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Foreword 
Nearly every action that we take, and every decision that we make, is based on some kind of forecast – some 
expectation of what is going to happen in the future. This is particularly true in business where forecasts drive our 
plans for staffing and resources, inventory and production, and financials. Yet more accurate forecasting is not an 
end in itself. Rather, more accurate forecasts provide a means to effect better decisions and plans, more 
appropriate actions, and ultimately, better organizational performance.  

The challenge is twofold. First, how do we go about creating better business forecasts? And second, how do we 
get organizations to recognize and use forecast improvements? 

Years of academic research and results from the early M (Makridakis) Forecasting Competitions had two 
significant findings: 

● Complex methods do not necessarily provide more accurate forecasts than simpler ones. 

● Combining methods tends to be more accurate than selecting a single method. 

It has also been recognized that business forecasting occurs in a highly politicized environment, where the biases 
and personal agendas of forecasting process participants can tarnish the results.  The forecast often ends up 
reflecting management targets or wishful thinking, instead of being what it should be, an “unbiased best guess at 
what is really going to happen.” 

With advances in computational power and data availability, there is renewed interest in applying a broad range 
of data science methods, including machine learning (ML), to address time series data and forecasting. Yet the 
impact of ML on forecasting has, so far, been a mixed bag. In the M4 Forecasting Competition held in 2018, the six 
pure ML entries fared poorly, all falling well below the benchmark combination of three simple time series 
methods. Yet two entries that used ML methods along with traditional time series methods won the competition. 
And while these two methods had the most accurate point forecasts and also were the first methods known to 
produce precise prediction intervals, they were highly complex and resource intensive. For comparison, the M4 
benchmark method forecasted 100,000 series in just 33 minutes on a standard hardware configuration. The two 
“winners” took 6 days and 32 days! (For more results, analysis, and commentary on the M4 competition, see the 
International Journal of Forecasting’s 2020-Q1 issue dedicated to the M4.) 

We are in an exciting era of advances in forecasting – both in the technical modeling of time series data, and in our 
understanding of the effects of forecasting process. SAS offers several solutions to generate high-quality forecasts, 
including SAS® Visual Forecasting, SAS® Forecast Server, SAS® Forecasting for Desktop, SAS® Econometrics, and 
SAS/ETS®. And SAS authors have contributed groundbreaking papers to demonstrate the wide range of forecasting 
techniques available in SAS.  

SAS® for Forecasting: Special Collection contains a carefully chosen selection of papers on both modeling and 
process related topics. Some of these applications might surprise you, such as the use of machine learning to guide 
forecast adjustments, and the use of process control methods to monitor forecasting model performance. 
Together, these papers (and more listed in the appendix) give you just a sample of what SAS forecasting can offer. 
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Scalable Cloud-Based Time Series Analysis and Forecasting Using Open-Source Software 
By Javier Delgado, Thiago Quirino, and Michael Leonard 
 
Many organizations need to process large numbers of time series for analysis, decomposition, forecasting, 
monitoring, and data mining. The TSMODEL procedure, available in SAS Visual Forecasting and SAS Econometrics 
software, provides a resilient, distributed, and optimized generic time series analysis environment for cloud 
computing. PROC TSMODEL offers capabilities such as automatic forecast model generation, automatic variable 
and event selection, automatic model selection, and parameter optimization. It also provides advanced support 
for time series analysis (in the time domain or in the frequency domain), time series decomposition, time series 
modeling, signal analysis and anomaly detection (for IoT), and temporal data mining. In addition, PROC TSMODEL 
supports open-source integration with external languages Python and R. This paper describes the scripting 
language that supports cloud-based open-source integration between SAS software and external languages; 
examples that demonstrate this use case are provided. 

Time Series Feature Extraction 
By Michele A. Trovero and Michael J. Leonard 

Feature extraction is the practice of enhancing machine learning by finding characteristics in the data that help 
solve a particular problem. For time series data, feature extraction can be performed using various time series 
analysis and decomposition techniques. In addition, features can be obtained by sequence comparison techniques 
such as dynamic time warping and by subsequence discovery techniques such as motif analysis. This paper surveys 
some of the time series feature extraction methods and demonstrates them through examples that use SAS/ETS 
and SAS Visual Forecasting software. 

Writing a Gradient Boosting Model Node for SAS® Visual Forecasting  
By Yue Li, Jingrui Xie, and Iman Vasheghani Farahani  

SAS Visual Forecasting, the new-generation forecasting product from SAS, includes a web-based user interface for 
creating and running projects that generate forecasts from historical data. It is designed to use the highly parallel 
and distributed architecture of SAS® Viya®, a cloud-enabled, in-memory analytics engine that is powered by SAS 
Cloud Analytic Services (CAS), to effectively model and forecast time series on a large scale. SAS Visual Forecasting 
includes several built-in modeling strategies, which serve as ready-to-use models for generating forecasts. It also 
supports custom modeling nodes, where you can write and import your own code-based modeling strategies. 
Similar to the ready-to-use models, these custom modeling nodes can also be shared with other projects and 
forecasters. Forecasters can use SAS Visual Forecasting to create projects by using visual flow diagrams (called 
pipelines), running multiple built-in or custom models on the same data, and choosing a champion model based 
on the results. This paper uses a gradient boosting model as an example to demonstrate how you can use a 
custom modeling node in SAS Visual Forecasting to develop and implement your own modeling strategy. 

Neural Network-Based Forecasting Strategies in SAS® Viya®  
By Steven C. Mills 

Recent literature indicates that hybrids of machine learning and classical time series models are among the top 
contenders in accurately forecasting the future. Classical linear models are parsimonious and of ten perform well, 
but they are unable to capture nonlinear relationships in the data. On the other hand, machine learning models 
such as neural networks (NNs) are very good at modeling nonlinear effects. Knowing when and how to use 
machine learning models might seem difficult, but these decisions can be distilled down to best practices that any 
analyst can use with little experience. This paper discusses several NN-based modeling strategies available in SAS 
Visual Forecasting software and the important factors to consider in choosing and training a model. The discussion 
includes key features of the data that inform the decision to use machine learning models, feature generation 
options to augment the training process, and best practices to fit a robust model. This knowledge will enable you 
to leverage the advantages of both NN and linear models to achieve more powerful forecasts.  
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Ten Underused Features That Improve Your SAS® Forecast Server Workflow 
By Michael Leonard and Evan Anderson 

SAS Forecast Server is one of the most feature-rich forecasting products on the market. This paper describes 10 
underused features to improve your workflow. First, start with the data: (1) Use SAS® Time Series Studio to 
become familiar with your data and define a hierarchy, (2) catch data problems through warnings about the time 
ID variable, (3) look under the covers by using the SAS log, and (4) use adjustment variables and start-up code to 
fix data issues. Next, improve the forecasts: (5) Define recurring events that influence the time series, (6) add 
models by importing from an external list, (7) use rolling simulations to evaluate forecast accuracy over the 
number of periods you need to forecast, (8) evaluate the effects of independent variables by using scenario 
analysis, and (9) gain insight into results by comparing models. Finally, put your workflow into production: (10) 
Run the code in batch. 

Using SAS® Forecast Server and the SASEFRED Engine to Enhance Your Forecast 
By Catherine LaChapelle 

The SASEFRED interface engine is the best-kept secret in SAS/ETS software. It dramatically reduces the amount of 
time and effort required to include economic indicator variables in your time series analysis. Using the SASEFRED 
engine in SAS® Enterprise Guide®, you can directly query the economic database of the Federal Reserve Bank of St. 
Louis. This public database contains over 529,000 economic time series aggregated from 86 sources. In this paper, 
we forecast wine demand and enrich predictions via the inclusion of economic variables such as “Retail Sales: 
Beer, Wine, and Liquor Stores” and “Producer Price Index by Industry: Beer, Wine, and Liquor Stores.” The 
diversity of economic variables provided in this database ensures that it is useful to virtually every time series 
analysis and industry. This specific example leverages SAS Enterprise Guide and SAS Forecast Server as interfaces. 
However, this functionality works on SAS 9.x as well as on SAS Viya technology. 

Regime-Switching Models: Capturing Structural Changes in Time Series 
By Xilong Chen and Ji Shen 

Stock market conditions, government policy changes, or even weather patterns can be regarded as stochastic 
processes that are driven by unobserved regimes. A powerful tool to explore these behavioral patterns is the 
regime-switching model (RSM) that is offered in the HMM procedure and the associated action in SAS 
Econometrics software. This model, which is widely used in finance, economics, science, and engineering, has two 
characteristics: it allows different parameter values for different regimes, and it models the transition probabilities 
between regimes. These characteristics enable it to fully capture the structural changes in the time series. This 
paper uses two examples to illustrate how you can use RSMs to better understand the regime patterns in your 
data and improve your economic analysis. 

Getting More Insight into Your Forecast Errors with the GLMSELECT and QUANTSELECT Procedures 
By Gerhard Svolba 

Is it sufficient just to monitor the quality of your forecast models over time? Can data science methods identify the 
drivers for large forecast errors and provide more insights than descriptive statistics? Do demand planners really 
improve forecast accuracy with their manual overwrites? Using a real-life case study, this paper answers these 
questions. It shows how you can study the impact of factors like product group, forecast horizons, seasonality, or 
the forecast model type on forecast accuracy and convert them into actionable results. You will learn how to use 
the GLMSELECT, QUANTSELECT, and QUANTREG procedures to identify the most important influential factors on 
the forecast error. You will also learn how to convert the results from the SAS procedures into actions to improve 
your forecasting process.  
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Monitoring Forecast Models Using Control Charts 
By Joseph Katz 

(This article originally appeared in Foresight: The International Journal of Applied Forecasting [Issue 56, Winter 
2020], and appears with the publisher’s permission.) 

Inappropriate models result in avoidable forecast bias and error and can consume management resources making 
manual forecast adjustments. So when should a forecasting model be adjusted or replaced? This article presents a 
new (patented) application of control charts for automatic monitoring of forecast errors. By using traditional rules 
for statistical process control along with custom rules, it shows how to determine whether a forecasting model 
should be maintained, adjusted/refit, or discarded and replaced with a new model. 

Assisted Demand Planning Using Machine Learning for CPG and Retail 
By Charlie Chase, Varunraj Valsaraj, Becky Gallagher, and Roger Baldridge 

More than 40 percent of a demand planner’s time is spent managing information and data. Another 30 to 40 
percent is spent managing and fine-tuning the demand forecast based on new market and customer information, 
changes in marketing programming (tactics) and coordinating the consensus forecast (plan). Finally, creating and 
updating KPI reports represents about 10 percent of a demand planner’s time. With the introduction of intelligent 
automation using machine learning, a large portion of the manual, repetitive activities can be automated, which 
would enable demand planners to be more productive and add real value to the overall process. 

What Management Must Know About Forecasting 
By Michael Gilliland 

How many organizations are you aware of – perhaps even your own – that have thrown thousands or even 
millions of dollars at their forecasting problem, only to end up with the same lousy forecasts? It boils down to two 
questions: Why do forecasts always seem to be wrong and sometimes terribly wrong? And is there anything we 
can do about it? This article explores why forecasting is often so poorly done and offers suggestions for improving 
it. It introduces the concept of Forecast Value Added analysis and shows how the FVA approach can identify and 
eliminate the worst practices that waste time and harm forecasting performance. 
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We hope you enjoy this special collection and find valuable ideas to apply in your forecasting challenges. Please 
join the conversation with your peers by registering in the SAS Forecasting and Econometrics Community where 
you can ask questions, post answers and comments, and find the latest news and events on SAS forecasting and 
beyond. 

In addition, we encourage you to join the two main professional organizations for forecasting: the International 
Institute of Forecasters and the Institute of Business Forecasting. These organizations offer conferences, 
workshops, and certification opportunities, and publish three outstanding journals: International Journal of 
Forecasting (IIF), Foresight: The International Journal of Applied Forecasting (IIF), and Journal of Business 
Forecasting (IBF). SAS is closely aligned with both organizations, and we encourage you to check their ads for 
details about membership and offerings. 

For more information and further reading, see the Appendix for recommended books, white papers, and SAS 
Global Forum papers. 

No more bad forecasting! 

 

 

Michael Gilliland is Marketing Manager for SAS forecasting software, prior to which he held 
forecasting positions in the food, consumer electronics, and apparel industries. Mike is 
author of The Business Forecasting Deal (2010), principal editor of Business Forecasting: 
Practical Problems and Solutions (2015), writes The Business Forecasting Deal blog, is 
Associate Editor of Foresight: The International Journal of Applied Forecasting, and in 2017 
received the Lifetime Achievement Award from the Institute of Business Forecasting. Mike 
holds a BA in Philosophy from Michigan State University, and master’s degrees in Philosophy 

and Mathematical Sciences from Johns Hopkins University. He is interested in issues relating to forecasting 
process, such as worst practices and Forecast Value Added analysis, and in applying research findings to real-life 
improvement in business forecasting. 
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Paper SAS4440-2020 

Scalable Cloud-Based Time Series Analysis and Forecasting 

Using Open-Source Software 

Javier Delgado, Thiago Quirino, and Michael Leonard, SAS Institute Inc.  

ABSTRACT 

Many organizations need to process large numbers of time series for analysis, 

decomposition, forecasting, monitoring, and data mining. The TSMODEL procedure, 

available in SAS® Visual Forecasting and SAS Econometrics® software, provides a resilient, 

distributed, and optimized generic time series analysis environment for cloud computing. 

PROC TSMODEL offers capabilities such as automatic forecast model generation, automatic 

variable and event selection, automatic model selection, and parameter optimization. It also 

provides advanced support for time series analysis (in the time domain or in the frequency 

domain), time series decomposition, time series modeling, signal analysis and anomaly 

detection (for IoT), and temporal data mining. In addition, PROC TSMODEL supports open-

source integration with external languages Python and R. This paper describes the scripting 

language that supports cloud-based open-source integration between SAS® software and 

external languages; examples that demonstrate this use case are provided. 

INTRODUCTION 

More information than ever before is being collected with associated timestamps. 

Computers, mobile phones, smart devices, detectors, and other devices record timestamped 

data. These timestamped data can be modeled, forecasted, or mined (or any combination of 

these) for better decision-making. In most cases, the decisions are critical and have 

immense financial and ethical implications. For example: 

• Retailers rely on both seasonal and nonseasonal forecasts of product demand in

order to make profitable decisions about staff scheduling and stocking levels for

millions of products across thousands of stores.

• Manufacturers rely on accurate forecasts of time to component failure in order to

make decisions about the maintenance schedule of critical machinery components.

• Railroad companies rely on accurate time series forecasts of shipping demand per

region of the country in order to preemptively stock their railroad cars across

different regions. Accurate forecasts enable them to better meet the predicted

demand, minimize shipping delays, and improve customer satisfaction.

• Energy companies rely on the ability to both monitor and analyze, in real time,

sensor data that stream from wind turbines. Time series of sensor data are analyzed

in order to quickly detect and respond to critical anomalous behavior and to maintain

their turbines at peak performance over time.

• Hospitals can aggregate patient sensor data, lab results, and physician notes in order

to monitor patient progress and better predict patient outcome. Similarly, a

physician can monitor a patient’s pacemaker remotely in order to quickly determine

when the patient’s heart is behaving anomalously.

• Governments rely on time series decomposition techniques in order to decompose

series of economic variables into their long-term trends and short-term seasonal

effects so that they can gain a better insight into the real status of the economy.



2 

In recent years, there has been an enormous increase in the amount of timestamped data 

being collected. It is now commonplace for companies (such as banks, manufacturers, 

retailers, websites, hospitals, universities, and governments, in addition to taxi, insurance, 

stock trading, phone, energy, and many more companies) to maintain large databases of 

timestamped data whose sizes range from hundreds of gigabytes to hundreds of terabytes. 

These databases are gold mines for insights into consumer behavior. These insights can 

help organizations optimize their internal processes to better meet consumer demands. 

The amount of timestamped data being collected is expected to further escalate because of 

the ongoing proliferation of the Internet of Things (IoT). IoT enables all types of objects 

(cars, toasters, pacemakers, water and gas meters, and so on) to be discovered, monitored, 

and controlled remotely via the existing internet infrastructure. In short, “big data” has 

become pervasive in today’s society: it is everywhere and in anything, it is here to stay, and 

it has a lot to say. Processing this ever-increasing amount of timestamped data in an 

intelligent way poses both architectural and analytical challenges. For example, because of 

the sheer amount of data and the ever-increasing demand to gain decision-making insights 

from data in close to real time, time series analysis of big data is inherently a distributed 

computing problem and is thus an architectural challenge. In addition, big data solutions 

must be generic enough to accurately handle the time series analysis requirements of 

different applications and thus are an analytical challenge. 

SAS Visual Forecasting provides procedures for some of the most common analyses that are 

performed on timestamped data: forecasting, decomposition and price analysis, time series 

monitoring and anomaly detection, and temporal data mining. This paper provides an 

overview of the SAS Visual Forecasting procedures—in particular of the TSMODEL 

procedure, which was specifically designed to support advanced, efficient, and cloud-based 

time series analysis of big data. Particular emphasis is given to integrating Python and R 

code with PROC TSMODEL in order to enable efficient, massively parallel execution of 

Python and R programs. 

HOW THE TSMODEL PROCEDURE WORKS 

The goal of cloud-based time series analysis and forecasting is to perform an analytical task 

in a single pass through the data by using a distributed file system or distributed computing 

environment (or both). Moving data can strain computing resources, whether internal to a 

node, external (between computing nodes), or both. A single pass through the data allows 

for enormous performance gains. By providing a system that both moves data and 

computes efficiently, the TSMODEL procedure makes time series analysis and forecasting 

possible on an enormous scale. PROC TSMODEL procedure provides a scalable, cloud-based 

time series analysis environment, which includes a distributed file system, a scripting 

environment, and parallel data reading, script execution, and data writing. It is designed to 

run in the SAS Cloud Analytic Services (CAS) run-time environment that is deployed with 

SAS Visual Forecasting. The following sections describe these elements in more detail. 

