation.sas.com/#/?softwareId=pgm&softwareVersion=production.a&softwareContextId=analyticsProgramming&showBanner=develop
http://documentation.sas.com/#/?softwareId=pgm&softwareVersion=production.a&softwareContextId=systemProgramming&showBanner=develop
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actions that run across multiple machines. The SAS Viya platform enables you to program with both CAS 
actions and procedures, providing you with maximum flexibility to build an optimal ensemble. 
 
SAS Visual Data Mining and Machine Learning integrates CAS actions and CAS-powered procedures 
and surfaces in-memory machine-learning techniques such as gradient boosting, factorization machines, 
neural networks, and much more through its interactive visual interface, SAS® Studio tasks, procedures, 
and a Python client. This product bundle is an industry-leading platform for analyzing complex data, 
building predictive models, and conducting advanced statistical operations (Wexler, Haller, and Myneni 
2017).   

For more information about SAS Viya and SAS Visual Data Mining and Machine Learning, see the 
section “Recommended Reading.” For specific code examples from this paper, refer to the Github 
repository referenced in that section.      

BUILDING A STRONG LIBRARY OF DIVERSE MODELS 

You can generate a diverse set of models by using many different machine learning algorithms at various 
hyperparameter settings. Forest and gradient bosting methods are themselves based on the idea of 
combining diverse decision tree models. The forest method generates diverse models by training decision 
trees on a number of bootstrap samples of the training set, whereas the gradient boosting method 
generates a diverse set of models by fitting models to sequentially adjusted residuals, a form of stochastic 
gradient descent. In a broad sense, even multiple regression models can be considered to be an 
ensemble of single regression models, with weights determined by least squares. Whereas the traditional 
wisdom in the literature is to combine so-called “weak” learners, the modern approach is to create an 
ensemble of a well-chosen collection of strong yet diverse models. 
 
In addition to using many different modeling algorithms, the diversity in a model library can be further 
enhanced by randomly subsetting the rows (observations) and/or columns (features) in the training set. 
Subsetting rows can be done with replacement (bootstrap) or without replacement (for example, k-fold 
cross validation). The word “bagging” is often used loosely to describe such subsetting; it can also be 
used to describe subsetting of columns. Columns can be subsetted randomly or in a more principled 
fashion that is based on some computed measure of importance. The variety of choices for subsetting 
columns opens the door to the large and difficult problem of feature selection.    
 
Each new big data set tends to bring its own challenges and intricacies, and no single fixed machine 
learning algorithm is known to dominate. Furthermore, each of the main classes of algorithms has a set of 
hyperparameters that must be specified, leading to an effectively infinite set of possible models you can 
fit. In order to navigate through this model space and achieve near optimal performance for a machine 
learning task, a basic brute-force strategy is to first build a reasonably large collection of model fits across 
a well-designed grid of settings and then compare, reduce, and combine them in some intelligent fashion. 
A modern distributed computing framework such as SAS Viya makes this strategy quite feasible. 

AVOIDING LEAKAGE WHILE STACKING  

A naïve ensembling approach is to directly take the predictions of the test data from a set of models that 
are fit on the full training set and use them as inputs to a second-level model, say a simple regression 
model. This approach is almost guaranteed to overfit the data because the target responses have been 
used twice, a form of data leakage. The resulting model almost always generalizes poorly for a new data 
set that has previously unseen targets. The following subsections describe the most common techniques 
for combatting leakage and selecting ensembles that will perform well on future data.  

SINGLE HOLDOUT VALIDATION SET 

The classic way to avoid overfitting is to set aside a fraction of the training data and treat its target labels 
as unseen until final evaluation of a model fitting process. This approach has been the main one available 
in SAS Enterprise Miner from its inception, and it remains a simple and reliable way to assess model 
accuracy. It can be the most efficient way to compare models. It also is the way most data science 
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competitions are structured for data sets that have a large number of rows. 
 
For stacked ensembling, this approach also provides a good way to assess ensembles that are made on 
the dedicated training data. However, it provides no direct help in constructing those ensembles, nor does 
it provide any measure of variability in the model performance metric because you obtain only a single 
number. The latter concern can be addressed by scoring a set of bootstrap or other well-chosen random 
samples of the single holdout set. 

K-FOLD CROSS VALIDATION AND OUT-OF-FOLD PREDICTIONS 

The main idea of cross validation is to repeat the single holdout concept across different folds of the  
data—that is, to sequentially train a model on one part of the data and then observe the behavior of this 
trained model on the other held-out part, for which you know the ground truth. Doing so enables you to 
simulate performance on previously unseen targets and aims to decrease the bias of the learners with 
respect to the training data. 
 
Assuming that each observation has equal weight, it makes sense to hold out each with equal frequency.  
The original jackknife (leave-one-out cross validation) method in regression holds out one observation at 
a time, but this method tends to be computationally infeasible for more complex algorithms and large data 
sets. A better approach is to hold out a significant fraction of the data (typically 10 or 20%) and divide the 
training data into k folds, where k is 5 or 10. The following simple steps are used to obtain five-fold cross 
validated predictions: 
 
1. Divide the training data into five disjoint folds of as nearly equal size as possible, and possibly also 

stratify by target frequencies or means. 

2. Hold out each fold one at a time. 

3. Train the model on the remaining data.  

4. Assess the trained model by using the holdout set. 

Fitting and scoring for all k versions of the training and holdout sets provides holdout (cross 
validated) predictions for each of the samples in your original training data. These are known as out-of-
fold (OOF) predictions. The sum of squared errors between the OOF predictions and true target values 
yields the cross validation error of a model, and is typically a good measure of generalizability.  
Furthermore, the OOF predictions are usually safely used as inputs for second-level stacked ensembling.  

You might be able to further increase the robustness of your OOF predictions by repeating the entire  
k-fold exercise, recomputing OOFs with different random folds, and averaging the results. However, you 
must be careful to avoid possible subtle leakage if too many repetitions are done. Determining the best 
number of repetitions is not trivial. You can determine the best number by doing nested k-fold cross 
validation, in which you perform two-levels of k-fold cross validation (one within the other) and assess 
performance at the outer level. In this nested framework, the idea is to evaluate a small grid of repetition 
numbers, determine which one performs best, and then use this number for subsequent regular k-fold 
evaluations. You can also use this approach to help choose k if you suspect that the common values of 5 
or 10 are suboptimal for your data. 

Cross validation can be used both for tuning hyperparameters and for evaluating model performance. 
When you use the same data both for tuning and for estimating the generalization error with k-fold cross 
validation, you might have information leakage and the resulting model might overfit the data. To deal 
with this overfitting problem, you can use nested k-fold cross validation—you use the inner loop for 
parameter tuning, and you use the outer loop to estimate the generalization error (Cawley and Talbot 
2010). 

BAGGING AND OUT-OF-BAG PREDICTIONS 

A technique similar in spirit to k-fold cross-validation is classical bagging, in which numerous bootstrap 
samples (with replacement) are constructed and the out-of-bag (OOB) predictions are used to assess 
model performance. One potential downside to this approach is the uneven number of times each 
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observation is held out and the potential for some missing values. However, this downside is usually 
inconsequential if you perform an appropriate number of bootstrap repetitions (for example, 100). This 
type of operation is very suitable for parallel processing, where with the right framework generating 100 
bootstrap samples will not take much more clock time than 10 seconds. 

AN APPROACH TO BUILDING A STRONG, DIVERSE MODEL LIBRARY 

EXAMPLE: ADULT SALARY DATA SET 

This section describes how to build a strong and diverse model library by using the Adult data set from 
the UCI Machine Learning Repository (Lichman 2013). This data set has 32,561 training samples 
and16,281 test samples; it includes 13 input variables, which are a mix of nominal and interval variables 
that include education, race, marital status, capital gain, and capital loss. The target is a binary variable 

that takes a value of 1 if a person makes less than 50,000 a year and value of 0 otherwise. The training 

and test set are available in a GitHub repository, for which a link is provided in the section 
“Recommended Reading.” 

Treating Nominal Variables 

The data set includes six nominal variables that have various levels. The cardinality of the categorical 
variables is reduced by collapsing the rare categories and making sure that each distinct level has at least 
2% of the samples. For example, the cardinality of the work class variable is reduced from 8 to 7, and the 
cardinality of the occupation variable is reduced from 14 to 12. 
 
The nominal variable education is dropped from the analysis, because the corresponding interval variable 
(education_num) already exists. All the remaining nominal variables are converted to numerical variables 
by using likelihood encoding as described in the next section. 

Likelihood Encoding and Feature Engineering 

Likelihood encoding involves judiciously using the target variable to create numeric versions of 
categorical features. The most common way of doing this is to replace each level of the categorical 
variable with the mean of the target over all observations that have that level. Doing this carries a danger 
of information leakage that might result in significant overfitting. The best way to combat the danger of 
leakage is to perform the encoding separately for each distinct version of the training data during cross 
validation. For example, while doing five-fold cross validation, you compute the likelihood-encoded 
categorical variable anew for each of the five training sets and use these values in the corresponding 
holdout sets. A drawback of this approach is the extra calculations and bookkeeping that are required.  
 
If the cardinality of a categorical variable is small relative to the number of observations and if the binary 
target is not rare, it can be acceptable to do the likelihood encoding once up front and run the risk of a 
small amount of leakage. For the sake of illustration and convenience, that approach is taken here with 
the Adult data set, because the maximum cardinality of the nominal variables is 12. 