DISTRIBUTED FILE SYSTEM 

PROC TSMODEL is designed to enable your analysis to use a distributed file system (DFS). A 

DFS allows for redundant and resilient storage of data; it breaks up large files into chunks 

and stores each chunk on several storage media. In addition, it makes several redundant 

copies of each chunk in order to forgo the need for making periodic backup copies. If a 

particular file system fails, the distributed file system can resiliently heal itself without 

needing to restore backup copies (which could cause delays). However, the data are not 

stored contiguously in such a file system, so sorting on a particular file system is not 

possible. This is particularly problematic for time series analysis, where the ordering of the 

data is crucial. In addition, the data that are needed for time series analysis might be stored 

in several files. These distributed files must be read, sorted, and merged with respect to 
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time in a scalable and efficient way. SAS Visual Forecasting procedures automatically 

perform all these operations on the input time series data in preparation for the analysis. 

Figure 1 illustrates a cluster that consists of four worker nodes and a distributed file system 

that contains two tables, A and B. Each table is organized by classification (BY) variables 

that delineate the time series rows, which are grouped into seven BY groups. Each BY group 

represents one time series. One or more computing (worker) nodes are connected to the 

distributed file system; neither the tables nor the BY groups are stored on a single machine. 

 

Figure 1. Distributed File System 

SCRIPTING LANGUAGE, DISTRIBUTION, AND COMPILATION 

The vast amount of data that cloud computing can support calls for a time series analysis 

environment that allows data to be processed efficiently. SAS Visual Forecasting provides a 

scripting language that facilitates the use of various capabilities, such as the following: 

• automatic forecast model generation, automatic variable and event selection, 

automatic model selection, and parameter optimization 

• advanced support for time series analysis (in the time domain or in the frequency 

domain), time series decomposition, time series modeling, signal analysis and 

anomaly detection (for IoT), and temporal data mining 

• preparation of the input data prior to analysis and postprocessing of the final results 

in the same script 

• reading of multiple input data files and creation of multiple output data files 

These features make the scripting language flexible and useful for numerous applications. 

Figure 2 illustrates the use of this scripting language. The script is created outside the 

computing server and can be submitted to the server by SAS, Python, Lua, or R clients. 

 

Figure 2. Scripting Language: User Script Contains SAS Code and Optionally 

Python and R Code 
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The distributed network can consist of one or more computing (worker) nodes. After being 

submitted to the computing server, the user-specified script is distributed to each worker 

node to permit parallel execution of the specified analysis, as shown in Figure 3. 

 

Figure 3. Script Distribution 

The user-specified script is then compiled on each of the computing nodes. The compiler 

optimizes the resulting executable for the specific operating system of the computing node 

(Linux, Windows, and so on). This optimized executable permits very fast execution of the 

specified analysis. Any external language source code you included in the script is stored in 

memory. One or more external language interpreters are launched for each thread on each 

worker node in order to process the external language code at run time. 

Figure 4 illustrates the script compilation and execution process when only SAS code is run 

and when external-language code is integrated. After the script is distributed to the 

computing (worker) nodes, it is optimally compiled.  

 

(a) User script contains only SAS code: 

 
(b) User script contains SAS and Python code: 

 

Figure 4. Script Compilation (a) without and (b) with External-Language Code 
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PARALLEL READ 

All the computing nodes read one or more input data files simultaneously. Each input data 

file contains unsorted, timestamped transactional data that might be recorded at no fixed 

interval. However, time series analysis algorithms typically require that the input time series 

data be stored contiguously in memory, in temporal order, and with a fixed-time interval. 

Therefore, the transactional data must be transformed into a suitable form prior to analysis. 

PROC TSMODEL relies on the properties of the input data in order to determine how to 

transform the data for optimal performance. For example, when the input data consist of 

multiple time series (BY groups), then the transformation occurs via a two-step process that 

is illustrated in Figure 5 and described in detail in the following sections. 

 

Figure 5. Parallel Read 

PARALLEL AND THREADED EXECUTION 

Each computing node executes (in parallel) the compiled, optimized script for each time 

series that has been assigned to it. Each time series is executed on one thread of the 

computing node. Each of the computing node’s threads is kept busy until all the time series 

that have been assigned to it have been processed. If any problems occur during the 

execution of a particular time series (BY group), they are logged into an in-memory table so 

that you can investigate them further. Figure 6 illustrates the parallel execution. 

 

Figure 6. Parallel Execution 

PARALLEL AND THREADED EXTERNAL LANGUAGE EXECUTION 

The External Languages (EXTLANG) package enables execution of Python and R scripts 

within the PROC TSMODEL infrastructure.  The external-language interpreter is run on the 

same CAS worker thread where the BY groups data reside, so there is no need for additional 

internode data transfer. Data are transferred within the worker node and between the SAS 

process and the external-language interpreter process. Although transfers are backed by a 

path on disk, the operating system typically uses an in-memory copy of the data, bypassing 

the need to read the data from disk. On our cluster, we observed a transfer overhead below 

2 milliseconds when working with BY-group data sizes of less than 10,000 elements. 
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PARALLEL WRITE TO THE DISTRIBUTED FILE SYSTEM 

After the specified analysis is executed for a particular time series, the computing nodes 

write one or more output data sets asynchronously and independently. Multiple output data 

files can be created simultaneously.  

Figure 7 illustrates the parallel write. Each time series analysis result is written back to the 

distributed file system. 

 

Figure 7. Parallel Write 

For more information about scalable cloud-based time series analysis and forecasting, see 

Quirino, Leonard, and Blair (2018). 

IMPLEMENTATION 

SAS Visual Forecasting enables you to use a variety of methods (procedures, scripts, 

packages, and actions) to implement solutions to your time series forecasting problems. 

THE TSMODEL PROCEDURE 

The TSMODEL procedure is a SAS® Viya® procedure that executes user-defined programs 

(scripts) on time series data. PROC TSMODEL analyzes timestamped transactional data with 

respect to time and accumulates the data into a time series format. 

PROC TSMODEL forms time series from timestamped transactional input data and writes the 

accumulated time series variables to an output table. Time series are delineated by distinct 

values of the variables that are specified in the BY statement. 

Timestamped transactional data are not usually recorded at a fixed interval. Because time 

series analysis techniques often require fixed-time intervals, the transactional data must be 

transformed into a fixed-interval time series, such as daily, weekly, or monthly. 

PROC TSMODEL forms time series vectors from timestamped data and then provides these 

vectors as array variables for subsequent processing by program statements, which 

constitute a script. The script is processed independently for each BY group. The syntax of 

PROC TSMODEL is the same as that of the TIMEDATA procedure, which is similar to the SAS 

DATA step for time series data. The SAS DATA step processes data row by row, whereas 

PROC TSMODEL processes time series vectors (columns) for the BY groups. 

For more information about PROC TSMODEL, see SAS Visual Forecasting: Forecasting 

Procedures. 

SCRIPTS 

Scripts consist of statements that perform the desired analysis on each time series. For 

more information about the object-oriented scripting language that PROC TSMODEL 

supports, see the FCMP procedure in Base SAS® Procedures Guide. 
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PACKAGES 

Packages contain computational services that can be used in your script. A package is a set 

of related specialized objects and functions (called “methods”), each of which addresses a 

unique facet of the time series analysis problem. You can use specialized objects and 

functions to write custom SAS code in order to gain access both to cutting-edge data 

analysis tools and to utilities that are designed to significantly speed up code development 

and optimize code quality. Table 1 shows the packages available for PROC TSMODEL. 

Package 

Name 

Description 

SFS Simple Forecast Service: Tools for automatic forecasting of time series with 

a simple-to-use interface; these tools use only exponential smoothing 

(ESM) and ARIMA models 

ATSM Automatic Time Series Modeling And Forecasting: Tools for automatic 

modeling and forecasting of time series by using various model families 

such as exponential smoothing (ESM), ARIMA, intermittent demand (IDM), 

and unobserved component (UCM) models 

TSA Time Series Analysis: Tools for efficient statistical analysis of time series 

(transformations, decompositions, statistical tests for intermittency, 

seasonality, stationarity, forecast bias, and so on) 

TSD Time Series Distance Measures: Tools for efficient measure of the distance 

between two time series or among sequences in temporal data (dynamic 

time warping, longest common subsequence, and so on) 

TDR Time Series Dimension Reduction: Tools for efficient time series dimension 

reduction (symbolic aggregate approximation, discrete Fourier 

transformation, discrete wavelet transformation, random projection, 

singular value decomposition) 

TFA Time-Frequency Analysis: Tools for efficient analysis of time series in both 

time domain and frequency domain 

TSM Time Series Modeling: Tools for efficient time series modeling and 

forecasting 

SSA Singular Spectrum Analysis: Tools for decomposing a time series into 

additive components and categorizing those components on the basis of 

the magnitudes of their contributions 

MSSA Multivariate Singular Spectrum Analysis: Tools for decomposing one or 

more time series into additive components and categorizing those 

components on the basis of the magnitudes of their contributions 

MTF Time Series Motif Discovery: Tools for the discovery of frequent patterns or 

repeated subsequences in time series 

SST Subspace Tracking: Tools for the analysis and decomposition of time series 

for tracking and monitoring purposes 

TIMFIL Time Series Filters: Tools for performing various types of filtering and 

aggregation on time series data 

UTL Utility: Tools for performing basic statistical computations on pairs of actual 

and predicted time series 

EXTLANG External Languages: Tools for enabling seamless integration of external 

language programs into SAS environments 

Table 1. Packages Available for the TSMODEL Procedure 
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Some of these packages were developed as cloud-based analogues of traditional SAS 

products and procedures. For example, the ATSM, SFS, and TSM packages carry the 

features available in SAS® Forecast Server. Similarly, the TSA, TFA, and SSA packages carry 

various features that are available in SAS/ETS®, albeit with a different scope. For more 

information about these packages, see SAS Visual Forecasting: Time Series Packages. 

ACTIONS 

Actions are executed on the CAS workers, using clients available for a variety of languages: 

SAS, Python, R, and Lua. For more information about actions, see SAS Visual Forecasting: 

Programming Guide. 

OPEN-SOURCE INTEGRATION 

In addition to being able to execute actions via SAS, Python, Lua, and R clients, the 

TSMODEL procedure can now execute R and Python scripts via actions that run on the 

distributed computing servers (that is, the worker nodes in Figure 4). The computational 

objects provided by the EXTLANG package to facilitate running Python and R programs on 

the computational servers are summarized in Table 2. Figure 8 illustrates the object data 

flow diagram for the EXTLANG package. For more information about the EXTLANG package 

and other packages, see SAS Visual Forecasting: Time Series Packages. 

Interpreter Object Description 

PYTHON2 Provides support for running code that is written in version 2 

of the Python programming language 

PYTHON3 Provides support for running code that is written in version 3 

of the Python programming language 

R Provides support for running code that is written in the R 

programming language 

Output Object  Description 

OUTEXTCODE Stores user-supplied external-language source code that is 

supplied via a PYTHON2, PYTHON3, or R object in a CAS 

table to “replay” it later 

OUTEXTLOG Stores execution and resource usage logs in a table that 

resides in CAS (a CAS table) 

OUTEXTVARSTATUS Collects the status flags of all shared variables and stores 

them in a CAS table 

Input Object Description 

INEXTCODE Reads code from a CAS table and provides it to the external 

language interpreter for reuse on a per-BY-group basis 

Table 2. Computational Objects of the EXTLANG Package 
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Figure 8. Object Data Flow Diagram for the EXTLANG Package 

EXAMPLES 

This section provides three examples that demonstrate the capabilities of the TSMODEL 

procedure, with a specific emphasis on integrating external language programs. The first 

example illustrates how you can input Python code directly into your SAS script to calculate 

a simple moving average. The second example shows you can fit an ARIMA model that is 

implemented in R to your SAS data set. The third example shows the procedure’s ability to 

perform fast time series analysis on big data. All examples use a SAS script as the client to 

run actions on the CAS server, but you can use any supported CAS client, including Python, 

R, or Lua. 

EXAMPLE 1: MOVING AVERAGE USING PYTHON  

This example demonstrates how to use the EXTLANG package to calculate a simple moving 

average of a SAS data set (Sashelp.PriceData ) and transfer the value back to your SAS 

program. This data set consists of simulated monthly sales data that are hierarchically 

organized by region, line, and product. The Sashelp.PriceData data set contains 1,020 
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observations, which are divided into 17 BY groups. By virtue of running within PROC 

TSMODEL, each BY group is processed in parallel in a separate thread on each worker in the 

CAS cluster. Although this data set is relatively small, the sample code in this section can 

also readily handle time series data sets that contain millions of BY groups. 

First, a connection to CAS (that is, a session) is established, and a CAS library called mycas 

is created. The mycas library enables you to transfer data sets to the CAS nodes, where the 

distributed time series analysis is performed. 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

A DATA step transfers the Sashelp.PriceData data set into the CAS mycas library: 
 
DATA mycas.pricedata; 

  SET sashelp.pricedata; 

RUN; 

 

The PROC TSMODEL statement specifies the input data set (mycas.pricedata), an output 

table in which to store the output data array (mycas.outarray), an output table in which to 

store the scalar variables (mycas.outscalar), and an output table in which to store an output 

object (mycas.pylog). 
 

PROC TSMODEL DATA=mycas.pricedata OUTARRAY=mycas.outarray   

             OUTSCALAR=mycas.outscalar  

             OUTOBJ=(pylog=mycas.pylog); 

 

The ID statement specifies the variable date as the time index variable, and the 

INTERVAL= option indicates that the data are monthly. 
 

ID date INTERVAL = MONTH; 

 

The BY statement specifies that each unique combination of the data set variables 

regionname, productline, and productname corresponds to a unique time series BY 

group. BY groups are processed independently. 
 

BY regionname productline productname; 

 

The VAR statement specifies the input data set variable SALE. The ACCUMULATE=AVG 

option specifies an average value accumulation for the SALE variable. 
 

VAR SALE / ACCUMULATE = AVG; 

 

The OUTSCALAR statement specifies the scalar variables that the SAS script is to generate 

and store.  These include a variable in which to store the Python program's execution time 

(runtime), a variable in which to store the exit code (exitCode), and variables in which to 

store the return code from each PYTHON2 object's method call (rc1–rc6). 
 

OUTSCALAR runtime exitCode rc1 rc2 rc3 rc4 rc5 rc6; 

 

The OUTARRAY statement specifies the array variables that the program is to generate and 

store.  The only output array is the moving average (MAVG). 

 
OUTARRAY MAVG; 

 
The REQUIRE statement specifies the EXTLANG package, which includes all the objects that  

PROC TSMODEL needs in order to interact with external languages. 
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REQUIRE EXTLANG; 

 
The program statements between the SUBMIT and ENDSUBMIT statements use the ATSM 

package objects to perform the actual analysis on the CAS server: 
 

SUBMIT; 

 

    /*   

     * Initialize the PYTHON2 object, which is the interface to the  

     * Python interpreter. 

     */ 

    declare object py(PYTHON2); 

    rc = py.Initialize(); 

     

    /*   

     * Create the Python program, which simply does the following: 

     *  1. Import the NumPy package with alias np 

     *  2. Create an array to be used for the moving average computation,  

     *     with a window size of 3 

     *  3. Compute the moving average and store into variable MAVG 

     */ 

    rc1 = py.PushCodeLine('import numpy as np');   

    rc2 = py.PushCodeLine('w = np.ones((3,))/3 ; ');   

    rc3 = py.PushCodeLine('MAVG = np.convolve(SALE, w, mode="same")'); 

     

    /*   

     * Specify variables to share between SAS and Python. 

     * The variable SALE is used only as input in the Python program;  

     * the default value of READONLY is used to avoid propagating 

     * its data back to SAS. MAVG is transferred back to SAS, where 

     * it is stored in a CAS table for further analysis. 

     */ 

    rc4 = py.AddVariable(SALE) ; 

    rc5 = py.AddVariable(MAVG, 'READONLY', 'FALSE'); 

     

 

    /*   

     * Run the program and obtain the run time and exit code. 

     */ 

    rc6 = py.Run(); 

    runtime = py.GetRuntime(); 

    exitCode = py.GetExitCode() ; 

 

    /*   

     * Store the execution and resource usage statistics logs. 

     */ 

    declare object pylog(OUTEXTLOG); 

    rc = pylog.Collect(py,'ALL'); 

 

ENDSUBMIT; 

  RUN; 

The TSMODEL procedure prints a summary of the time series processing that is performed, 

as shown in Output 1. This summary includes the number of BY groups that are processed, 

the total processing time, and some information about the accumulation process. 
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Output 1. Summary for Processing Example 1 

Output 2 shows a subset of the scalar output, which is produced from the following code: 

   PROC PRINT DATA=mycas.outscalar; RUN; 

You can verify from Output 2 that all exit and return codes are 0. 

 

Output 2. Partial Output of OUTSCALAR Table Produced by Example 1 

Output 3 shows the first 10 lines of the OUTARRAY table from this example. You can see the 

moving average values (MAVG) in the last column. Note that values are obtained at the 
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boundaries since the convolution mode was set to “same.” This output is generated via the 

following command: 

   PROC PRINT DATA=mycas.outarray; RUN; 

 

Output 3. Partial Output of OUTARRAY Table of Example 1 

EXAMPLE 2: ARIMA FORECASTING USING R 

This is a more realistic example, which demonstrates how to apply an ARIMA model 

implemented in R to your data. To keep the example succinct, the R model is used 

exclusively. However, the example can be extended to work with other objects to do things 

like include the custom model in the automated model selection process that is provided by 

the ATSM package objects; see SAS Visual Forecasting: Time Series Packages. This example 

also demonstrates how you can load source code from a file. The freely available forecast 

package1 for R is required for this example. 

As with the previous example, the first step is to establish a connection to the CAS server 

and create a CAS library called mycas. The mycas library enables you to transfer data sets 

to the CAS server where the distributed time series analysis is performed. 