Likelihood encoding has direct ties to classical statistical methods such as one-way ANOVA, and it can 
be viewed as stacking the simple predictions from such models. More sophisticated versions involve 
shrinking the encoded means toward an overall mean, which can be particularly effective when the class 
sizes are imbalanced. This approach is well-known to improve mean square prediction error and is 
popularly known as L2 regularization in machine learning communities and as ridge regression or best 
linear unbiased prediction (BLUP) in statistical communities. Alternatively, you can use an L1 (LASSO) 
norm and shrink toward the median. Note also that likelihood encoding effectively performs the same 
operation that tree-based methods perform at their first step—that is, sorting categories by their target 
likelihood in order to find the best way to split them into two groups.  
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Stacking and Building the Model Library 

As an illustrative small example, you can use the following three-level stacked ensemble approach along 
with four different machine learning algorithms (gradient boosting, forest, factorization machines, and 
logistic regression): 

Level 1: Fit initial models and find good hyperparameters using cross validation and automatic tuning (also 

called autotuning). 

Level 2: Create 100 bootstrap samples of the training set, and subsequently divide each of these samples 

into five folds. For each individual training set, train the four models (by using five-fold cross validation) 
and create 100 sets of five-fold OOF predictions. This approach effectively creates 400 total OOF 
predictions with approximately 1/3 of the values missing because of the properties of bootstrap (with 
replacement) sampling. 

Level 3: Average together the nonmissing OOF predictions for each learning algorithm, creating four total 

average OOF predictions (one for each learning algorithm). Use LASSO, nonnegative least squares, 
gradient boosting, and hill climbing on these four features to obtain the final predictions. 

As you move through the levels, you also create features on the final testing data. It is usually wise to 
keep training and testing features close to each other while coding. Otherwise you increase the risk of 
making a mistake at testing time because of an oversight in indexing or scoring. This practice also helps 
you keep your final goal in mind and ensure that everything you are doing is applicable to unlabeled 
testing rows. 

Results for Level 1 

Level 1 creates an initial small diverse library of models by using gradient boosting, forest, factorization 
machines, and logistic regression on the SAS Viya platform, which trains and tunes models quickly via in-
memory processing by taking advantage of both multithreading and distributed computing. These 
algorithms include a fair number of hyperparameters that must be specified, and a manual tuning process 
can be difficult. Instead, you can use the efficient random search capability in the AUTOTUNE statement 
available in the GRADBOOST (scalable gradient boosting), FOREST, and the FACTMAC (factorization 
machines) procedures. By using autotuning, you can rapidly reduce the model error that is produced by 
default settings of these hyperparameters. This automated search provides an efficient search path 
through the hyperparameter space by taking advantage of parallel computing in the SAS Viya platform. 
The AUTOTUNE statement is also available in the NNET (neural network), TREESPLIT (decision tree), 
and SVMACHINE (support vector machine) procedures of SAS Viya Data Mining and Machine Learning. 
You can see an example of how autotuning is used in the section “Stacking with the Scalable Gradient 
Boosting Algorithm.” You must be wary of overfitting and leakage while doing this tuning. For more 
information about automated search, see Koch et al. (2017). 

Results for Level 2 

After finding good set of hyperparameter values for each of the four modeling algorithms, Level 2 
generates 100 bootstrap replications (sampling with replacement) of the training data. Each training set is 
then divided into five disjoint folds, which produces five versions of new training sets (each version omits 
one fold) for each of the bootstrap samples. Notice that this setup produces 500 (100 x 5) versions of 
training sets. Forest, gradient boosting, factorization machine, and logistic regression models are trained 
on each of these training sets and the left-out folds are scored. In total, 2,000 (500 x 4) models are 
trained and scored. For each bootstrap sample, the five sets of OOF predictions are combined, which 
produces 400 columns of five-fold OOF predictions (100 gradient boosting, 100 forest, 100 logistic 
models, and 100 factorization machines). 

Because bootstrap sampling uses sampling with replacement, it results in some missing predictions in 
addition to multiple predictions for the same IDs. This example adopts the following approach to deal with 
these issues and arrive at one prediction for each ID: 
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 If an ID is selected more than once, the average prediction is used for each ID. 

 After making sure that each ID is selected at least once in the 100 bootstrap samples of each 
modeling algorithm, mean OOF predictions are obtained by averaging over 100 bootstrap OOF 
predictions. This simple averaging provided a significant reduction in the five-fold training ASE. For 
example, for the gradient boosting model, the five-fold training ASE of the best model (out of 100 
models) was 0.09351. When the OOF predictions of 100 gradient boosting models are averaged, this 
value reduced to 0.09236. 

This approach produces four columns of OOF predictions (one for each of the four algorithms). These 
four averaged models form the model library to be used in Level-3 stacking. 

For scoring on test data, the predictions from the 500 models, which are generated by the same learning 
algorithm, are simply averaged.  
 

Figure 1 shows the five-fold cross validation and test average squared errors (ASEs, also often called 
mean squared error, or MSE) of the four average models that form the model library to be used in Level-3 
stacking. The best performing single modeling method is the average gradient boosting model, which has 
a five-fold cross validation ASE of 0.09236. It is best by a fairly significant margin according to the ASE 
performance metric. 
 

Level-2 Models Training ASE 
(Five-Fold CV ASE) 

Testing ASE 

Average gradient boosting 0.09236 0.09273 

Average forest 0.09662 0.09665 

Average logistic regression 0.10470 0.10370 

Average factorization machines 0.11160 0.10930 

Figure 1. Five-Fold Cross Validation and Test ASEs of Models in the Model Library 

Results for Level 3 

With average OOF predictions in hand from Level 2, you are ready to build final ensembles and assess 
the resulting models by using the test set predictions. The OOF predictions are stored in the SAS data set 
train_mean_oofs, which includes four columns of OOF predictions for the four average models, an ID 
variable, and the target variable. The corresponding test set is test_mean_preds which includes the same 
columns. The rest of the analyses in this paper use these two data sets, which are also available in the 
GitHub repository. 

Start a CAS Session and Load Data into CAS 

The following SAS code starts a CAS session and loads data into in the CAS in-memory distributed 
computing engine in the SAS Viya environment: 
 
/* Start a CAS session named mySession */ 
cas mySession;  

 

/* Define a CAS engine libref for CAS in-memory data tables  */ 

/* Define a SAS libref for the directory that includes the data */ 

libname cas sasioca;  

libname data "/folders/myfolders/";  

 

/* Load data into CAS using SAS DATA steps */ 

data cas.train_oofs; 

set data.train_mean_oofs; 

run; 

data cas.test_preds; 

set data.test_mean_preds;  

run;  
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REGRESSION STACKING 

Let Y represent the target, X represent the space of inputs, and 𝑔1, … , 𝑔𝐿 denote the learned predictions 
from L machine learning algorithms (for example, a set of out-of-fold predictions). For an interval target, a 
linear ensemble model builds a prediction function, 

𝑏(𝑔) = 𝑤1 ∗ 𝑔1 + ⋯ + 𝑤𝐿 ∗ 𝑔𝐿 

where 𝑤𝑖 are the model weights. A simple way to specify these weights is to set them all equal to 1 𝐿⁄  (as 

done in Level-2) so that each model contributes equally to the final ensemble. You can alternatively 
assign higher weight to models you think will perform better. For the Adult example, the gradient boosted 
tree OOF predictor is a natural candidate to weight higher because of its best single model performance.     
 
Although assigning weights by hand can often be reasonable, you can typically improve final ensemble 
performance by using a learning algorithm to estimate them. Because of its computational efficiency and 
model interpretability, linear regression is a commonly used method for final model stacking. In a 
regression model that has an interval target, the model weights (𝑤𝑖) are found by solving the following 
least squares problem: 

𝑚𝑖𝑛 ∑(𝑦𝑖 − (𝑤1 ∗ 𝑔1𝑖 + ⋯ + 𝑤𝐿 ∗ 𝑔𝐿𝑖) )2

𝑁

𝑖=1

 

REGULARIZATION 
 
Using cross validated predictions partially helps to deal with the overfitting problem. An attending difficulty 
with using OOF or OOB predictions as inputs is that they tend to be highly correlated with each other, 
creating the well-known collinearity problem for regression fitting. Arguably the best way to deal with this 
problem is to use some form of regularization for the model weights when training the highest-level 
model. Regularization methods place one or more penalties on the objective function, based on the size 
of the model weights. If these penalty parameters are selected correctly, the total prediction error of the 
model can decrease significantly and the parameters of the resulting model can be more stable. 
 
The following subsections illustrate a couple of good ways to regularize your ensemble model. They 
involve estimating and choosing one or more new hyperparameters that control the amount of 
regularization. These hyperparameters can be determined by various methods, including a single 
validation data partition, cross validation, and information criteria. 

Stacking with Adaptive LASSO 

Consider a linear regression of the following form: 

 

𝑏(𝑥) = 𝑤1 ∗ 𝑔1 + ⋯ + 𝑤𝐿 ∗ 𝑔𝐿 

 

A LASSO learner finds the model weights by placing an 𝐿1 (sum of the absolute value of the weights) 
penalty on the model weights as follows: 
 

min ∑(𝑦𝑖 − (𝑤1 ∗ 𝑔1𝑖 + ⋯ + 𝑤𝐿 ∗ 𝑔𝐿𝑖) )2

𝑁

𝑖=1

 

subject to ∑ |𝑤𝑖| ≤ 𝑡

𝐿

𝑖=1
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If the LASSO hyperparameter t is small enough, some of the weights will be exactly 0. Thus, the LASSO 
method produces a sparser and potentially more interpretable model. Adaptive LASSO (Zou 2006) 
modifies the LASSO penalty by applying adaptive weights (𝑣𝑗) to each parameter that forms the LASSO 

constraint:  

subject to ∑(𝑣𝑖|𝑤𝑖|) ≤ 𝑡

𝐿

𝑖=1

 

 
These constraints control shrinking the zero coefficients more than they control shrinking the nonzero 
coefficients.  
 