 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

A DATA step transfers the Sashelp.PriceData data set into the CAS mycas library: 

 
DATA mycas.pricedata; 

  SET sashelp.pricedata; 

RUN; 

 

The PROC TSMODEL statement specifies the input data set (mycas.pricedata), an output 

table in which to store the output data set (mycas.outarray), an output table in which to 

store one or more scalar variables (mycas.outscalar), and an output table in which to store 

two output objects (the object mycas.rlog stores all the output that is generated by the R 

program and the object rvars stores information about shared variables). LEAD=12 requests 

that 12 time steps into the future be forecasted. 

 

PROC TSMODEL DATA=mycas.pricedata OUTARRAY=mycas.outarray  

             OUTSCALAR=mycas.outscalar  

             OUTOBJ=(rlog=mycas.rlog rvars=mycas.rvars) 

             LEAD=12; 

 
1 https://cran.r-project.org/web/packages/forecast/forecast.pdf 
 

https://cran.r-project.org/web/packages/forecast/forecast.pdf
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The ID statement specifies the variable date as the time index variable, and the 

INTERVAL= option indicates that the data are monthly. 

 

ID date INTERVAL = MONTH; 

 

The BY statement specifies that each unique combination of the data set variables 

regionname, productline, and productname correspond to a unique time series BY 

group. BY groups are processed independently. 

 

BY regionname productline productname; 

 

The VAR statement specifies the input data set variable SALE. The ACCUMULATE=AVG 

option specifies an average value accumulation for the SALE variable. 

 

VAR SALE / ACCUMULATE = AVG; 

 

The OUTSCALAR statement specifies the scalar variables that the SAS script is to generate 

and store. These include variables in which to store the R program’s run time (runtime), 

exit code (exitCode), and the return code from each method called for the R object (rc1–

rc7): 

OUTSCALAR runtime exitCode rc1 rc2 rc3 rc4 rc5 rc6 rc7; 

 

The OUTARRAY statement specifies the array variables that the SAS script is to generate 

and store. The only output array is the series that is modeled using the R ARIMA model 

(rPred). 

 

OUTARRAY rPred; 

 

The REQUIRE statement specifies the EXTLANG package, which includes all the objects that 

are needed for SAS to interact with external languages. 

 

REQUIRE EXTLANG; 

 
The program statements between the SUBMIT and ENDSUBMIT statements use the 

EXTLANG package objects to run the R program on the CAS server: 

 

SUBMIT; 

 

    /*  

     * Initialize the R object, which is the interface to the  

     * R interpreter. The interpreter executable is set via a  

     * CAS configuration file. 

     */ 

    declare object robj(R) ; 

    rc1 = robj.Initialize() ; 

 

    /* 

     * Push code from the filesystem. The R object will dynamically create 

     * a file that contains all source code to be run and will autogenerate 

     * code for transferring to and from the SAS environment. 

     * The file r_arima_code.r has the following contents: 

          ------------------------------------------------------ 
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library(forecast) 

Y<- Y[1:(NFOR - HORIZON)] 

Y_ts<-ts(Y,frequency=12) 

LOG_Y_ts<-log(Y_ts) 

fit <- stats::arima(LOG_Y_ts, order=c(p=0, d=1, q=1), 

seasonal=list(order=c(0,1,1), frequency=12)) 

sse<-sum(fit$residuals^2) 

forecast(fit) 

a <- stats::predict(fit, n.ahead=HORIZON) 

PREDICT <- c( exp(fitted.values(fit)), exp(a$pred) ) 

------------------------------------------------------ 

     */ 

    rc2 = robj.PushCodeFile('/path/to/r_arima_code.r') ; 

     

    /*  

     * Specify variables to share between SAS and R. 

     * SALE is the (READONLY) dependent variable. The ARIMA code  

     * uses the generic name Y for the dependent variable, so  

     * SALE is aliased to Y. 

     * rPred will contain the predicted series, which is returned to the  

     * SAS program. The R code that is used stores the predicted series in  

     * the variable PREDICT, so rPred is aliased to PREDICT. 

     * Two additional read-only variables are needed by the R code:  

     * NFOR, which stores the forecast length, and HORIZON, which stores 

     * the forecast horizon. 

     */ 

    rc3 = robj.AddVariable(SALE, 'ALIAS', 'Y') ; 

    rc4 = robj.AddVariable(rPred, 'ALIAS', 'PREDICT', 'READONLY', 'FALSE'); 

    rc5 = robj.AddVariable(_LENGTH_, 'ALIAS', 'NFOR') ; 

    rc6 = robj.AddVariable(_LEAD_,'ALIAS','HORIZON') ; 

     

     /*  

      * Run the model and get the exit code and run time. 

      */ 

    rc7 = robj.Run() ; 

    exitCode = robj.GetExitCode() ; 

    runtime = robj.GetRunTime() ; 

 

    /*  

     * Store the execution and resource usage statistics logs. 

     */ 

    declare object rlog(OUTEXTLOG) ; 

    rc16 = rlog.Collect(robj, 'EXECUTION') ; 

    declare object rvars(OUTEXTVARSTATUS) ; 

    rc17 = rvars.collect(robj) ; 

 

ENDSUBMIT; 

RUN; 

 

The PROC TSMODEL summary is shown in Output 4. 
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Output 4. PROC TSMODEL Summary Statistics for Example 2 

The following code produces a plot that shows the actual and forecasted units sold over time 

for a simple BY group. The forecast values come from the R ARIMA model that is used in 

Example 2. The DATA step creates a subseries that consists of the BY group that pertains to 

Region 1, Product Line 1, and Product name “Product 3”. The SGPLOT procedure uses the 

subseries that was obtained in the DATA step to create a scatter plot of the actual SALE 

values along with a line plot of the values that were obtained by the R ARIMA model. The 

output is shown in Output 5. 

DATA mycas.subseries ; 

    set mycas.outarray(where=(regionName="Region1" and productLine="Line1" 

and productName="Product3")) ; 

RUN ; 

 

PROC SGPLOT data=mycas.subseries ; 

   scatter x=DATE y=SALE / markerattrs=(color=black) LEGENDLABEL = 'Actual' 

Name="act"; 

   series x=DATE y=rPRED / lineattrs=(color=red thickness=2) 

                                  LEGENDLABEL = 'Predicted' Name="pred"; 

   yaxis LABEL="Sale" ; 

   xaxis LABEL="Time" ; 

   keylegend / POSITION=BOTTOMRIGHT LOCATION=INSIDE ACROSS=1 ; 

RUN; 
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Output 5. Actual and Modeled Sales for R-Based ARIMA Model 

This R program is not expected to produce any text output if no errors occur, so _LOGTEXT_ 

should be empty. This can be verified by looking at the mycas.rlog table. The following code 

produces this table: 

   PROC PRINT DATA=mycas.rlog; RUN; 

The output is shown in Output 6. 

 

Output 6. Output of RLOG Table for Example 2 

EXAMPLE 3: LIGHTNING-FAST BIG DATA ANALYSIS 

This example demonstrates the TSMODEL procedure’s ability to perform fast time series 

analysis on big data. By using the EXTLANG package objects with PROC TSMODEL, any 

Python or R code can be seamlessly parallelized at a large scale, with minimal overhead. In 

this example, a large industrial data set that consists of more than 1.5 million BY groups is 

processed. On average, each BY group contains 4.3 years of weekly historical data. This 

example was conducted on a cluster of 128 worker nodes and 32 BY-group threads per 

node. Each worker node contains dual Intel Xeon E5-2680 CPUs; each CPU has 8 cores with 

Intel Hyper-Threading Technology. Each worker has 252 GB of RAM. 
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First, a connection to the CAS server is established, and a CAS library called mycas is 

created. The mycas library enables you to transfer data sets to the CAS server where the 

distributed time series analysis is performed: 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

The DATA step is omitted from this example because the data are not publicly available. The 

PROC TSMODEL statement is similar to the previous examples. The details about the 

statements before the SUBMIT…END SUBMIT block are omitted for brevity. 

   PROC TSMODEL data = mycas.large_distributor 

             OUTARRAY=mycas.outarray  

             OUTSCALAR=mycas.outscalar 

             LEAD=52 

            ;    

    ID  period_start_dt 

        interval = week 

        setmissing = missing 

        trimid = none 

    ;    

    BY customer_id product_id store_location_id; 

    VAR demand_qty / acc = total; 

    OUTSCALAR pyTime pyExitCode pyProcessingTime   

              prc1 prc2 prc3 prc4 prc5 prc6 prc7 prc8 prc9 prc10 

              prc11 prc12 prc13 prc14 prc15 prc16  

              ;    

    OUTARRAY pyPred ; 

    REQUIRE extlang ;  

 

The code within the SUBMIT…ENDSUBMIT block runs on all the BY groups. The Python 

version 3 interpreter that is specified in the CAS configuration is launched once for each of 

the 32 worker threads. The interpreter process is duplicated for each new BY group that the 

thread processes. Python modules that are used in the user program are preloaded in the 

duplicated interpreter process to further reduce overhead. Note that Python’s indention 

rules must be obeyed. 

   SUBMIT; 

 

    declare object py(PYTHON3); 

    prc1=py.Initialize(); 

 

    /* Create the script */ 

    prc1 = py.PushCodeLine('import numpy as np'); 

    prc2 = py.PushCodeLine("import os") ; 

    prc3 = py.PushCodeLine("import time") ; 

    prc4 = py.PushCodeLine('start = time.time()'); 

    prc5 = py.PushCodeLine('try:'); 

    /* Moving average with window size = 7 */ 

    prc6 = py.PushCodeLine('   w = np.ones((7,))/7 ; '); 

    prc7 = py.PushCodeLine('   fit = np.convolve(Y, w, mode="same")') ; 

    prc8 = py.PushCodeLine('   PREDICT = fit') ; 

    prc10 = py.PushCodeLine('except Exception as e:'); 

    prc11 = py.PushCodeLine('   print("Error occured during computation. 

                                Y values: {0}. Error: {1}".format(Y, e))') ; 

    prc12 = py.PushCodeLine('PYPROCESSINGTIME = time.time() - start') ; 

 

    /* Add variables */ 

    prc13 = py.AddVariable(demand_qty, 'ALIAS', 'Y') ; 
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    prc14 = py.AddVariable(pyPred, 'ALIAS', 'PREDICT', 'READONLY', 'FALSE'); 

    prc15 = PY.AddVariable(pyProcessingTime, 'READONLY', 'FALSE'); 

 

    /* Run the program */ 

    prc16 = py.Run(); 

    pyTime = py.GetRuntime(); 

    pyExitCode = py.GetExitCode() ; 

   ENDSUBMIT; 

   RUN; 

The results for this example are split into two parts. The first part contains results that are 

obtained by running without any Python code. These results assess the overhead of just 

shuffling the data among the worker nodes. The second part runs the preceding code. 

Hence, the second part of the results shows the additional overhead of loading the Python 

interpreter and transferring data between the interpreter and SAS, in addition to shuffling 

the data. The output summary of the first part is shown in Output 7, which shows that 

1,562,593 BY groups were processed in 29.1 seconds.  The output summary from the full 

example is shown in Output 8, which shows that processing the same BY groups took 153.5 

seconds. Given the simplicity of this program, most of this time can be attributed to the 

overhead involved in duplicating the Python process for each BY group and loading and 

storing their data. Hence, the penalty for processing 750 million rows of data distributed 

among 1.5 million BY groups was just 124 seconds, which is quite small.  

 

 

Output 7. PROC TSMODEL Summary for Loading Large Data Set Using 121 Workers 
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Output 8. PROC TSMODEL Summary for Example 3 

CONCLUSION 

The TSMODEL procedure enables both scalable and optimized time series analysis in a cloud 

environment. PROC TSMODEL comes equipped with a generic scripting environment, which 

enables you to develop custom time series analysis algorithms and prepare your data for 

analysis (clean, transform, preprocess, and postprocess), all within the same script. This 

environment helps reduce data movement (because the data remain in the same contiguous 

memory throughout the analysis) and also optimizes code development. PROC TSMODEL 

also comes equipped with various specialized time series analysis packages that provide 

advanced support for time series analysis (in the time domain or in the frequency domain), 

time series decomposition, time series modeling, signal analysis and anomaly detection (for 

IoT), and temporal data mining. External language support extends the SAS scripting 

environment to allow for open-source integration. You can integrate new and existing 

Python and R programs into your SAS script in order to enhance your processing or analysis 

(or both). Because of these features, what can be accomplished by PROC TSMODEL is 

limited only by your imagination. As is illustrated by the third example, PROC TSMODEL’s 

distributed nature (processing BY groups in parallel), efficiency and scalability (minimizing 

I/O, performing all data operations in memory, and reusing allocated memory efficiently 

across BY groups), and optimized time series modeling and forecasting capabilities enable 

big data forecasting problems to be solved with unprecedented speeds. In summary, 

TSMODEL can efficiently perform time series analysis of big data in close to real time. 
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Time Series Feature Extraction 

Michele A. Trovero and Michael J. Leonard, SAS Institute Inc. 

ABSTRACT 

Feature extraction is the practice of enhancing machine learning by finding characteristics in the data that 
help solve a particular problem. For time series data, feature extraction can be performed using various 
time series analysis and decomposition techniques. In addition, features can be obtained by sequence 
comparison techniques such as dynamic time warping and by subsequence discovery techniques such 
as motif analysis. This paper surveys some of the time series feature extraction methods and 
demonstrates them through examples that use SAS/ETS® and SAS® Visual Forecasting software.  

INTRODUCTION 

In the data mining and machine learning literature, feature extraction refers to the process of creating new 
features from an initial set of data. These features encapsulate the central properties of a data set and 
represent it in a low-dimensional space that facilitates the learning process. The initial data set of raw 
features might be too large and unwieldy to be effectively managed and might require an unreasonable 
amount of computing resources. Feature extraction can be used to provide a more manageable, 
representative subset of input variables.  

In recent years, with the growing amount of timestamped data being collected, there has been an 
explosion of interest in applying machine learning and data mining techniques to timestamped data. For 
example, websites and transactional databases collect copious amounts of timestamped data that are 
related to an organization’s suppliers or customers (or both) over time. Mining these data can help 
business leaders make better decisions by enabling them to better understand their relationship with their 
suppliers or customers via their transactions collected over time. Likewise, a business might have a set of 
transactions associated with each of its many suppliers and customers. However, each set of 
transactions might be quite large, making it difficult to perform many traditional data mining tasks.  

Most existing data mining tools cannot be used efficiently on time series data. Therefore, a dimension 
reduction is required through feature extraction techniques that map each time series to a lower-
dimensional space.  

This paper reviews some commonly used methods of feature extraction for time series. The goal is not to 
describe them in detail, but rather to provide a brief overview and then point to more information for data 
scientists who are interested in analyzing time series data. This survey of methods is far from complete; 
more methods exist than any single paper can cover.  

The first main section describes several methods that you can use to decompose a time series signal into 
components. The first of its subsections covers decomposition of a time series into trend and seasonal 
components, using either classical decomposition or exponential smoothing models. The second 
subsection describes single spectrum analysis (SSA), which represents an alternative nonparametric way 
of decomposing a time series into components by using principal component analysis. The second main 
section covers the related topic of motif discovery, which is helpful for finding recurrent patterns in a time 
series. The third main section covers similarity analysis, which is helpful for comparing two sequences or 
for constructing a similarity matrix among a set of series. You can use a similarity matrix for classification 
purposes—for example, in a clustering process. 

This paper demonstrates how to use these techniques with SAS/ETS and SAS Visual Forecasting 
software. If your data are in a CAS data table, the TSMODEL procedure, through its dynamic loading of 
packages of functions, provides a one-stop environment in SAS® Viya® for performing analyses that 
require several different procedures in SAS 9.4. 
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TRANSACTIONAL AND TIME SERIES DATA 

Transactional data are timestamped data that collected over time at no particular frequency. Some 
examples of transactional data are: 

• internet data  

• point-of-sales (POS) data 

• inventory data  

• call center data 

• trading data 

In order to be analyzed, transactional data need to be aggregated into time series data, which are 
timestamped data that are collected over time at a fixed frequency. Following are some examples of time 
series data: 

• website visits per hour 

• sales per month 

• inventory draws per week 

• calls per day 

• trades per weekday 

As you can see, the frequency that is associated with the time series varies with the problem at hand. The 
frequency (also called the time interval) can be hourly, daily, weekly, monthly, quarterly, yearly, or many 
other variants of the basic time intervals. The choice of frequency is an important modeling decision.  

The aggregation of transactional data into a time series format is often called time series accumulation in 
order to distinguish it from other form of aggregations, such as an aggregation across a hierarchical 
structure. 

Associated with each time series is a seasonal cycle, called seasonality. For example, the length of 
seasonality for a monthly time series is usually assumed to be 12 because there are 12 months in a year. 
Likewise, the seasonality of a daily time series is usually assumed to be 7. The typical seasonality 
assumption might not always hold. For example, if a particular business’s seasonal cycle is 14 days long, 
the seasonality is 14 instead of 7. 

For the remainder of this paper, 𝑦𝑡 denotes a real-valued time series that is observed at regular intervals 
𝑡 = 1, … , 𝑇. 

TIME SERIES DECOMPOSITION 

Time series decomposition is a crucial tool in the analysis of time series. A time series is decomposed 
into components that represent some patterns of the series. The components can then be combined to 
recreate the original series, either by adding them together if the decomposition is additive or by 
multiplying them together if the decomposition is multiplicative.  

The components, or the parameters associated with them, represent features of a time series that you 
can use. For example, you might want to cluster time series that have common patterns.  

The following subsections present some common ways of decomposing a time series.  
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TREND-SEASON DECOMPOSITION 

The decomposition of a series into trend and seasonal components is probably the most widespread 
practice in time series analysis, especially for business and economic data.  

Typically, a time series is decomposed into the following components: 

• 𝑇𝑡, the trend component, which represents the long-term progression of the series 

• 𝐶𝑡, the cycle component, which represents repeated fluctuations around the trend component 

• 𝑆𝑡  , the seasonal component, which represents variations over a fixed and known period 

• 𝐼𝑡, the irregular component, or noise component, which represent random disturbances 

Often, the trend and cycle components are combined into one single trend-cycle component, 𝑇𝐶𝑡. 

The seasonal components are typically normalized to sum to 1 for multiplicative decomposition, or to 0 for 
additive decomposition.  

A seasonally adjusted (or deseasonalized) series is a series whose seasonal component has been 
removed. Likewise, a detrended series is a series whose trend (or trend-cycle) component has been 
removed. 

Businesses such as retailers need to distinguish short-term seasonal effects from long-term trends to 
better plan their stocking decision with enough lead time. Governmental agencies, such as the Federal 
Reserve or the US Census Bureau, provide the seasonally adjusted or detrended version of series of 
economic variables that are used by policy makers to better understand the status of the economy. 

Given the importance that trend-season decomposition has in time series analysis, it is not surprising that 
there are several ways to accomplish it. The following subsections cover two methods: classical 
decomposition and a model-based decomposition that uses the class of exponential smoothing models. 
Several other methods are available. For more details and alternative methods, see the chapters about 
the X11, X12, X13, and UCM procedures in SAS/ETS 14.3 User's Guide. 

Classical Decomposition 

Classical time series decomposition is a nonparametric method that uses a series of moving averages to 
decompose the series into trend-cycle (𝑇𝐶𝑡), seasonal (𝑆𝑡), and irregular (𝐼𝑡) components; it is computed 
as follows:  

   𝑓(𝑦𝑡) = 𝑇𝐶𝑡 + 𝑆𝑡 + 𝐼𝑡 for additive decomposition 

   𝑓(𝑦𝑡) = 𝑇𝐶𝑡𝑆𝑡𝐼𝑡 for multiplicative decomposition 

where 𝑓(𝑦𝑡) represents a possible functional transformation for the dependent series, such as log, 
square-root, logistic, or Box-Cox transformation. 

The Hodrick-Prescott Filter (Hodrick and Prescott 1980) can further decompose the trend-cycle 
component into trend and cycle components in an additive fashion: 

   𝑇𝐶𝑡 = 𝑇𝑡 + 𝐶𝑡 

You can find more details about classical decomposition in the chapter “The TIMESERIES Procedure” in 
SAS/ETS 14.3 User's Guide. 
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The following and later examples analyze the Air variable in the Sashelp.Air data set. This data set 
contains a time series that represents international airline passenger data, given as Series G in Box and 
Jenkins (1976). This series describes monthly totals of international passengers for the period between 
January 1949 and December 1960. It has been widely used in time series analysis literature as an 
example of a nonstationary seasonal time series. Figure 1 shows a plot of the series. You can clearly 
identify an increasing trend and some seasonal patterns: lower in winters and higher in summers.  

 

 
Figure 1. Air Series 

The following TIMESERIES procedure statements use classical decomposition to decompose the series 
that is represented by the Air variable in the Sashelp.Air: 

proc timeseries data=sashelp.air  

       out=_NULL_  

       outdecomp = decomp 

       plot=(decomp); 

   id date interval=month; 

   var air; 

run; 

 

The Decomp data set contains the series component and the seasonally adjusted series. Figure 2 shows 
the panel plot of the series components superimposed over the original series.  
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Figure 2. Trend/Season Decomposition for the Variable Air 

If your data reside in a CAS table, you can use the TSMODEL procedure to perform classical 
decomposition. The following statements use the TSMODEL procedure to compute the seasonal indices 
on the time series array Air: 

proc tsmodel data=mycas.air outarray=mycas.outarray; 

   id date interval=month; 

   var air; 

   outarrays ADJUSTED; 

   require tsa; 

   submit; 

      declare object TSA(tsa); 

      rc=TSA.SEASONALDECOMP(air, _SEASONALITY_,  

                            'ADD', , , , , , , , ADJUSTED, , , ); 

   endsubmit; 

run; 

 

The REQUIRE statement loads the time series analysis (TSA) package, which contains the 
TSA.SEASONALDECOMP function for classical decomposition.  

For more information about the TSMODEL procedure and the TSA package, see the chapter “The 
TSMODEL Procedure” in SAS Econometrics 8.2: Econometrics Procedures. 
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Exponential Smoothing Decomposition 

Classical trend/season decomposition relies on moving averages to decompose the series. The 
decomposition can be refined using more complex and flexible classes of models. Although the class of 
exponential smoothing models is still relatively simple, it provides flexibility in computing the trend and 
seasonal components.  

The following ESM procedure statements fit an additive Holt-Winters model to the log of the series: 
proc esm data=sashelp.air out=_null_ 

         lead=0 

         back=0 

         plot=(trend season); 

   id date interval=month; 

   forecast air / model=addwinters transform=log; 

run; 

 

 
Figure 3 shows the smoothed trend for the Air variable for the additive Winters model.  

 

Figure 3. Additive Winters Method Smoothed Trend 

 

Figure 4 shows the smoothed season for the Air variable for the additive Holt-Winters model.  
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Figure 4. Additive Winters Method Smoothed Season 

The advantage of a model-based decomposition is that you can use the model parameters as 
parsimonious summary features of the time series. For example, you can use values of the parameter of 
the additive Holt-Winters method to cluster series that have similar characteristics. 

Table 1 shows the content of the OUTEST= data set with the parameters of the additive Holt-Winters 
method.  

Obs _NAME_ _TRANSFORM_ _MODEL_ _PARM_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ 

1 AIR LOG ADDWINTERS LEVEL 0.37509 0.035174 10.6637 0.00000 

2 AIR LOG ADDWINTERS TREND 0.00100 0.008803 0.1136 0.90972 

3 AIR LOG ADDWINTERS SEASON 0.73448 0.081167 9.0490 0.00000 

Table 1. Additive Winters Method Parameter Estimates 

 

If your data reside in a CAS table, you can use the TSMODEL procedure to perform a similar analysis:  
proc tsmodel data=MYCAS.AIR  

             outobj=(outFcast=MYCAS.AIRFOR  parEst=MYCAS.AIREST)  

       seasonality=12; 

 id DATE interval=MONTH; 

 var AIR; 

 require tsm; 

 submit; 

       declare object myModel(TSM); 

    declare object mySpec(ESMSpec); 

    rc=mySpec.open(); 

    rc=mySpec.SetOption('method', 'addwinters'); 

    rc=mySpec.SetTransform('log', 'mean'); 

    rc=mySpec.close(); 
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    /* Setup and run the TSM model object */ 

    rc=myModel.Initialize(mySpec); 

    rc=myModel.SetY(AIR); 

    rc=myModel.SetOption('lead', 0); 

    rc=myModel.SetOption('back', 0); 

    rc=myModel.Run(); 

 

    /* Output model forecasts and estimates */ 

    declare object outFcast(TSMFor); 

    rc=outFcast.Collect(myModel); 

    declare object parEst(TSMPEst); 

    rc=parEst.Collect(myModel); 

 endsubmit; 

run; 

 

The REQUIRE statement loads the time series model (TSM) package, which contains the object 
definitions for the exponential smoothing model objects (ESMSpec). The portion of code between the 
SUBMIT and ENDSUBMIT statements is a SAS language script that is submitted and compiled on each 
worker node of the cluster on which your SAS Viya installation runs. The DECLARE statements create an 
instance of the TSM model object (myModel) and an instance of the ESM model object (mySpec). The 
ESMSpec instance is opened, and the SETOPTION method of the ESMpec object is used to select an 
additive Holt-Winters model before the instance is closed again. 

The outFcast and parEst collector objects store the forecasts and the parameter estimates in the 
Mycas.Airfor and Mycas.Airest tables, respectively.  

SINGULAR SPECTRUM ANALYSIS DECOMPOSITION  

An alternative to trend/season decomposition is singular spectrum analysis (SSA), which applies 
nonparametric techniques that adapt the commonly used principal component analysis (PCA) for 
decomposing time series data. The principal components can help you discover and understand the 
various patterns that the time series contains. After you understand each of these component series, you 
can model and forecast them separately; then you can aggregate the component series forecasts to 
forecast the original series under investigation. SSA is particularly valuable for long time series, in which 
patterns (such as trends and cycles) are difficult to visualize and analyze. 

Introductory discussions of SSA can be found in Golyandina, Nekrutkin, and Zhigljavsky (2001), Elsner 
and Tsonis (1996), and Leonard, Elsheimer, and Kessler (2010). 

Given a time series 𝑦𝑡  for 𝑡 = 1, … , 𝑇 and a window length 2 ≤ 𝐿 < 𝑇/2, SSA decomposes the time series 
into spectral groupings by using the following steps: 

1. Embedding: Using the time series, form a 𝐾 × 𝐿 trajectory matrix 𝑿 = {𝑥𝑘,𝑙}𝑘=1,𝑙=1

𝐾,𝐿
 such that 𝑥𝑘,𝑙 =

𝑦(𝑘−𝑙+1) for 𝑘 = 1, … , 𝐾 and 𝑙 = 1, … , 𝐿, where 𝐾 = (𝑇 − 𝐿 + 1). By definition, 𝐿 ≤ 𝐾 < 𝑇 because 
2 ≤ 𝐿 < 𝑇/2. 

2. Decomposition: Apply singular value decomposition to the trajectory matrix 𝑿 = 𝑼𝑸𝑽, where 𝑼 
represents the 𝐾 × 𝐿 matrix that contains the left-hand-side (LHS) eigenvectors, 𝑸 represents the 
diagonal 𝐿 × 𝐿 matrix that contains the singular values, and 𝑽 represents the 𝐿 × 𝐿 matrix that 
contains the right-hand-side (RHS) eigenvectors.  

Therefore, 𝑿 = ∑ 𝑿(𝑙)𝐿
𝑙=1 = ∑ 𝑢𝑙𝑞𝑙𝑣𝑙

′𝐿
𝑙=1 , where 𝑿(𝑙) represents the 𝐾 × 𝐿 principal component 

matrix, 𝑢𝑙 represents the 𝐾 × 1 left-hand-side (LHS) eigenvector, 𝑞𝑙 represents the singular value, 
and 𝑣𝑙 represents the 𝐿 × 1 right-hand-side (RHS) eigenvector that is associated with the lth 
window index. 

  



9 

3. Grouping: For each group index, 𝑚 = 1, … , 𝑀, define a group of window indices 𝐼𝑚 ⊂ {1, … , 𝐿}. 
Let 𝑿𝑰𝒎

= ∑ 𝑿(𝑙) = ∑ 𝑢𝑙𝑞𝑙𝑣𝑙
′

𝑖∈𝐼𝑚𝑙∈𝐼𝑚
 represent the grouped trajectory matrix for group 𝐼𝑚. 

Note that if groupings represent a spectral partition, ⋃ 𝐼𝑚
𝑀
𝑚=1 =  {1, … , 𝐿}, and 𝐼𝑚 ∩ 𝐼𝑛 = ∅ for all 

𝑚 ≠ 𝑛, then according to the singular value decomposition theory, 𝑿 = ∑ 𝑿𝐼𝑚
𝑀
𝑚=1 . 

4. Averaging: For each group index, 𝑚 = 1, … , 𝑀, compute the diagonal average of 

 𝑿𝐼𝑚
= {𝑥𝑘,𝑙

(𝑚)
}

𝑘=1,𝑙=1

𝐾,𝐿

, 𝑥̃𝑡
(𝑚)

=
1

𝑛𝑡
∑ 𝑥(𝑡−𝑙+1),𝑙

(𝑚)𝑒𝑡
𝑙=𝑠𝑡

 

where  𝑠𝑡 = 1, 𝑒𝑡 = 𝑡, 𝑛𝑡 = 𝑡    for (1 ≤ 𝑡 < 𝐿)  
 𝑠𝑡 = 1, 𝑒𝑡 = 𝐿, 𝑛𝑡 = 𝐿    for (𝐿 ≤ 𝑡 ≤ (𝑇 − 𝐿 + 1)  
 𝑠𝑡 = (𝑇 − 𝑡 + 1), 𝑒𝑡 = 𝐿, 𝑛𝑡 = (𝑇 − 𝑡 + 1)  for ((𝑇 − 𝐿 + 1) < 𝑡 ≤ 𝑇) 

 
Note that if groupings represent a spectral partition, ⋃ 𝐼𝑚

𝑀
𝑚=1 =  {1, … , 𝐿}, and 𝐼𝑚 ∩ 𝐼𝑛 = ∅ for all 

𝑚 ≠ 𝑛, then 𝑦𝑡 = ∑ 𝑥̃𝑡
(𝑚)𝑀

𝑚=1  by definition. Hence, singular spectrum analysis additively 
decomposes the original time series, 𝑦𝑡, into 𝑚 component series: 𝑥̃𝑡

(𝑚) for 𝑚 = 1, … , 𝑀. 

5. Forecasting (optional): If the groupings represent a spectral partition, then each component 
series, 𝑥̃𝑡

(𝑚) for 𝑚 = 1, … , 𝑀, can be modeled and forecasted independently using an appropriate 
time series model (ARIMAX, unobserved component model, exponential smoothing model, and 
others), possibly using different time series models that include different input series (causal 
factors) and calendar events (interventions). The forecast for the original time series, 𝑦̂𝑡, can be 
derived by simply aggregating the component series forecasts: 𝑦̂𝑡 = ∑ 𝑥̂𝑡

(𝑚)𝑀
𝑚=1 , where  𝑥̂𝑡

(𝑚) for 
𝑚 = 1, … , 𝑀 represent the component series forecasts that are derived from the mth independent 
time series model. 

The SSA forecasting step represents a clever forecast model combination technique. 

The following statements extract two additive components from the Sashelp.Air time series by using the 
THRESHOLDPCT= option to specify that the first component represents 80% of the variability in the 
series: 

title "SSA of AIR data"; 

proc timeseries data=sashelp.air plot=ssa; 

   id date interval=month; 

   var air; 

   ssa / length=12 THRESHOLDPCT=80; 

run;             

 

The resulting groupings, consisting of the first three and remaining nine singular value components, are 
presented in Figure 5 through Figure 7. 
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Figure 5. Plot for Singular Value Grouping 1  

 

 
Figure 6. Plot for Singular Value Grouping 2 
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Figure 7. Plot for Singular Value Components 

The following statements repeat the same analysis by using the TSMODEL procedure for data that are 
contained in a CAS data table: 

proc tsmodel data=mycas.air  

             outobj=(os=mycas.OUTSSA (replace=YES)); 

   id date interval=month; 

   var air; 

   require ssa; 

   submit; 

      declare object s(ssa); 

      declare object os(outssa); 

      rc = s.Initialize(); 

      rc = s.SetY(air); 

      rc = s.SetOption('METHOD','THRESHOLD'); 

      rc = s.SetOption('LENGTH',12); 

      rc = s.SetOption('THRESHOLDPCT',80); 

      rc = s.Run(); 

      rc = os.Collect(s); 

   endsubmit; 

run; 

 

The REQUIRE statement loads the singular spectrum analysis (SSA) package, which contains the 
definitions for the SSA objects. The SetOptions methods of the SSA objects are used to specify the 
options of the SSA analysis. Finally, the results are collected in a collector object of class Outssa and 
saved to the Outssa CAS table. 
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MOTIF DISCOVERY 

Motif discovery is a methodology that is related to the decomposition of a time series. Time series motifs 
are frequent patterns or repeated subsequences in temporal data; they are primitive shapes and implicit 
rules of time series data. Discovering motifs helps you understand, interpret, and identify important 
characteristics of your times series. However, the goal of motif discovery is not to decompose the series 
into components as it is in time series decomposition. Instead, the goal is to identify the motifs and their 
occurrence in the time sequence. Because motifs are extracted time series features, they can be used for 
time series association, classification, and clustering, and also for anomaly detection. Motifs are 
especially useful for various Internet of Things (IoT) data analyses, including sequence matching from 
biomedical devices and recognition of activities or gestures from body-worn sensors. The time series 
motif (MTF) package, used with PROC TSMODEL, provides motif discovery functional objects that 
perform the following: 

• motif discovery by using a brute-force method 

• motif discovery by using a probabilistic method based on a temporal topic model 

• motif scoring that finds motif instance occurrences of a specified target motif in a new sequence 

• motif-based subsequence anomaly detection 

This paper demonstrates only the brute-force method of motif discovery. For more information about the 
other methods, see the SAS Visual Forecasting: Time Series Packages.  

The following SAS code simulates a time series that has a sine curve motif and uses background data 
that are sampled from the standard normal distribution. The planted motif instances occur at times 50, 
150, and 250. The length of the motif is 10. The length of the time series is 300. 

%let motif_length = 10; 

%let sequence_length = 300; 

%let motif_position = (50,150,250); 

%let n_motifs = 3; 

 

data SimuData; 

        array start {&n_motifs} &motif_position; 

        array end {&n_motifs} &motif_position; 

        call streaminit(123); 

        do j = 1 to dim(start); 

                end[j] = start[j] + &motif_length; 

        end; 

        do i = 1 to &sequence_length; 

             time = i; 

             signal = rand('NORMAL'); 

             do j = 1 to dim(start); 

                  if i >= start[j] and i<end[j] then do; 

                signal = signal+10*sin((i-start[j])/ 

                         &motif_length * (2*constant('pi'))); 

                  end; 

             end; 

        output; 

        end; 

keep time signal; 

run; 

 

Figure 8 shows the plot of simulated data, which appear to contain three large sine curves around times 
50, 150, and 250. 
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Figure 8. Plot of Simulated Motif Data  

The following PROC TSMODEL statements use the brute force method to detect the motif: 
  proc tsmodel data=mycas.SimuData 

               outobj=(of=mycas.outmotif 

               ofms = mycas.outmotifseries); 

     var signal; 

     id  time interval=day; 

     require mtf; 

     submit; 

             declare object f(MTFBF); 

             declare object of(OUTMTF); 

             declare object ofms(OUTMTFSERIES); 

             rc = f.Initialize(); 

             rc = f.SetX(signal); 

             rc = f.SetOption("NMOTIF", 1, 

                               "MOTIFLENGTH",10, 

                               "NORMALIZE", "Y", 

                               "DISTMARGIN", 1 

                             ); 

             rc = f.Run(); 

             rc = of.Collect(f); 

             rc = ofms.Collect(f); 

     endsubmit; 

  run; 

 

The REQUIRE statement loads the time series motif (MTF) package. The MTFBF object executes a 
brute-force method for motif discovery. The object declaration statement creates a new object, F, of type 
MTFBF.  