The following REGSELECT procedure run builds an adaptive LASSO model. By default, the procedure 
uses the inverse of the full linear regression model coefficients for 𝑣𝑗 (Güneş 2015). 

 
proc regselect data=cas.train_mean_oofs; 

 partition fraction(validate=0.3); 

 model target = mean_factmac mean_gbt mean_logit mean_frst / noint; 

 selection method=lasso 

     (adaptive stop=sbc choose=validate) details=steps; 

 code file="/c/output/lasso_score.sas"; 

run; 

 
The PARTITION statement reserves 30% of the data for validation, leaving the remaining 70% for 
training. The validation part of the data is used to find the optimal value for the adaptive LASSO 
parameter t. The MODEL statement specifies the four average OOF predictions from Level 2 as input 
variables. The SELECTION statement requests the adaptive LASSO method, and the 
CHOOSE=VALIDATE suboption requests that the selected regularization parameter (t) be used to 
minimize the validation error on the 30% single holdout set. The CODE statement saves the resulting 
scoring code in the specified directory. 
 
Figure 2 shows the results. The gradient boosted predictor receives around 94% of the weight in the 
resulting ensemble, with the remaining 6% going to the forest model, along with just a little contribution 
from factorization machines. The ASE appears to have improved a little, but keep in mind that these 
results are on a new 30% holdout. 
 

 

 

Figure 2. Parameter Estimates and Fit statistics for the Adaptive LASSO Stacking Model 

To obtain a better measure of prediction error, you can check the ASE of the resulting model for the test 
set. The following SAS statements first score for the test set by using the saved score code, 
lasso_score.sas, and then calculate the ASE: 
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data cas.lasso_score; 

 set cas.test_preds; 

 %include '/c/output/lasso_score.sas'; 

run; 

 

data cas.lasso_score; 

 se=(p_target-target)*(p_target-target); 

run; 

 

proc cas; 

summary/ table={name='lasso_score', vars={'se'}};  

run; 

quit; 

 

The summary CAS action outputs the test ASE of the adaptive LASSO ensemble model as 0.09269, 
which improves slightly on the average gradient boosting model, whose test ASE is 0.09273. 

Stacking with Nonnegative Weights Regularization  

Another regularization technique that is commonly used to build a stacked regression model is to restrict 
the regression coefficients to be nonnegative while performing regression. Breiman (1995) shows that 
when the regression coefficients are constrained to be nonnegative, the resulting ensemble models 
exhibit better prediction error than any of the individual models in the library. Because each model takes a 
nonnegative weight, the resulting ensemble model can also be interpreted more easily. The paper also 
shows that the additional commonly used restriction Σ 𝑤𝑖 = 1 does not further improve the prediction 
accuracy, which is consistent with the findings here for the Adult data. A linear regression model that 
places nonnegative weights on a squared error loss function has the following form: 

 

min ∑(𝑦𝑖 − (𝑤1 ∗ 𝑔1𝑖 + ⋯ + 𝑤𝐿 ∗ 𝑔𝐿𝑖) )2

𝑁

𝑖=1

 

subject t o 𝑤𝑖 >  0, for i = 1, … , L 
 

The following CQLIM procedure statements from SAS® Econometrics fit a linear least squares regression 

model with nonnegativity constraints on the regression weights:  

proc cqlim data=cas.train_mean_oofs; 

 model target= mean_gbt mean_frst mean_logit mean_factmac; 

 restrict mean_gbt>0; 

 restrict mean_frst>0; 

restrict mean_logit>0; 

 restrict mean_factmac>0; 

 output out=cas.cqlim_preds xbeta copyvar=target; 

 ods output ParameterEstimates=paramests; 

run; 

Figure 3 shows the “Parameter Estimates” table that is generated by the CQLIM procedure. The Estimate 
column shows the regression weights of the stacked nonnegative least squares model for each of the four 
models. Here factorization machines have a slightly larger weight than in the previous adaptive LASSO 
model. 
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Figure 3. Regression Weights for the Nonnegative Least Squares Stacking Model 

This stacked model produces a training error of 0.09228 and a testing error of 0.09269, which provides an 
improvement over the single best Level-2 model: the average gradient boosting model, which has a 
training ASE of 0.09236 and a testing ASE of 0.09273. 