The brute-force method finds the exact three time points where the motif instances start, as shown in 
Table 2 and Figure 9. 
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Obs 
Variable 
Name 

Motif 
ID 

Start 
Position Distance 

1 signal 1 50 0.2740376908 

2 signal 1 150 0.3228669954 

3 signal 1 250 0.356297145 

Table 2. List of Motifs Discovered by the Brute-Force Method 

 

 
Figure 9. Plot of Motifs Discovered by the Brute-Force Method 

SIMILARITY ANALYSIS 

Comparing two items or features is often needed in machine learning—for example, in classifying 
elements in a set. A similarity measure is a metric that measures the distance between an input sequence 
and a target sequence and that takes ordering into account. The two sequences can be time series or 
timestamped data that are observed at different time points. In addition, similarity measures can “slide” 
the target sequence with respect to the input sequence. The “slides” can occur by observation index (in 
sliding-sequence similarity measures) or by seasonal index (in seasonal-sliding-sequence similarity 
measures). For computing metrics, you can use fixed and dynamic time-warped metrics for squared and 
absolute deviations, in addition to other metrics. 

Similarity measures can be used to compare a single input sequence to several other representative 
target sequences. This situation arises in time series classification. For example, given a single input 
sequence, you can classify the input sequence by finding the “most similar” or “closest” target sequence.  

Similarity analysis can be repeated to classify large numbers of input sequences. Similarity measures can 
also be computed between several sequences to form a similarity matrix. For example, given 𝐾 time 
sequences, you can construct a 𝐾 × 𝐾 symmetric matrix in which each element represents the similarity 
measure between two sequences. You can also use the similarity matrix as a distance matrix in clustering 
time series.  
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Sliding similarity measures (such as observational or seasonal indices) can be used to compare a single 
target sequence to subsequences of many other input sequences on a sliding basis. This situation arises 
in historical time series analogies. For example, given a single target series, you can find similar times in 
the history of the input sequence while preserving the ordering or seasonal indices. 

Similarity analysis uses dynamic time warping techniques to map an input sequence to a target 
sequence. Several distance measures can be computed by considering the paths that are formed by 
such a mapping. A full description of the details is beyond the scope of this paper and can be found in 
Leonard et al. (2008). 

This simple example illustrates how to use similarity analysis to compare two time sequences. The 
following statements create an example data set, Test, which contains two time sequences of differing 
lengths: 

data test; 

   input i y x; 

   datalines; 

   1   2  3 

   2   4  5 

   3   6  3 

   4   7  3 

   5   3  3 

   6   8  6 

   7   9  3 

   8   3  8 

   9  10  . 

   10 11  . 

   ; 

run; 

 

The following statements perform similarity analysis on the Test data set: 
proc similarity data=test out=_null_ 

   print=all plot=all; 

   input x; 

   target y / measure=absdev; 

run; 

 

The DATA=TEST option specifies the input data set Test to be used in the analysis. The OUT=_NULL_ 
option suppresses the creation of an output time series data set. The PRINT=ALL and PLOTS=ALL 
options request that all ODS tables and graphs be produced. The INPUT statement specifies that the 
input variable is X. The TARGET statement specifies that the target variable is Y and requests that the 
similarity measure be computed using absolute deviation (MEASURE=ABSDEV). 

Figure 10 show the plot of the input and target series. 
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Figure 10. Input and Target Series 

Notice that the two time sequence plots are somewhat similar but differ in length and timing. Both 
sequences have two phases of upward movements that are followed by downward movements and a 
final phase of upward movement.  

Figure 11 shows the path plot and warped scaled plot for the input and target series.  

In the path plot, the horizontal axis represents the input sequence index, and the vertical axis represents 
the target sequence index. The dots represent the path coordinates. This plot visualizes the path through 
the distance matrix. Vertical movements indicate compression, and horizontal movements represent 
expansion of the target sequence with respect to the input sequence. This plot is useful for visualizing the 
amount of expansion and compression along the path. 

In the warp-scaled plot, the horizontal axis represents the input and target sequence index. The upper 
line (blue) represents the target sequence. The lower line (red) represents the input sequence. The lines 
that connect the input and target sequence values represent the mapping between the input and target 
sequence indices along the path. This plot visualizes the warping of the time index with respect to the 
input and target sequence values. Expansion of a single target sequence value occurs when it is mapped 
to more than one input sequence value. Expansion of a single input sequence value occurs when it is 
mapped to more than one target sequence value. This plot is useful for visualizing the mapping between 
the input and target sequence values along the path. 

 

  
Figure 11. Path Plot and Warp-Scaled Plot 
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The similarity distance is computed by finding the optimal path that minimizes a cost function over all 
possible paths in the mapping. Different cost functions give rise to different distances. The preceding 
example uses the absolute deviation.  

If your data reside in a CAS data table, you can perform a similar analysis by using the TSMODEL 
procedure and the SIMILARITY function in the TSA package. The following statements use the 
TSMODEL procedure to repeat the preceding analysis for data in a CAS data table: 

proc tsmodel data=mycas.test 

      outscalar=mycas.sim_scalar; 

   require tsa; 

   id i interval=day; 

   var x y; 

   outscalars measure; 

   submit; 

   declare object TSA(tsa); 

   rc = TSA.SIMILARITY(x, y, 'absdev', 'NONE', , , , ,measure); 

   endsubmit; 

  run;  

 

The similarity measure is contained in the Mycas.Sim scalar table.  

CONCLUSION 

This paper reviews some analysis methods for time series data that can be used for feature extraction 
and dimension reduction in the context of data mining and machine learning. The extracted features can 
give new insights into the time series and their dynamics, and they can be used to describe or classify 
time series or to build models for such purposes using other machine learning techniques.  

The signal that is contained in a time series can be decomposed into components by several methods. 
This paper covers decomposition of a time series into trend and seasonal components, using either 
classical decomposition or exponential smoothing models. Singular spectrum analysis (SSA) represents 
an alternative nonparametric way of decomposing a time series into components by using principal 
component analysis. You can use motif discovery to find recurrent patterns in a time series. Finally, you 
can use similarity analysis to compare two sequences or to construct a similarity matrix among a set of 
series. You can use the similarity matrix for classification purposes (for example, in a clustering process). 

You can implement these techniques either by using SAS/ETS procedures, or, if your data are in a CAS 
data table, the TSMODEL procedure in SAS Visual Forecasting. The TSMODEL procedure, through its 
dynamic loading of packages of functions, provides a one-stop environment in SAS Viya for performing 
analyses that would otherwise require several different procedures in SAS 9.4. 
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ABSTRACT 

SAS Visual Forecasting, the new-generation forecasting product from SAS, includes a web-based user 

interface for creating and running projects that generate forecasts from historical data. It is designed to use 

the highly parallel and distributed architecture of SAS® Viya®, a cloud-enabled, in-memory analytics engine 

that is powered by SAS® Cloud Analytic Services (CAS), to effectively model and forecast time series on a 

large scale. SAS Visual Forecasting includes several built-in modeling strategies, which serve as ready-to-

use models for generating forecasts. It also supports custom modeling nodes, where you can write and 

import your own code-based modeling strategies. Similar to the ready-to-use models, these custom 

modeling nodes can also be shared with other projects and forecasters. Forecasters can use SAS Visual 

Forecasting to create projects by using visual flow diagrams (called pipelines), running multiple built-in or 

custom models on the same data, and choosing a champion model based on the results. This paper uses 

a gradient boosting model as an example to demonstrate how you can use a custom modeling node in SAS 

Visual Forecasting to develop and implement your own modeling strategy. 

INTRODUCTION 

SAS Visual Forecasting includes a web-based user interface for creating and running projects to generate 

forecasts. It provides automation and analytical sophistication to generate millions of forecasts in the fast 

turnaround time that is necessary to run your business. Forecasters can create projects by using visual 

flow diagrams (also called pipelines), and can run multiple models on the same data set and choose a 

champion model on the basis of the forecast results. 

Because SAS Visual Forecasting runs in SAS Viya, which has a highly parallel and distributed architecture, 

is designed to effectively model and forecast time series on a large scale. SAS Cloud Analytic Services 

(CAS) provides the speed and scalability needed to create the models and generate forecasts for millions 

of time series. Massive parallel processing within a distributed architecture is one of the key advantages in 

SAS Visual Forecasting for large-scale time series forecasting. 
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SAS Visual Forecasting includes a number of modeling strategies that you can use to generate forecasts. 

These strategies include two hierarchical forecasting models, a panel neural network model, an auto-

forecasting model, a naïve model, a multistage forecasting model, a stacked model, and more. 

Furthermore, you can create your own modeling strategies that you can share with other projects and 

forecasters. These custom modeling strategies are called pluggable modeling strategies.  

The following sections use a gradient boosting model (GBM) as an example to illustrate the steps for writing 

a pluggable modeling strategy. Gradient boosting is a popular machine learning technique 

for regression and classification problems. It produces a prediction model in the form of an ensemble of 

weak prediction models. The example in this paper uses the GRADBOOST procedure in SAS® Visual Data 

Mining and Machine Learning to implement a GBM. PROC GRADBOOST enables you to build a GBM that 

consists of multiple decision trees. 

FILES REQUIRED TO DEFINE A PLUGGABLE MODELING STRATEGY 

The following files are required to define a pluggable modeling strategy in SAS Visual Forecasting 8.3: 

• code.sas, which contains the SAS® code to be executed 

• validation.xml, which defines the validation rules for the strategy specification settings 

(properties) 

• template.json, which defines the metadata of the strategy 

Starting from SAS Visual Forecasting 8.4, another file is required, metadata.json. This file guarantees 

that the version of the modeling strategies matches the current version of Model Studio. You can 

download an existing strategy from the exchange and copy the metadata.json file to your modeling 

strategy to make sure you have the correct version. 

These files are packed in a .zip file for uploading to or downloading from The Exchange in SAS Visual 

Forecasting. You can download an existing pluggable modeling strategy and learn from the downloaded 

example files. Then you can modify the contents accordingly and use the modified files. 

To download an existing pluggable modeling strategy: 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Regression_(machine_learning)
https://en.wikipedia.org/wiki/Classification_(machine_learning)
https://en.wikipedia.org/wiki/Ensemble_learning
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1. On the Build Model tab of the main page of Model Studio, click the  button to open The 
Exchange, as shown in Display 1. 

 

Display 1. The Exchange in Model Studio 

2. Select Forecasting Modeling from the Nodes list, right-click an existing modeling strategy (such 
as Auto-forecasting in Display 2) to be downloaded, and then click Download. 

 

Display 2. Download Modeling Strategy 

3. Unzip the downloaded .zip file to view the code.sas, validation.xml and template.json files. The 
following sections describe these files in more detail. 

CODE.SAS FILE  

The code.sas file contains the run-time SAS code that can be executed in a pipeline to generate forecasts. 

You can use a set of system-defined macro variables and macros in the run-time code to obtain references 

to the input data, output forecasts, variable roles, settings, and so on from the pipeline. 

Table 1, Table 2, and Table 3 in the appendices show the system-defined macro variables and macros that 

contain project information such as CAS session, caslibs, table names, and variable roles and settings. 
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When you write the run-time code, you can refer to these macro variables and macros to retrieve information 

and generate TSMODEL procedure statements.   

Figure 1 shows the contents of the code.sas file, which contains the run-time code.  

The code first defines a %fx_prepare_input macro that uses the built-in data preparation macro code 

to prepare input data. The input table is prepared by the Data node in the pipeline. For more information 

about the input data, see the chapter “Setting Up Your Project” in SAS Visual Forecasting: User’s Guide. If 

you want to refer to the input table in code, you can use the macro variable definition, as follows. 

&vf_libIn.."&vf_inData"n 

 

The main code, which is wrapped in a %gbm_run macro, first calls the data preparation macro to prepare 

the input and transform the dependent variable (if needed), and then calls PROC GRADBOOST to build a 

gradient boosting model. When lag variables for the dependent variable are used in the model, a DATA 

step is used to recursively score both the historical and future periods according to score code output from 

the GBM. Another DATA step is then used to prepare the required output. At the end of the file, the main 

code macro is invoked. 

/* 

    Macro for adding features into input data 

        I: &vf_libIn.."&vf_inData"n 

        O: &vf_libOut..&vf_tableOutPrefix..&outTblName 

*/ 

%macro fx_prepare_input(outTblName=, byVars=,  

                        trendVariable=, seasonalDummy=,  

                        seasonalDummyInterval=, 

                        esmY=, lagXNumber=, lagYNumber=,  

                        holdoutSampleSize=, holdoutSamplePercent=,  

                        criteria=, back=); 

 

    %local filerootpath; 

    %let filerootpath = &sas_root_location/misc/codegenscrpt/source/sas; 

    %include "&filerootpath./vf_data_prep.sas"; 

    %let temp_work_location = %sysfunc(pathname(work)); 

    %include "&temp_work_location./vfDataPrepMacro.sas"; 

 

%mend; 

 

/* 

    Main macro for forecasting using a gradient boosting model 

*/ 

%macro gbm_run; 

 

    /*Protection against problematic _seasonDummy value*/ 
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    %if (not %symexist(_seasonDummy)) %then  

        %let _seasonDummy=&vf_timeIDInterval; 

    %if "&_seasonDummy" eq "" %then  

        %let _seasonDummy = &vf_timeIDInterval; 

    %if %sysfunc(INTTEST( &_seasonDummy )) eq 0 %then %do; 

        %put Invalid seasonal dummy interval.  

             Use &vf_timeIDInterval instead.; 

        %let _seasonDummy = &vf_timeIDInterval; 

    %end; 

         

    /*Parepare input data with extracted feature used for modeling*/ 

    %fx_prepare_input(outTblName=fxInData, byVars=&vf_byVars,  

                      trendVariable = &_trend,   

                      seasonalDummy = &_seasonDummy,  

                      seasonalDummyInterval = &_seasonDummyInterval, 

                      esmY =FALSE, lagXNumber=&_lagXNumber,  

                      lagYNumber=&_lagYNumber,  

                      holdoutSampleSize=&_holdoutSampleSize,  

                      holdoutSamplePercent=&_holdoutSamplePercent,  

                      criteria=RMSE, back=0); 

     

    /*Dependent variable transformation if needed*/ 

    %let targetVar=gbmTargetVar; 

    %let predictVar=P_&targetVar; 

    data &vf_libOut.."&vf_tableOutPrefix..fxInData"n /  

        SESSREF=&vf_session; 

        set &vf_libOut.."&vf_tableOutPrefix..fxInData"n; 

        &targetVar = &vf_depVar; 

        %if %upcase(&_depTransform) eq LOG %then %do; 

          if not missing(&vf_depVar) and &vf_depVar > 0 then  

             &targetVar = log(&vf_depVar); 

          else call missing(&targetVar); 

        %end; 

    run; 

     

    /*Train the gradient boosting model*/ 

    proc gradboost data=&vf_libOut.."&vf_tableOutPrefix..fxInData"n  

                   seed=12345;  

        id &vf_byVars &vf_timeID;                           

        partition rolevar=_roleVar(TRAIN="1" VALIDATE="2" TEST="3");                  

        input &vf_byVars  /level=NOMINAL; 

        %if "&vf_indepVars" ne "" %then %do; 

          input &vf_indepVars  /level=INTERVAL; 

        %end; 

        %if %intervalFeatureVarList ne  %then %do; 

          input %intervalFeatureVarList /level=INTERVAL; 

        %end; 

        %if %nominalFeatureVarList ne  %then %do; 

          input %nominalFeatureVarList /level=NOMINAL; 

        %end; 

        target &targetVar / level=interval; 

        autotune maxtime=3600 

                 tuningparameters=( ntrees(lb=50 ub=500 init=50)) ; 

        %if %eval(&_lagYNumber>0) %then %do; 

           code file="&temp_work_location./_gbScore.sas"; 

        %end; 

        %else %do; 
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           output out=&vf_libOut.."scored_gb"n  

                  copyvars=(&vf_byVars &vf_timeID &vf_depVar); 

        %end; 

    run; 

     

    %if %eval(&_lagYNumber>0) %then %do; 

        /*When lagYNumber is nonzero, 

          score the model for the whole data set with  

          recurrent dependent variable value for the future periods*/ 

        %let count=%sysfunc(countw(&vf_byVars,%str( ))); 

        %let lastByVar=%scan(&vf_byVars, &count, %str( )); 

        data &vf_libOut.."scored_gb"n /SINGLE=YES; 

            set &vf_libOut.."&vf_tableOutPrefix..fxInData"n;  

            by &vf_byVars  &vf_timeID; 

            retain copyY . %do i=1 %to &_lagYNumber;  

                               copyY_lag&i. . %end;; 

            gbmLastByVar = &lastByVar; 

            if first.gbmLastByVar  then do; 

                copyY=.;  

                %do i=1 %to &_lagYNumber; copyY_lag&i.=.; %end; 

            end; 

            %do i=&_lagYNumber  %to 1 %by -1; 

                %if &i eq 1 %then %do; 

                    if not missing(copyY) then copyY_lag1=copyY; 

                %end; 

                %else %do; 

                    if not missing(copyY_lag%eval(&i -1)) then  

                      copyY_lag&i = copyY_lag%eval(&i -1); 

                %end; 

            %end; 

            %do i=1 %to &_lagYNumber; _lagY&i = copyY_lag&i.; %end; 

            %include "&temp_work_location./_gbScore.sas"; 

            if &vf_timeID >= &vf_horizonStart then copyY = &predictVar; 

            else copyY = &targetVar; 

            drop copyY %do i=1 %to &_lagYNumber; copyY_lag&i.  %end;; 

        run; 

    %end; 

     

    /*Prepare the required output tables*/ 

    data &vf_libOut.."&vf_outFor"n; 

       set &vf_libOut.."scored_gb"n; 

       actual = &targetVar; 

       predict = &predictVar; 

       %if %upcase(&_depTransform) eq LOG %then %do; 

          if not missing(actual) then actual = exp(actual); 

          if not missing(predict) then predict = exp(predict); 

       %end; 

       %if "&vf_allowNegativeForecasts" eq "FALSE" %then %do; 

          if not missing(predict) and predict < 0 then predict = 0; 

       %end; 

       %if &targetVar ne &vf_depVar or &predictVar ne predict %then %do; 

          drop &targetVar  &predictVar; 

       %end; 

    run;     

 

%mend;   
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/*Invoke the main macro */ 

%gbm_run; 

 

Figure 1. Contents of code.sas File for the Gradient Boosting Model Example 

The only required output table is the OUTFOR table. The other tables are all optional.  

The required OUTFOR table contains forecasts from the forecast models; it can be referred to as follows: 

&vf_libOut..&vf_outFor 

 

The OUTFOR table must have the following columns: 

• byVars 

• timeID 

• actual (actual value of the dependent variable) 

• predict (predicted value of the dependent variable) 

The OUTFOR table can also have the following columns: 

• std (standard deviation of errors) 

• lower (lower confidence limit of predicted values) 

• upper (upper confidence limit of predicted values) 

SAS Visual Forecasting automatically validates the OUTFOR table and promotes it so that it can be used 

as a global CAS table. If the required columns do not exist, the modeling node reports errors. SAS Visual 

Forecasting also checks the OUTFOR table for invalid values (such as extreme values and negative values) 

and reports warning messages if it detects any. 

The optional OUTSTAT table contains forecast accuracy measures such as MAPE and RMSE; it can be 

referred to as follows:  

&vf_libOut..&vf_outStat 

 

The OUTSTAT table must have the following columns: 

• byVars 

• summary statistics, including DFE N NOBS NMISSA NMISSP NPARMS TSS SST SSE MSE 
RMSE UMSE URMSE MAPE MAE RSQUARE ADJRSQ AADJRSQ RWRSQ AIC AICC SBC 
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APC MAXERR MINERR MAXPE MINPE ME MPE MDAPE GMAPE MINPPE MAXPPE MPPE 
MAPPE MDAPPE GMAPPE MINSPE MAXSPE MSPE SMAPE MDASPE GMASPE MINRE 
MAXRE MRE MRAE MDRAE GMRAE MASE MINAPES MAXAPES MAPES MDAPES GMAPES 

 

If the pluggable modeling strategy run-time code generates this table, the pipeline will validate the table 

and promote it so that it can be used as a global CAS table. If any required columns or measurements are 

missing from the table or the run-time code does not output this table, the pipeline will automatically 

compute the statistics and generate this table on the basis of actual and predicted series from the OUTFOR 

table. 

SAS Visual Forecasting automatically promotes the OUTFOR table and the OUTSTAT table (if it exists) so 

that they can be used as global CAS tables. You can promote any additional output tables in the run-time 

code by calling the %vf_promoteCASTable macro. 

 

VALIDATION.XML FILE 

The validation.xml file validates the specification settings against valid values in XML format. The file 

conforms to an XML schema that is used to validate any XML you provide to the validation service when 

you define a new validation model.  

When a pluggable modeling strategy is added to a pipeline, the strategy specifications (type, name, 

displayName, choicelist, and so on) are retrieved from the validation.xml file and are displayed on the right 

panel of the modeling pipeline interface, with the default values defined in the template.json file and the 

allowable values defined in the validation.xml file.  

A validation model can be best described via an example. Display 3 shows how the GBM example modeling 

node specifications are displayed in a pipeline. 
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Display 3. Modeling Pipeline Interface with the GBM Node Property 

Figure 2 shows the contents of the validation.xml file for this GBM example. The root element in this file is 

validationModel; it can have a name and a description as shown in Figure 2.  

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<validationModel  

    description="Generate forecast with Gradient Boosting Model."  

    name="Gradient Boosting Model" revision="0"> 

    <links/> 

    <version>1</version> 

    <properties> 

        <property name="_holdoutSampleSize"  

                  displayName="Size of data to be used for holdout"  

                  type="integer"> 

            <constraints> 

                <range min="0" includeMin="true"/> 

            </constraints> 

        </property> 

        <property name="_holdoutSamplePercent"  

                  displayName="Percentage of data to be used for holdout"  

                  type="double"> 

            <constraints> 

                <range min="0" max="100"  

                 includeMin="true" includeMax="false"/> 

            </constraints> 

        </property> 

 

        <property name="_trend"  

                  displayName="Specifies whether to include the dependent  

                               variable trend as an independent variable"  
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                  type="string"> 

            <constraints> 

                <choicelist> 

                  <choice value="None"      displayValue="No trend"/> 

                  <choice value="Linear"    displayValue="Linear trend"/> 

                  <choice value="Damptrend" displayValue="Damped trend"/> 

                </choicelist> 

            </constraints> 

        </property> 

        <property name="_seasonDummy"  

                  displayName="Include seasonal dummy  

                               as independent variables"  

                  type="boolean"/>   

        <property name="_seasonDummyInterval"  

                  displayName = "Time interval for creating  

                                 seasonal dummy variables"  

                  type = "string" required="false"  

                  enabledWhen="_seasonDummy"> 

        </property>  

        <property name="_lagXNumber"  

                  displayName="Number of lags for the independent variables"  

                  type="integer"> 

            <constraints> 

                <range min="0" includeMin="true"/> 

            </constraints> 

        </property> 

        <property name="_lagYNumber"  

                  displayName="Number of lags for the dependent variable"  

                  type="integer"> 

            <constraints> 

                <range min="0" includeMin="true"/> 

            </constraints> 

        </property>  

        <property name="_depTransform"  

                  displayName="Dependent variable transformation"  

                  type="string"> 

            <constraints> 

                <choicelist> 

                    <choice value="NONE" displayValue="None"/> 

                    <choice value="LOG" displayValue="Logistic"/> 

                </choicelist> 

            </constraints> 

        </property> 

         

   </properties> 

</validationModel> 

 

Figure 2. Contents of validation.xml File for the Gradient Boosting Model Example 

Within the model, properties are defined in a “properties” element, which can contain any number of 

“property” elements or “group” elements. Each property that is defined in the model describes how values 

are interpreted by the validation engine when it is asked to validate a map of name, value pairs. The basic 

required information for a property is as follows: 
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• name: this corresponds to the key used in the map being validated. This is also the macro variable 

name that can be used in the code.sas file to refer to the property setting value. 

• displayName: a localizable, user-friendly name for the property. This is provided so that the SAS 

Visual Forecasting GUI can display meaningful content to instruct users to specify the property 

values. 

• type: the type of this property. Currently supported types are string, integer, double, and Boolean. 

• required (optional): a true or false value that indicate whether a value for this property is required. 

The default is true. 

• enabledWhen (optional): a Boolean expression, which, when evaluated, indicates whether this 

property is enabled. A property that is not enabled is not validated. This field can also be used by 

the GUI to disable controls that are associated with properties that have been made unavaiable as 

values in the properties map change. In the GBM example, the Time interval for creating 

seasonal dummy variables box is available only when the Include seasonal dummy as 

independent variables checkbox is checked. 

• Constraints (optional): constraints on the property value. Properties can have one or more 

constraints. Typically, only one constraint is needed. Constraints themselves support the 

“enabledWhen” attribute so that it is possible for a property to have different constraints that depend 

on some condition. Two types of constraints are currently supported: choice lists and ranges. You 

can see how these work by referring to the Figure 2. For example, _trend property has a choicelist 

constraint that requires the choice value to be “None”, “Linear”, or “Damptrend”, and the 

_holdoutSampleSize property has a range constraint that required its value to be an integer. Note 

that some properties do not specify any constraints. 

TEMPLATE.JSON FILE 

The template.json file contains the metadata about the strategy in JSON format. Figure 3 shows the file 

contents for the GBM example. 

{ 

  "name" : "Gradient Boosting Model", 
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  "description" : "Generate forecast with Gradient Boosting Model.", 

  "revision" : 0, 

  "version" : 1, 

  "prototype" : { 

    "name" : "Gradient Boosting Model", 

    "revision" : 0, 

    "executionProviderId" : "Compute", 

    "status" : "undefined", 

    "componentProperties" : { 

      "_holdoutSampleSize": 0, 

      "_holdoutSamplePercent": 20, 

      "_trend": "Linear", 

      "_seasonDummy": true, 

      "_lagXNumber": 0, 

      "_lagYNumber": 0, 

      "_depTransform": "NONE", 

      "preProcessTransformationsCode": "" 

    } 

  }, 

  "applicationId" : "forecasting", 

  "classification" : "pluggable", 

  "providerId" : "CustomTemplate", 

  "group" : "modeling", 

  "hidden" : false 

} 

Figure 3. Contents of template.json File for the Gradient Boosting Model Example 

The following information is included in this file: 

• name: name of the strategy; this name will be displayed as the name of the node 

• description: description of the strategy; this description will be displayed as the description of the 

node 

• revision: revision information 

• version: version information 

• prototype  

o name: Specify the same value as the first name field  

o revision: Specify the same value as the first revision field 

o executionProviderId: Specify “Compute” 

o status: Specify “undefined” 
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o componentProperties: contains the specifications and the corresponding default values. 

The file can contain two types of properties: 

▪ Model properties: In this example, seven out of the eight specifications that are 

defined in the validation.xml file are declared in this file with default values. It is not 

necessary to declare the "_seasonDummyInterval” option because 

required="false" is specified in the validation.xml file. 

▪ Process property: You also need to include one additional property called 

preProcessTransformationsCode with default value set to “” to make sure the 

pipeline works as expected. 

• applicationId: Specify the application, which can be “forecasting”, “text”, or “datamining”. The value 

“forecasting” should always be used for SAS Visual Forecasting strategies. 

• classification: Specify “pluggable” 

• providerId: Specify “CustomTemplate” 

• group: Specify “modeling” 

• hidden: Specify false 

PUTTING EVERYTHING TOGETHER 

After you create a .zip file from the files of the pluggable modeling strategy, you can upload the .zip file 

through The Exchange as follows: 

1. On the Build Model tab of the main page of Model Studio, click the  button to open The 

Exchange.  
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Display 4. The Exchange in Model Studio 

2. Select Forecasting Modeling and click the three dots in upper right corner of the page. Select the 

Upload option to open another window as shown in Display 5. Select the .zip file of the pluggable 

model that you want to upload and click OK. 

 
Display 5. Upload New Modeling Strategy 

After the pluggable modeling strategy has been successfully uploaded, it will show up under the 

Forecasting Modeling node as shown in Display 6. 
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Display 6. Gradient Boosting Model Appears in The Exchange 

The pluggable model (Gradient Boosting Model in this example) becomes available when you build a 

SAS Visual Forecasting pipeline, as shown in Display 7. 

 
Display 7. Add the New Gradient Boosting Model Node 

You can use the pluggable model to add a modeling node. When the modeling node is selected, related 

information is displayed in the side panel. From there, you can view the code or change the parameter 

settings. In Display 8, all parameter settings that are defined in the GBM model are correctly displayed and 

are ready to receive your input.  
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Display 8. Pipeline with the New Gradient Boosting Model Node 

Checklist 

You can use the following checklist to sort out everything required to build a pluggable modeling node: 

1. Create a .zip file that contains the files: template.json, validation.xml, and code.sas. 

2. Make sure the code in the code.sas file follows the I/O contracts for input and output tables.  

3. Upload the .zip file to The Exchange. 

4. The pluggable model is ready to use in the pipeline. 

CONCLUSION 

This paper introduces how you can build a customized modeling strategy node in SAS Visual Forecasting 

by going through a step-by-step example of building a gradient boosting modeling node. You can follow the 

instructions and build your own customized modeling node for forecasting purposes. 

APPENDICES 

APPENDIX I. SYSTEM-DEFINED MACRO VARIABLES 

Table 1 shows the system-defined macro variables that are related to input and output. 
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Macro Variable Description 

vf_session CAS session name 
vf_sessionID CAS session ID 
vf_caslibIn caslib where input data is stored 
vf_caslibOut caslib where output data is stored 
vf_libIn CAS engine libref for input data 
vf_libOut CAS engine libref for output data 
vf_tableInPrefix Input table name prefix, which is used to differentiate input tables among different 

projects 
vf_tableOutPrefix Output table name prefix, which is used to differentiate output tables among 

different projects 
vf_inData Input table name 
Vf_inAttribute Input attribute table name 
vf_outFor Output forecast table name 
vf_outStat Output statistics table name 
vf_outInformation Output information table name 
vf_outSelect Output model selection table name 
vf_outModelInfo Output model information table name 
vf_outLog Output log name 

Table 1. System-Defined Macro Variables That Are Related to Input and Output 

Table 2 shows the macro variables that are related to data specification. 

Macro Variable Description 

vf_depVar Dependent variable name 
vf_depVarAcc Accumulation setting for the dependent variable 
vf_depVarAgg Aggregation setting for the dependent variable 
vf_depVarSetMissing Missing-value interpretation setting for the dependent variable 
vf_byVars BY variables defined for the project 
vf_timeID Time ID variable name 
vf_timeIDInterval Time series interval 
vf_timeIDSeasonality       Time series seasonality 
vf_setMissing Missing-value interpretation setting for the time ID 
vf_lead Forecast lead 
vf_horizonStart Forecast horizon start date 
vf_reconcileLevelNumber Reconcile level number specified for the project; the _TOP_ level 

number is 0 
vf_reconcileLevel BY variable that corresponds to the reconcile level specified for the 

project 
vf_allowNegativeForecasts Boolean value indicating whether negative values are allowed in the 

forecast results 
vf_indepVars Strings that specify the independent variable names (for example, 

promotion, price, and inventory) 
vf_indepVarsAcc Accumulation settings for the independent variables 
vf_indepVarsAgg Aggregation settings for the independent variables 
vf_indepVarsSetMissing Missing-value interpretation settings for the independent variables 
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Macro Variable Description 

vf_indepVarsRequired Specification of whether independent variables are required (YES, NO) 
vf_indepVarsExtend Forecast method for extension 
vf_events List of events defined in the project 
vf_eventsRequired Specification of whether the events are required 
vf_inEventData Event definition data 
vf_inEventObj inEventObj with all event data definitions specified, which can be used in 

PROC TSMODEL with the ATSM package 

Table 2. Macro Variables That Are Related to Data Specification 

APPENDIX II. SYSTEM-DEFINED MACROS 

Table 3 shows the system-defined macros. 

Macro Description 

%vf_depVarTSMODEL Declares the dependent variable for PROC TSMODEL 
(Note 1) 

%vf_indepVarsTSMODEL Declares the independent variables for PROC 
TSMODEL (Note 1) 

%vf_varsTSMODEL Declares statement both the dependent variable and 
independent variables for PROC TSMODEL (Note 1) 

%vf_addXTSMODEL(tsdf) Adds independent variables tothe ATSM package data 
frame in PROC TSMODEL (Note 2) 

%vf_addEvents(tsdf, eventsObj) Declares and adds event specification to the ATSM 
package data frame and event object in PROC 
TSMODEL (Note 3) 

%vf_promoteCASTable(localCASTable = , 
globalCASTable =  ) 

Promotes a local CAS table to a global CAS table (Note 
4) 

Table 3. List of Macros 

Notes: 

1. The %vf_varsTSMODEL macro generates the VAR statements of the PROC TSMODEL to define

the dependent and independent variables. It combines the statements that are generated by the

%vf_depVarTSMODEL and %vf_indepVarsTSMODEL macros. The statements also include the

ACC= and SETMISS= settings for the corresponding variables. For example, when there is one

dependent variable, y, and two independent variables, x1 and x2, the macro generates the following

statement:

var y /acc=SUM setmiss=MISSING; 

var x1/acc=AVG setmiss=AVG; 

var x2/acc=AVG setmiss=FIRST; 

2. The %vf_addXTSMODEL macro generates an addX function call of the Time Series Data Frame

(TSDF) object from the Automatic Time Series Modeling (ATSM) package for all the independent

variables. The following example shows the use of the %vf_addXTSMODEL macro:
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declare object dataFrame(tsdf);  

%if "&vf_indepVars" ne "" %then %do; 

%vf_addXTSMODEL(dataFrame); 

%end; 

3. The %vf_addEvents macro adds event specifications of the TSDF object and the event object from

the ATSM package. The following example shows the use of the %vf_addEvents macro:

declare object dataFrame(tsdf); 

%if "&vf_inEventObj" ne "" or "&vf_events" ne "" %then %do; 

declare object ev1(event); 

rc = ev1.Initialize(); 

%vf_addEvents(dataframe, ev1); 

%end; 

4. The %vf_promoteCASTable macro promotes a local CAS table to the global level. If you want to

make any table other than the system-defined output tables available for further use, you need to

use the %vf_promoteCASTable macro to promote them.
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Neural Network–Based Forecasting Strategies in SAS® Viya® 
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ABSTRACT  

Recent literature indicates that hybrids of machine learning and classical time series models 
are among the top contenders in accurately forecasting the future. Classical linear models 
are parsimonious and often perform well, but they are unable to capture nonlinear 

relationships in the data. On the other hand, machine learning models such as neural 
networks (NNs) are very good at modeling nonlinear effects. Knowing when and how to use 
machine learning models might seem difficult, but these decisions can be distilled down to 
best practices that any analyst can use with little experience. This paper discusses several 
NN-based modeling strategies available in SAS® Visual Forecasting software and the 

important factors to consider in choosing and training a model. The discussion includes key 
features of the data that inform the decision to use machine learning models, feature 
generation options to augment the training process, and best practices to f it a robust 
model. This knowledge will enable you to leverage the advantages of both NN and linear 

models to achieve more powerful forecasts. 

INTRODUCTION  

Machine learning and hybrid modeling strategies have emerged as top contenders in time 
series forecasting because of the volume of data and processing power brought about by 
the information age. Neural networks have become particularly popular because they are 
able to approximate any functional relationship and they are very well suited for modeling 

nonlinear relationships between the dependent (target) variable and independent 
(predictor) variables (Box 1976, Yoshio, Hipel and Mcleod 2005, Taşpınar 2015, Crone and 

Häger 2016). 