STACKING WITH THE SCALABLE GRADIENT BOOSTING ALGORITHM AND 
AUTOTUNING 

Model stacking is not limited to basic models such as linear regression; any supervised learning algorithm 
can be used as a higher-level learning algorithm as long as it helps boost the prediction accuracy. In fact, 
nonlinear algorithms such as boosted trees and neural networks have been successfully used as a 
second- and third-level modeling algorithms in winning methods of various data science competitions.  
 
The GRADBOOST procedure in SAS Visual Data Mining and Machine Learning fits a scalable gradient 
boosting model that is based that is on the boosting method described in Hastie, Tibshirani, and 
Friedman (2001), and its functionality is comparable to the popular xgboost program. PROC 
GRADBOOST is computationally efficient and uses fewer resources than the Gradient Boosting node in 
SAS Enterprise Miner uses. 
 
The following GRADBOOST procedure run trains a stacked ensemble model by using the Level-2 OOF 
predictions of the four average models: 
 

proc gradboost data=cas.train_mean_oofs outmodel=cas.gbt_ensemble; 

 target target / level=nominal; 

 input mean_factmac mean_gbt mean_logit mean_frst / level=interval; 

 autotune tuningparameters=(ntrees samplingrate vars_to_try(init=4)  

learningrate(ub=0.3) lasso ridge) searchmethod=random   

samplesize=200 objective=ase kfold=5; 

 ods output FitStatistics=Work._Gradboost_FitStats_  

       VariableImportance=Work._Gradboost_VarImp_; 

run;  

 
The OUTMODEL option in the PROC statement saves the resulting trained model as a CAS table called 
gbt _ensemble. This table is used later for scoring the test data. The TARGET statement specifies the 
binary target variable, and the INPUT statement specifies the average OOF predictions that are obtained 
from Level-2 average models for gradient boosting, forest, logistic regression, and factorization machines.  
 
The AUTOTUNE statement performs an automatic search for the optimal hyperparameter settings of the 
gradient boosting algorithm. It specifies a random search among 200 randomly selected hyperparameter 
settings of the gradient boosting algorithm. For assessing the resulting models, five-fold cross validation 
is used with the ASE metric that is specified by the following suboptions of the AUTOTUNE statement: 
OBJECTIVE=ASE KFOLD=5. The AUTOTUNE statement performs a search for the following parameters 
of the gradient boosting algorithm: number of iterations, sampling proportion, number of variables to try, 

http://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.1&docsetId=casml&docsetTarget=viyaml_gradboost_references.htm&locale=en#viyaml_gradboosthast_t01
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learning rate, and LASSO and ridge regularization parameters. For other parameters, the procedure uses 
default values (the maximum depth of a tree is 5, the maximum number of observations for a leaf is 5, 
and the maximum number of branches for a node is 2), but these values can also be optionally tuned. To 
further control the parameter search process, you can specify upper bounds, lower bounds, and initial 
values for the hyperparameters. The preceding statements specify an upper bound for the learning rate 
parameter, LEARNINGRATE (UB=0.2), and an initial value for the number of variables to try, 
VARS_TO_TRY (INIT=4).  
 
Figure 4 summarizes the autotuning options that are specified in the AUTOTUNE statement. 
 

 

Figure 4. Autotuning Information Table 

Figure 5 shows the resulting best configuration hyperparameter values. 
 

 

Figure 5. Autotuning Best Hyperparameter Settings for the Stacking Gradient Boosting Model 

The “Tuner Summary” table in Figure 6 shows that the five-fold ASE for the best configuration of 
hyperparameter values is 0.09245.  
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Figure 6. Autotuning Summary Table for the Stacking Gradient Boosting Model 

 
Figure 6 also reports the total tuning time to be 5 minutes. This time is based on using 100 nodes in a 
SAS Viya distributed analytics platform. Note that five-fold cross validation is used as an assessment 
measure and models are assessed for 200 different hyperparameter settings, which requires fitting and 
scoring for 1,000 models. Each training set includes approximately 25,600 samples (4/5 of the full training 
set) and 4 features, and training and scoring for one model took around 0.35 seconds. This brief amount 
of time is made possible by taking full advantage of in-memory parallel computing not only for running 
each gradient boosting model but also for performing a random search for hyperparameter tuning. 
 
The output also includes a table of the parameter settings and the corresponding five-fold ASEs for all 
200 hyperparameter settings. Figure 7 shows the best 10 models that are found by the autotuning 
functionality. The AUTOTUNE statement in SAS Viya machine learning procedures has even more 
extensive capabilities that are not covered here; for more information and full capabilities, see Koch et al. 
(2017). 
 

 

Figure 7. Autotuning Results for the Best 10 Models 
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Figure 8 plots the variable importance for the selected hyperparameter settings of the gradient boosting 
model. The two tree-based methods dominate. 