SAS Visual Forecasting implements three forecasting strategies that are based on neural 
networks (NNs): panel series neural network, stacked model, and multistage model. Neural 
networks might seem mysterious or even intimidating because they have many parameters, 
but the guidelines in this paper will enable you to successfully apply NNs to forecasting 
problems and increase your forecasting accuracy. The f irst section explains how each of the 

three NN-based modeling strategies is customized for time series forecasting and what 
types of data work well. Next, a case study shows predictions of ozone levels in Chicago by 
using an NN-based strategy that easily outperforms classical models. Finally, some effective 

use strategies not covered in the example are discussed.  

After reading this paper, you will understand what types of data work well with these 
modeling strategies and you will be able to effectively apply these strategies to your own 
forecasting problems. Whether the volume of data is medium size, big, or huge, these 
modeling strategies can help identify complex relationships between variables and increase 

the predictive power of your models. 

BACKGROUND 

Some basic knowledge of neural networks is presented here in order to provide a foundation 

for the concepts discussed later. A neural network is composed of an input layer, one or 
more hidden layers, and an output layer. An example NN with one hidden layer is shown in 
Figure 1a. Each input node has a connection to every node in the f irst hidden layer. 

Likewise, every node in the hidden layer has a connection to the node in the output layer.  
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Figure 1b expands the hidden node n4 to illustrate how the output of a node is calculated. 
(Nodes n3 and n5 are omitted for clarity.) The input layer simply passes through the values 

in the input vector X such that the output of node n1 is the value x1 and the output of n2 is 
the value x2. The output of each node is multiplied by a connection, wjk, where j and k 
represent the nodes being connected. The hidden node adds up the input values and a bias 
parameter, bk, and feeds the sum into a nonlinear activation function to produce the hidden 

node output. The output from n4 is multiplied by the corresponding connection weight, w46, 

and fed forward to node n6. 

  

Figure 1. (a) Example Neural Network Architecture and (b) Functionality of a Node 

Neural networks learn through an iterative cycle of training and validation. Training data are 

fed forward through the NN to calculate an output value. Then back propagation is used to 
update the connection weights and reduce the error. The details of back propagation are 
outside the scope of this paper, but they can be summarized succinctly as follows: The error 
is measured with respect to the training data, and partial derivatives are calculated with 
respect to each connection weight. The aggregated partial derivatives are used to update 

the connection weights and reduce the error (Goodfellow, Yoshua and Courville 2016). The 
error with respect to the validation data is measured periodically to validate the model 

training process. 

NEURAL NETWORK MODELING IN SAS VISUAL FORECASTING 

Some special considerations are required to successfully use NN-based models in time 

series forecasting. Fortunately, the modeling strategies in SAS Visual Forecasting take care 
of a lot of the details by structuring the data and generating additional features before 
training the model. However, it is important to understand how the data are interpreted and 
when to use the extracted features. This section describes how the NN-based strategies in 
SAS Visual Forecasting structure interpret the data compared to classical forecasting and 

machine learning. 

DATA STRUCTURE 

In classical time series forecasting, BY variables are used to delineate a panel of related 

time series and f ind the best model for each series individually. This approach is intractable 
for NNs because they require significantly more data to train than classical models require. 

A single time series is typically not enough. 

The neural network modeling strategies in SAS Visual Forecasting are designed for panel 
data that consist of multiple related time series. For example, a retail chain might have 
many time series that are delineated by BY variables (such as STORE and SKU) and 

independent variables (such as promotions, number of shoppers, and calendar events).  

The time series are concatenated together as shown in Figure 2 and modeled as a single 
series with the BY variables included as categorical independent variables. The resulting 

input table is a concatenation of all the series. 
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Figure 2. Five Concatenated Time Series Delineated by the BY Variables STORE and 

SKU 

DATA PARTITIONING 

A typical machine learning algorithm randomly partitions the data into training, validation, 
and test partitions. Model f itting is accomplished through alternating cycles of using the 
training data to minimize the training partition error and validating the progress by checking 

the validation partition error. This cycle continues until some stopping criterion is met.  

The training and validation partitions are analogous to the training and holdout samples in 
time series forecasting where the holdout portion is used to select the model that best 

generalizes to new data. The out-of-sample (test) data are used to measure how well the 

model predictions generalize to new data.  

Random sampling in order to partition data is acceptable for machine learning applications, 
but in time series the most recent data usually have a larger impact on predicted values. To 
adjust for this, the NN-based forecasting strategies use ordered sampling. Random and 
ordered sampling are illustrated in Figure 3 for a single time series. In ordered sampling, 
the oldest data are placed in the training partition and more recent data are placed in the 
holdout (validation) partition. The out-of-sample (test) partition contains the most recent 

data leading up to the forecast horizon. 

 

Figure 3. Partitioning for Machine Learning (Random Sampling) vs. Forecasting 

(Ordered Sampling) 

MODELING STRATEGIES 

Panel Series Neural Network 

The panel series neural network (PSNN) can be used to implement a neural network like the 
one described in the introduction. Figure 4 illustrates the general f low of operations in the 
PSNN modeling strategy. The input data f irst go through a preprocessing step where data 
are partitioned, transformed, and/or standardized. Next, salient features are extracted. 
After preprocessing and feature extraction, the NN learns how to f it a model to the data. 

Finally, the output data are reverse-transformed and destandardized back to the original 

scale to produce the f inal forecast. 
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Figure 4. Panel Series Neural Network Modeling Strategy 

Stacked Model 

The stacked model uses the PSNN to create an initial forecast of the target variable and 
then models the residuals by using a classical time series approach. The forecasts of the 
input data and the residuals are then added together to generate the f inal forecast, as 
shown in Figure 5. 
 

 

Figure 5. Stacked Modeling Strategy 

Multistage Model 

The multistage model is a twist on hierarchical forecasting. The lowest levels in a time series 
hierarchy are often intermittent or display more nonlinear characteristics that challenge 
time series models. Figure 6a shows the block diagram, and Figure 6b shows an example 
hierarchy. The lower levels are modeled by using regression or a neural network, whereas 

the higher levels are f it to time series models. The forecasts are reconciled at a user-

specif ied level of the hierarchy to produce the f inal forecast. 

 

Figure 6. (a) Block Diagram of Multistage Modeling Strategy and (b) Example 

Division of Hierarchy Levels 

WHEN SHOULD YOU USE A NEURAL NETWORK MODEL? 

Neural networks are not an all-purpose magic tool to replace classical models (Zhang 2003). 
To quote George Box, “All models are wrong, but some are useful” (Box and Draper 1987). 
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For a neural network to be useful, you need more training data than classical time series 
models require, and you need independent variables that have complex nonlinear 

relationships to the dependent variable (Box 1976, Yoshio, Hipel and Mcleod 2005, Crone 

and Häger 2016) 

Typical data for which neural networks work well have the following characteristics: 

• Large data volume, such as a panel of time series  

• Historical data length of at least 300 time ID values 

• At least three independent variables, which ideally have nonlinear relationships to 

the target 

• Few (or zero!) missing values 

QUICK-START SETTINGS 

If you just want to jump in and start training some models, then the tables in this section 
offer a good starting point for the PSNN and stacked models. The multistage model uses 

similar settings if  neural networks are chosen to model the lower levels. 

Feature Extraction 

Dependent 
lags 

Max(p) from 
AR(p) 

Independent 
lags 

Equal to 
dependent 
lags 

Seasonal 
dummies Yes 

ESM forecast 

Choose one Linear trend 

Damped 
trend 

 

Model Initialization 

Input 
standardization Z-score 

Number of hidden 
layers 1 

Number of neurons 10 
Hidden layer 

activation function Rectifier 

Direct connections No 

Dependent var 
transformation None 

Dependent var 
standardization Z-score 

Error function Normal 
Output layer 

activation function Identity 
Neuron connection 
distribution Xavier 

 

Model Training 

Algorithm LBFGS 

Number of tries 10 

Max training iterations 300 

Max time 10 

L1 regularization 0 

L2 regularization 0 

Enable early stopping Yes 

Stagnation limit 10 

Enable Autotune No 
 

Table 1. Quick-Start Settings for PSNN and Stacked Models 

CASE STUDY 

DATA DESCRIPTION 

The data set that is used in this example was obtained from Chicago’s Array of Things (AoT) 
project. The data consist of one month of sensor output from modules that are placed 

around the city to measure air quality, light, and other environmental conditions.   

DATA PREPARATION 

Cleaning the data is an important f irst step to ensure that the model can make accurate 
predictions. This process is outside the scope of this paper, but the code can be found here: 
https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4493-2020-

Mills. The AoT data had many missing values and broken or malfunctioning sensors.  

Columns for irrelevant variables and sensors that were clearly malfunctioning are removed, 
and the important independent variables are chosen. You might be wondering why you 
should choose important variables instead of including everything. It is true that NNs 
require a large amount of data, but the data quality is important too. Extraneous variables 

and multicollinearity among variables can reduce forecast accuracy and increase the training 

https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4493-2020-Mills
https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4493-2020-Mills
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time signif icantly, so unimportant variables should be excluded (Diaconescu 2008, Christ, 
Kempa-Liehr and and Feindt 2016). Variable importance can be evaluated by using machine 

learning methods or an ARIMAX model if  required, or you can use domain knowledge about 
ozone formation, which indicates that UV light, temperature, humidity, and the presence of 
other pollutants (such as nitrogen oxides from combustion engine exhaust) are important 
factors. Gas sensors require calibration and exhibit signal drift over time, so it would be best 
not to use other gas sensors to predict the output of the ozone sensor. In this case study, 

the chosen predictors are temperature, humidity, and infrared, ultraviolet, and visible light. 

After cleaning and organizing the data, 27 series of hourly sensor data remain. The series 
are delineated by the BY variable, and they are accumulated to an hourly interval for a 

length of 720 observations each. One f inal step splits the data into two tables: AoT_train 
and AoT_test. The resulting data set contains eight columns and 19,440 rows. Table 2 

describes the variables in the data. 

 

Variable name Role Description 

Timestamp Time ID Timestamp for observation 

Sensor_node_id BY variable BY variable from original data 

O3_concentration Dependent variable Ozone sensor output 

Si1145_ir_intensity Independent variable Infrared light sensor output 

Si1145_uv_intensity Independent variable Ultraviolet light sensor output 

Si1145_visible_light Independent variable Visible light sensor output 

At1_temperature Independent variable Temperature sensor output 

Hih4030_humidity Independent variable Humidity sensor output 

Table 2. Variables in the Input Data Set 

FEATURE EXTRACTION 

Now that the data are prepared, you are ready to choose the features to extract. The 
following sections describe how you can select the appropriate number of lags, the seasonal 

dummy variables, and the type of trend component.  

It is important to understand how feature extraction impacts the effective number of input 
variables and model parameters. For example, generating 3 lags of 10 variables results in a 
total of 40 variables and 40 nodes in the input layer. If there are 5 hidden nodes in the f irst 
hidden layer, then there are 200 connection weight parameters to solve. A NN model can 

quickly become very complex which causes the training time to increase dramatically.    

Lags 

Neural network theory assumes that each observation is independent from any other 
observation. This assumption makes it dif f icult to learn autocorrelated features that are 

common in time series, such as trends and seasonality. Generating lags of the dependent 
and independent variables helps the model understand the local level and trend in a series 

similarly to the way an ARIMA model uses an autoregressive (AR) term.  

It is important to realize how missing values affect the generation of lagged variables. 
Consider the example shown in Table 3, which consists of six observations. The independent 

variable, X, has one missing value, and three lags have been generated for both X and Y. 
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Date Y Lag1(Y) Lag2(Y) Lag3(Y) X Lag1(X) Lag2(X) Lag3(X) 

1-Jan 16 . . . 4 . . . 

2-Jan 25 16 . . 6.25 4 . . 

3-Jan 21 25 16 . . 6.25 4 . 

4-Jan 22 21 25 16 5.5 . 6.25 4 

5-Jan 14 22 21 25 3.5 5.5 . 6.25 

6-Jan 17 14 22 21 4.25 3.5 5.5 . 

Table 3. Example of Missing Values Propagating When Lags Are Generated 

Notice that the f irst three observations contain missing values in the lags of the dependent 
variable (Y) because the historical data before January 1 is not available. Also notice that 
the missing value for the independent variable (X) on January 3 propagates downward, 
resulting in missing values for the last three observations. Every observation in this data set 

has a missing value, so none of them can be used in the neural network model. If your data 
have many missing values or you use many lags (or both), then you quickly run out of 

complete observations for training the NN. 

Fitting an AR(p) model by using the TSMODEL procedure and including independent 
variables will indicate an appropriate number of lags and show whether a trend component 
is detected. The code to f it the AR model over the 27 series and generate a histogram of the 
AR orders can be found here: https://github.com/sascommunities/sas-global-forum-
2020/tree/master/papers/4493-2020-Mills. The histogram is shown in Figure 7 and 

indicates that three lags should be enough. You might notice the total number of series in 
the histogram is 20 rather than 27. Some of the series could not be f it to an AR(p) model 
and are excluded. This is an important point: The AR(p) model indicates the appropriate 
number of lags, but a small adjustment to that number at the end of the analysis might 

result in a better model.     

  

Figure 7. Histogram of Autoregressive Orders Determined by Fitting an AR(p) 

Model with Exogenous Variables 

Seasonal Dummy Variables 

Generating lags of variables quickly increases the volume of data and the time required to 
train a neural network. In addition, some data are sacrificed at the beginning of each series 
as shown previously. Imagine generating a seasonal lag for monthly data, which results in a 

https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4493-2020-Mills
https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4493-2020-Mills
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whole year of data that can’t be used because of missing values. Sacrificing a large portion 

of the historical data is usually a bad idea.  

Seasonal dummy variables can be included to help capture seasonal f luctuations in the data 
without any data loss. In addition, the seasonality can be specif ied independently of the 
time series seasonality. For example, if  the time series is accumulated to a weekly interval, 

then the default behavior would generate 52 seasonal dummy variables to cover the 52 
weeks in a year. Specifying “month” or “qtr” as the seasonal dummy interval results in 

fewer dummy variables and faster convergence when training a neural network.   

The AoT data in this example are accumulated to an hourly interval, so 24 seasonal dummy 
variables are generated, one for each hour of the day. This could be very useful because 
certain times of the day have increased traffic or sunlight to contribute to ozone generation. 
Seasonal dummy variables allow capturing information about the hour of the day without 
creating many lagged variables. Avoiding the use of many lagged variables results in a 

smaller data table and a faster training process.  

Trend Component 

A trend component can be extracted from the data to help the model learn. You can choose 

a linear trend, a damped trend, or an exponential smoothing model (ESM) of the dependent 
variable to include as an independent variable. The linear and damped trends are special 
cases of the ESM, so only one of these options should be selected. If an ESM is selected, 
then the time series forecasting engine chooses the best ESM type on the basis of the 
training and holdout data partitions. For more control over the extracted model, you can 

choose between a linear or damped trend on the basis of the length of the holdout and 
forecast periods. When forecasting further into the future, linear trends often overestimate 

a series. A damped trend will yield better results.  

If  you rerun the AR(p) model code on the AoT data without specifying the trend component, 
then the outModelInfo table shows that just over half of the series have some type of trend. 

Since you are forecasting out 24 periods, a damped trend is likely the better choice.  

This analysis suggests the following features to include in the NN model: 

• three lags of salient variables 

• hourly seasonal dummy variables 

• damped trend component 

MODEL INITIALIZATION AND TRAINING 

You are now prepared to create a project and generate forecasts using NNs in SAS Visual 

Forecasting. The following steps walk you through the project creation and configuration: 

1. Create a new forecasting project in Visual Forecasting with the AOT_train data set.  

2. Go to Project Settings from the gear icon in the upper right corner and change the 

forecast horizon from 12 to 24. 

3. On the Data tab, assign the variable roles as described in Table 2. 

4. On the Pipelines tab, delete the Auto-forecasting node if  you started with one.  

5. Add a Hierarchical Forecasting (Pluggable) node and a PSNN node to the pipeline.  

6. Set the Feature Extraction options in the PSNN node. For more information about 

these features, see the section, “Feature Extraction.” 

7. Under Model Selection, set Holdout Sample Size to 24 for both modeling nodes.  

8. The additional settings for the PSNN nodes are summarized in Table 4. 
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Feature Extraction 

Dependent 
lags 3 

Independent 
lags 3 

Seasonal 
dummies Yes 

ESM forecast No 

Linear trend No 

Damped 
trend Yes 

 

Model Initialization 

Input standardization Z-score 

Number of hidden layers 1 

Number of neurons 10 

Hidden layer activation 
function Rectifier 

Direct connections No 

Dependent variable 
transformation None 

Dependent variable 
standardization Z-score 

Error function Normal 

Output layer activation 
function Identity 

Neuron connection 
distribution Xavier 

 

Model Training 

Algorithm LBFGS 

Number of tries 10 

Max training 
iterations 300 

Max time 10 

L1 
regularization 0 

L2 
regularization 0 

Enable early 
stopping Yes 
Stagnation 

limit 10 
Enable 

Autotune No 
 

Table 4. PSNN Settings Used to Fit a Model to the AoT Data 

Running the pipeline and viewing the results show that the PSNN performs substantially 

better than hierarchical forecasting on in-sample data. Keep in mind that the NN training 
process depends on random initialization and that race conditions in parallel processing 
threads can also cause variation in output. Therefore, you might see slightly dif ferent 

numbers for the PSNN weighted mean absolute percentage error (WMAPE) measurements.  

To view the out-of-sample results, substitute AoT_test for AoT_train on the Data tab, 
change the Forecasting Task from Diagnose to Forecast for each modeling node, and 
rerun the pipeline. The WMAPE values are summarized in Table 5, and the last two days of 
forecasts are plotted in Figure 8 for a representative sensor node. The shaded region in the 

right half of Figure 8 is the forecast horizon. 