 

 

 
The following PROC GRADBOOST statements use the saved stacked ensemble model 
(cas.gbt_ensemble) to score the test set. The input data set (cas.test_mean_preds) includes Level-2 
predictions for the test set. 
 

proc gradboost data=cas.test_mean_preds inmodel=cas.gbt_ensemble;    

 output out=cas.test_gbtscr copyvars=(id target); 

run; 

 

The following SAS code calculates the test ASE for the gradient boosting stacked ensemble model for the 
test data: 

 

data cas.test_gbtscr; 

 se=(p_target1-target)*(p_target1-target); 

run; 

 

proc cas; 

summary/ table={name='test_gbtscr', vars={'se'}};  

run; 

quit; 

 
The summary action reports the ASE of the test data as 0.09298.  
 
PROC GRADBOOST runs the gbtreetrain and gbtreescore CAS actions (in the Decision Tree action 
set) behind the scenes to train and score gradient boosting models. Appendix A provides a step-by-step 
CAS language (CASL) program that uses these actions to find the five-fold OOF predictions and cross 
validation ASE of the model for the hyperparameter values that are found here. Programming through 
CASL and CAS actions often requires more coding compared to using packaged machine learning 
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procedures, which are essentially bundled functions of CAS actions. However, programming this way 
offers you more flexibility and control over the whole model building process. You can also call CAS 
actions through other languages such as Python and Lua. 

HILL CLIMBING 

The hill climbing technique (Caruana et al. 2004) is similar to forward stepwise selection. At each step of 
the selection, the model in the model library that maximizes the preferred performance metric joins the 
ensemble, and the ensemble is updated to be a simple weighted average of models. Hill climbing differs 
from regular stepwise selection in that rather than fitting a linear model at each step of the selection, it 
adds models to an ensemble by averaging predictions with the models already in the ensemble. As such, 
it is actually a form of nonnegative least squares, because the coefficients of each model are guaranteed 
to be nonnegative. Building an ensemble model this way can be very efficient computationally and has 
the significant advantage of being readily applicable to any performance metric of interest. 
 
Caruana et al. (2004) use a hill climbing (single holdout validation) set at each step of the selection 
process to assess model performance. A separate validation set plays an important role in order to deal 
with overfitting, especially when you use the regular training predictions as input variables. However, 
instead of using a hill climbing validation set, this paper’s analysis performs hill climbing on the library of 
OOF predictions. This approach deals with overfitting while maximally using the training data for the 
critical hill climbing step. 
 
At each iteration of the hill climbing algorithm, every candidate model is evaluated to find the one that 
maximally improves the ensemble in a greedy fashion. Selection with replacement allows models to be 
added to the ensemble multiple times, permitting an already used model to be selected again rather than 
adding an unused model (which could possibly hurt the ensemble model’s performance). Thus each 
model in the ensemble model can take different weights based on how many times it is selected.   
 
For the Adult data, an ensemble model is built by using hill climbing for combining the four average Level-
2 models. Figure 8 shows that the first model to enter the ensemble is the single best gradient boosted 
tree (gbt) model with a five-fold training cross validation ASE of 0.09235. Hill climbing keeps adding the 
same gradient boosting model until step 7. At step 7, the forest model joins the ensemble, which helps 
decrease both the training and testing errors nicely. 
 

                          
 

Figure 8. First 20 Steps of Hill Climbing 

Figure 9 shows graphically how the training and test errors change by the hill climbing steps. It shows that 
after step 9, the training error does not change much, but the test error increases slightly. The model at 
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step 9 has a training ASE of 0.09268 and a testing ASE of 0.09233. If you choose this model at step9 as 
the final hill climbing model, the Level-2 average gradient boosting model takes a weight of 8, the Level-2 
average forest model takes a weight of 1, and the other two models take 0 weights. In a typical hill 
climbing ensemble model, it is common to see powerful models being selected multiple times. In this 
case, the gbt model dominates but is complemented by a small contribution from forest model.  
 

 

Figure 9. First 20 Steps of Hill Climbing with the Corresponding Training and Test ASEs 

Because the hill climbing SAS program is lengthy, it is not provided here. See the GitHub repository for 
the full hill climbing program, which is written in the CAS language. The program is very flexible, and you 
can run it in the SAS Viya environment to build your own hill climbing ensemble model for your data. 

When the same objective function is used, the nonnegative least squares approach is a generalization of 
hill climbing technique. For this example, Figure 10 shows that all three Level-3 linear modeling 
approaches (adaptive LASSO, nonnegative least squares, and hill climbing) produced very similar results 
and decreased the test ASE when compared to the single best model of Level-2 (shown in last row). On 
the other hand, the Level-3 stacked gradient boosting model did not provide a better model than the 
Level-2 average gradient boosting model. 

Note that since the adaptive LASSO and the nonnegative least squares models weights are so close to 
each other, the training and test ASEs are almost the same when five decimal points are used. Note also 
that training ASEs are calculated when the Level-3 models are fit on the full training data. 

Models Training ASE Test ASE 

Level-3 adaptive LASSO 0.09269 0.09228 

Level-3 nonnegative least squares 0.09269 0.09228 

Level-3 gradient boosting 0.09130 0.09298 

Level-3 hill climbing 0.09268 0.09233 

Level-2 best model: average gradient boosting 0.09236 0.09273 

Figure 10. Level-3 Stacked Models Training and Test ASEs Compared to the Single Best Level-2 
Model   
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CONCLUSION 

Stacked ensembling is an essential tool in any expert data scientist’s toolbox. This paper shows how you 
can perform this valuable technique in the new SAS Viya framework by taking advantage of powerful 
underlying machine learning algorithms that are available through CAS procedures and actions. 
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RECOMMENDED READING 

A GitHub repository is available at https://github.com/sassoftware/sas-viya-machine-learning/stacking.The 
repository contains several different programs to help you reproduce results in this paper. The repository 
also contains supplemental material, including a detailed breakdown of some additional ensembling that 
is performed using Level-2 bootstrap samples. 

Getting Started with SAS® Visual Data Mining and Machine Learning  

SAS® Visual Data Mining and Machine Learning : Data Mining and Machine Learning Procedures 

SAS® Visual Data Mining and Machine Learning : Statistical Procedures 

SAS® Econometrics: Econometrical Procedures 

SAS® Visual Data Mining and Machine Learning : Data Mining and Machine Learning Programming 
Guide 

SAS® Cloud Analytic Services: CAS Procedure Programming Guide and Reference 
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APPENDIX A: 

This appendix provides a step-by-step CAS language program that calculates and saves five-fold OOF 
predictions of the stacked ensemble model with the scalable gradient boosting algorithm for the set of 
hyperparameters that are shown in Figure 5. You can easily modify this program to obtain OOF 
predictions for your models that might use different machine learning training and scoring CAS actions. 
 
/* Start a CAS session named mySession */ 

cas mySession;  

 

/* Define a CAS engine libref for CAS in-memory data tables */ 

libname cas sasioca;  

 

/* Create a SAS libref for the directory that has the data */ 

libname data "/folders/myfolders/";  

 

/* Load OOF predictions into CAS using a DATA step */ 

data cas.train_oofs; 

 set data.train_oofs; 

 _fold_=int(ranuni(1)*5)+1; 

run; 

 

proc cas; 

 /* Create an input variable list for modeling*/ 

 input_vars={{name='mean_gbt'},{name='mean_frst'},{name='mean_logit'}, 

                {name='mean_factmac'}};  

 nFold=5;  

  

https://github.com/sassoftware/sas-viya-machine-learning
mailto:funda.gunes@sas.com
mailto:Russ.Wolfinger@jmp.com
mailto:Pei-Yi.Tan@sas.com
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 do i=1 to nFold; 

  /* Generate no_fold_i and fold_i variables */ 

  no_fold_i = "_fold_ ne " || (String)i; 

  fold_i    = "_fold_ eq " || (String)i; 

   

  /* Generate a model name to store the ith trained model */ 

  mymodel = "gbt_" || (String)i; 

  

  /* Generate a cas table name to store the scored data */  

  scored_data = "gbtscore_" || (String)i; 

 

  /* Train a gradient boosting model without fold i */ 

  decisiontree.gbtreetrain result=r1 /  

   table={name='train_mean_oofs',  where=no_fold_i}            

   inputs=input_vars   

   target="target" 

   maxbranch=2 

   maxlevel=5 

   leafsize=60 

   ntree=56 

   m=3 

   binorder=1 

   nbins=100 

   seed=1234 

   subsamplerate=0.75938 

   learningRate=0.10990 

   lasso=3.25403 

   ridge=3.64367 

   casout={name=mymodel, replace=1}; 

   print r1; 

   

  /* Score for the left out fold i */      

  decisionTree.gbtreescore result = r2/  

   table={name='train_mean_oofs', where=fold_i}  

   model={name=mymodel}  

   casout={name=scored_data, replace=TRUE } 

   copyVars={"id", "target"} 

   encodeName=true; 

 end; 

quit; 

 

/* Put together OOF predictions */ 

data cas.gbt_stack_oofs (keep= id target p_target se); 

 set cas.gbtscore_1-cas.gbtscore_5; 

 se=(p_target-target)*(p_target-target); 

 run; 

run; 

 

/* The mean value for variable se is the 5-fold cross validation error */ 

proc cas; 

 summary / table={name='gbt_stack_oofs', vars={'se'}};  

run; 

/* Quit PROC CAS */ 

quit; 
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