 

 

 

Table 5. Weighted MAPE Calculated for the PSNN and Hierarchical Models 

 

Figure 8. Forecast Comparison between PSNN and Hierarchical Forecasting 

Model In-sample WMAPE Out-of-sample WMAPE 

Hierarchical forecasting 23.0136 10.9508 

PSNN  10.9310 9.7429 
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To demonstrate the stacked model, create a second pipeline with an Auto-forecasting node 
and a Stacked Model node. These two nodes do not currently support the Forecast Task or 

Holdout options, so they are compared against each other based on the in-sample 
accuracy. Configure the stacked model with the same feature generation and model 
parameters as were used to configure the PSNN. Then, run the pipeline and view the 
results. Table 6 shows that the stacked model outperforms auto-forecasting and hierarchical 

forecasting for this data set.  

 

Model In-sample WMAPE 

Auto-forecasting 22.1265 

Hierarchical forecasting 20.8441 

Stacked model 10.8316 

Table 6. Weighted MAPE Calculated for the Auto-forecasting, Hierarchical, and 

Stacked Models 

 

SCALING 

Training time for neural networks is heavily inf luenced by the amount of data, the available 
processing power, and the training specif ications. Figure 9 shows the training time 
dependence for the AoT data as the number of BY groups increase 10×, 50×, and 500×. 

These additional data are simulated by creating another BY variable and duplicating the 

original data. The plot displays a nice linear trend as the data size increases.  

 
Figure 9. Scaling of Neural Network Training Time with Number of Observations 

 

Scaling the data down provides insight into the minimum amount of data required. The 

effect of reducing the length of the historical record is shown in Figure 10. Using the full 
month of data (720 observations in each series) provides the data in Table 5. The WMAPE 
increases approximately linearly as data are discarded until around 50% (360 observations) 
remain. Further reduction of the historical record length results in a more drastic increase in 

WMAPE. Be cautious if  you have only a few hundred historical time points to work with. 
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Figure 10. WMAPE as a Function of Historical Record Length for Classical and NN-

Based models 

Reducing the number of BY groups and holding the series length constant does not 
necessarily impact the error measurement the same way. Figure 11 shows the lowest error 
measurement for seven BY groups. Increasing the number of BY groups causes an increase 
in WMAPE for both classical and NN-based models. Further increasing the number of series 
shows a slight reduction in WMAPE for NN-based models, whereas the classical models 

display higher WMAPE with no clear trend. These data indicate that additional BY groups 
might help reduce forecasting error, but also indicate that a small number of similar series 
might produce better results. The small number of series has less variation (allowing for a 
tighter f it), but the model would likely be less accurate if  it were used to forecast the other 

series.  

 

Figure 11. WMAPE as a Function of the Number of BY Groups for Classical and NN-

based models 

BEST PRACTICES AND OTHER TIPS 

Neural network strategies have many parameters to set up and initialize. This section 
discusses some common pitfalls that are related to the different parameters. Data 

standardization and activation functions must be chosen along with architectural choices 
such as the numbers of hidden layers and nodes and the initial neuron connection weights. 
Model training options such as the optimization algorithm, number of tries, and stopping 

criteria must also be specif ied. 
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OUT-OF-SAMPLE TESTING 

Neural networks and other machine learning models are prone to overfitting during the 

training process. Overfitting causes the models to make very accurate predictions in the 
training data but generalize poorly to new data. SAS Visual Forecasting includes a robust 
early-stopping option that does a good job of preventing overfitting, but reserving part of 
the data for out-of-sample testing is still a good practice. The following code shows how to 
subset the data easily in SAS Studio and save the data to the “public” caslib before 

beginning the modeling process: 

 

   data public.hourly_data_train; 

      set public.hourly_data; 

      where timestamp lt "30SEP18:00:00"dt; 

   run; 

 

   data public.hourly_data_test; 

     set public.hourly_data; 

     where timestamp ge "30SEP18:00:00"dt; 

   run; 

 

   proc cas; 

       table.save / 

           table={name="hourly_data_train", caslib="public"} 

           name="hourly_data_train.sas7bdat" 

           caslib="public"; 

       table.save / 

           table={name="hourly_data_test", caslib="public"} 

           name="hourly_data_test.sas7bdat" 

           caslib="public"; 

   run; 

   quit; 

 

NEURAL NETWORK ARCHITECTURE 

Choosing the number of hidden layers and neurons is the primary way that you can specify 
the NN architecture. As in time series models, parsimony is your friend here. Smaller neural 
networks often perform better than those that have many nodes and layers for two reasons: 
First, the training time and the number of model parameters increase rapidly with the 
number of nodes and layers, thus requiring longer times to train. Second, as the network 

size grows, it is more likely to learn more complex interactions, which eventually leads to 
overfitting (Diaconescu 2008). It is recommended that you start with a single layer 
containing 10 nodes and adjust from there if  you are not satisf ied. Autotuning can also be 
applied, but it has an even more drastic effect on the training time and is often not 
necessary. The distribution of connection weights should also be specif ied. The Xavier and 

normal distributions are good choices. 

ACTIVATION FUNCTIONS AND STANDARDIZATION 

Not all activation functions and data standardization methods are compatible with each 
other. Two options are available for standardization of the input and output data: z-score 

and mid-range. Z-score standardization scales values to a zero mean and standard 
deviation equal to 1, whereas mid-range standardization scales values to fall within the 
range (–1,1). Each activation function also has some range of output values, as shown in 

Table 7.  
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The activation function for the output layer must be compatible with the output 
standardization method. Consider an example that uses the tanh function on the output 

layer and z-score standardization for the output values. In this case, the output tanh 
function is trying to map its (–1,1) output to data with a range of (–σ, σ), which results in 

loss of information for |σ| > 1, where σ is the standard deviation. 

Activation 

Function 

Input 

Range 

Output 

Range 

sigmoid [-∞,∞] (0,1) 

logistic [-∞,∞] (0,1) 

tanh [-∞,∞] (-1,1) 

rectif ier [-∞,∞] [0,∞] 

identity [-∞,∞] [-∞,∞] 

sine [-∞,∞] (-1,1) 

Table 7. Activation Function Ranges 

Neural networks for time series generally work well by using a rectif ier activation function 
for hidden layers and an identity activation function on the output layer. This configuration 

allows any standardization method for the input and output variables. If you try different 
activation functions, then you must ensure compatibility between the output layer activation 

function and the output standardization.  

ALGORITHM 

Two algorithm options are available for training the PSNN and stacked model. Historically, 
stochastic gradient descent (SGD) has been used often for neural networks, but SGD 
frequently requires subtle tuning of its parameters such as the learning rate and annealing 
rate. If your data set is large (over 100,000 rows), then SGD might be a good option. 
However, for most applications of SAS Visual Forecasting, the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) algorithm converges faster and is easier to use.   

OVERFITTING 

Regularization is one technique to avoid overfitting because it penalizes large connection 

weights. L1 and L2 regularization terms can be specif ied, but they should be used sparingly 
because incorporating lagged variables into the training data can also have a regularizing 
effect and lead to an underf itted model. You can start with 0 for both L1 and L2 
regularization and try increasing them if your out-of-sample fit is much worse than the in-

sample f it. 

The early-stopping mechanism is very effective at stopping the training/validation cycle 
when the validation f it stops improving. However, the error that is measured over the input 
space is almost always nonconvex, which means that multiple local minima can be found. 

The stagnation property specifies how many training iterations can complete with no 
improvement in the validation f it before ending the training/validation cycle. This helps the 

solver f ind its way out of local minima so that it can continue searching for better solutions.  

CONCLUSION 

This paper introduces the neural network-based modeling strategies available in SAS Visual 

Forecasting and provides guidelines for using them effectively. It explains important 
considerations for using machine learning strategies for time series forecasting, including 
structuring of the input data and extraction of features from the input data to aid in 
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modeling. Guidelines for determining when to use a machine learning model are shown, and 
an example panel series neural network model was f it to data from Chicago’s Array of 

Things environmental monitoring project. The example was shown to signif icantly 
outperform hierarchical forecasting, as evidenced by a WMAPE error measurement about 
half the size of that for the classical model. Other details and pitfalls not covered in the 
example are explained, including architecture considerations, regularization, and 
compatibility of activation functions with data standardization techniques. Finally, the 

algorithm scaling is evaluated, showing that training time increases linearly with the number 

of observations. 
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ABSTRACT 

SAS® Forecast Server is one of the most feature-rich forecasting products on the market. This paper 
describes 10 underused features to improve your workflow. First, start with the data: (1) Use SAS® Time 
Series Studio to become familiar with your data and define a hierarchy, (2) catch data problems through 
warnings about the time ID variable, (3) look under the covers by using the SAS® log, and (4) use 
adjustment variables and start-up code to fix data issues. Next, improve the forecasts: (5) Define 
recurring events that influence the time series, (6) add models by importing from an external list, (7) use 
rolling simulations to evaluate forecast accuracy over the number of periods you need to forecast, (8) 
evaluate the effects of independent variables by using scenario analysis, and (9) gain insight into results 
by comparing models. Finally, put your workflow into production: (10) Run the code in batch. 

INTRODUCTION 

More information than ever before is being collected with associated timestamps. Computers, cell 
phones, smart devices, detectors, and other devices record timestamped data. These timestamped data 
can be modeled, forecasted, or mined (or any combination of these) for better decision making. 

SAS Forecast Server software provides a large-scale automatic forecasting system. The software 
provides for the automatic selection of time series models for use in forecasting timestamped data. Given 
a timestamped data set, the software provides the following automatic forecasting process: It 
accumulates the timestamped data to form a fixed-interval time series, diagnoses the time series by using 
time series analysis techniques, creates a list of candidate model specifications that are based on the 
diagnostics, fits each candidate model specification to the time series, generates forecasts for each 
candidate fitted model, uses a model selection criterion to select the most appropriate model specification 
on the basis of either in-sample or holdout-sample forecast performance (fit statistic comparison), refits 
the selected model specification to the entire range of the time series, creates a forecast score from the 
selected fitted model, generates forecasts from the forecast score, and evaluates the forecast by using in-
sample analysis. SAS Forecast Server also provides for out-of-sample forecast performance analysis. 

There are many capabilities associated with SAS Forecast Server; this paper explores some of the 
lesser-known features. 

DISCOVER FORECAST SERVER CAPABILITIES 

The following sections provide details about 10 underused features that you can use to improve your 
workflow. 

FEATURE 1: USE SAS TIME SERIES STUDIO TO BECOME FAMILIAR WITH YOUR DATA 
AND DEFINE A HIERARCHY 

Many organizations collect large amounts of transactional and time series data, such as sales histories, 
inventory histories, customer transactions, insurance claim histories, and internet data. Analysts often 
need to structure the time series data into hierarchical time series at particular frequencies in order to 
enhance their understanding of the data and improve the accuracy of their analyses. In addition, when 
analysts have large amounts of data, they often need to segment their time series data to support 
different analyses on different subsets of their data. SAS Time Series Studio enables you to subset your 
data by using hierarchical queries, graphical queries, parametric queries, or manual selection. 

SAS Time Series Studio enables you to do the following:  
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• Explore multiple time series simultaneously to better understand your data: You can quickly 
identify anomalies (such as outliers or missing values) and determine which time series does not 
look like the others. You can explore the effect of transformations of variables and the effect of 
different time series.  

• Identify series that require specialized methods for analysis: You can identify short series (for 
example, new products or products that have a short lifecycle) and intermittent time series (for 
example, a series that contains a large number of zero values).  

• Identify and group similar time series: You can quickly identify similar time series and group them 
to allow for hierarchical modeling.  

• Export data source that then can be used by SAS® High-Performance Forecasting, SAS® 
Forecast Studio, SAS® Enterprise Miner™, and other products. 

If you are working with new data or considering a new way of organizing your data into hierarchies, try the 
powerful SAS Time Series Studio application, which is part of SAS Forecast Server. Like SAS Forecast 
Studio, SAS Time Series Studio has a New Project window, which enables you select a data source that 
has timestamped observations. If you haven’t yet identified an appropriate hierarchy for your project, 
you’ve come to the right place. Start with a tentative hierarchy by selecting BY variables, or click 
Recommend to select all character variables in the data source, as shown in Figures 1.1 and 1.2. Next, 
select a time ID variable that contains date or datetime values. If the automatically detected time interval 
of the observations is undefined or of higher frequency than you need, specify the desired time interval. 
SAS Time Series Studio will accumulate the data to this interval for you by using the selected formula (the 
default is the sum of the values). Assign the role of dependent variable to at least one input variable, and 
assign other roles if appropriate. Distribution plots of each of the assigned variables can then be viewed, 
as shown in Figures 1.3 and 1.4. 

 

Figure 1.1: New Project, Recommend Button        Figure 1.2: Recommended Variables 

 

Figure 1.3: Distribution (Discrete)         Figure 1.4: Distribution (Continuous)        

SAS Time Series Studio provides three views of your project, as shown in Figure 1.5. The Flow Manager 
view shows a tree view of the steps you have taken in constructing the project. The Selection View 
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enables you to select elements of interest. The Details View shows graphical and tabular analyses of the 
selected elements. In the Details View, you can view a single series or all series that are contained in a 
selected node. From the Display list, select Envelope to see series distribution over time (Figure 1.6), 
select Time Series to see actual values over time (Figure 1.6), or select Combined to see both at once 
(Figure 1.8). The Series Analysis tab of the Details View provides standard graphs and tables for 
autocorrelation and seasonal decomposition analysis and enables you to apply transformations (Figure 
1.9). The Multi-Variable Time Series tab of the Details View provides cross-series plots of scatter plots 
of more than one time series (Figure 1.10 and 1.11). 

 

Figure 1.5: Time Series Studio (Flow Manager, Selection View, and Details View) 
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Figure 1.6: Envelope Plots 

 

Figure 1.7: Time Series Plots 
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Figure 1.8: Combined Plots 

 

Figure 1.9: Series Analysis Plots 
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Figure 1.10: Multi-Variable Series, Line Plots 

 

Figure 1.11: Multi-Variable Series, Scatter Plots 

One unique feature of SAS Time Series Studio is its ability to structure the data in multiple ways within a 
project so that you can compare the results within a single view. You set this up by adding one or more 
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new hierarchies to the Flow Manager, selecting BY variables in a particular order, selecting a time 
interval, and then specifying aggregation and accumulation options. Once you have created the 
hierarchies you want to explore, the selection view enables you select nodes in any of your hierarchies. 
The results appear in the Details View. 

Another unique feature is segmentation, which enables you to identify subsets of the data that behave 
differently and lend themselves to different forecasting strategies. You can use a graphical query (by 
drawing a bounding box around a section of a graph) or a parameter query (by entering bounding values 
on selected variable). Either way, the segments appear in the Flow Manager, where you can select them 
for viewing in the Details View. Selected segments can be exported for use in SAS Forecast Studio and 
other applications. 

Once you are happy with your SAS Time Series Studio project, you can use the data to create a Forecast 
Studio project. You do this by selecting elements in the Flow Manager and right-clicking Export (which 
save the results as a SAS data set), and then selecting this data set as input to a new Forecast Studio 
project. The hierarchy and variable assignments you set up in SAS Time Series Studio will be in effect. 

For more information about time series exploration, see SAS Forecast Studio: User’s Guide. 

FEATURE 2: CATCH DATA PROBLEMS THROUGH WARNINGS ABOUT THE TIME ID 
VARIABLE 

Statistical forecasting models assume that the data points in a series occur at evenly spaced points in 
time. SAS Forecast Server identifies these points in time by the values of the time ID variable that you 
select. When you select this variable in SAS Forecast Studio, the time values are analyzed to identify the 
time interval and checked for possible problems in the data. In many cases, SAS Forecast Studio is quite 
forgiving, but it gives you warnings in some cases so that you can check the data and correct problems if 
needed. The following warnings are common: 

• Gaps were detected in the values of the Time ID variable. This warning is 

issued if the values of the time ID are not evenly spaced. To see more information about this 
warning, click Diagnostic graphs in the warning dialog box. The diagnostics include an offset 
histogram, which indicates the relative time distance between observations. Any bars that differ 
from zero indicate an abnormal time ID value. The X axis indicates the position in the data where 
the problem occurs. 

• The Time ID variable has duplicate values. This warning is issued if the values of 

the time ID are not unique. To see more information about this warning, click Diagnostic graphs 
in the warning dialog box. In the diagnostic graphs, one or more bars in the Interval Count 
histogram will be greater than one.  

In most cases, SAS Forecast Studio will produce forecasts even when the time ID is in bad shape. For 
example, if you use the Sashelp.Workers data and you mistakenly select the variable Electric as the time 
ID and the variable Date as the dependent series, you will get a forecast, albeit an odd-looking one. But 
the diagnostic histograms for the time ID will be off-kilter. They should all be flat, and in this case, none 
are. Figure 2.2 illustrates the TIMEID Analysis Graphs dialog box. 

One case in which the application is not forgiving is when the time ID values are missing values. The 
message is “ERROR: Missing or invalid values found.” There are no diagnostic graphs and you cannot 
proceed. 
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Figure 2.1: Warning Dialog Box         Figure 2.2: TIMEID Analysis Graphs Dialog Box 

FEATURE 3: LOOK UNDER THE COVERS BY USING THE SAS LOG  

You can view the SAS code that was used to execute the project by selecting Project ► SAS Code from 
the main menu. The SAS Code dialog box appears as shown in Figure 3.1. You can save the SAS code 
to a file from this dialog box. 

 

Figure 3.1: SAS Code Dialog Box         Figure 3.2: SAS Log Dialog Box 

You can view the SAS log for an opened project by selecting Tools ► SAS Log from the main menu. 
The SAS Log dialog box contains information about the SAS execution, including the resources that were 
used, notes, and warnings, as illustrated in Figure 3.2.  

If an error occurs during the SAS execution, the [!] icon usually appears on the status bar. Clicking this 
icon opens the log, which is searchable. For example, search for “ERROR:” to find error messages. 

FEATURE 4: USE ADJUSTMENT VARIABLES AND START-UP CODE TO FIX DATA 
ISSUES 

Sometimes it is necessary to forecast a time series that is not expressed as desired in the input data. 
Adjusting the time series for known systematic variations or deterministic components enables you to 
more readily identify and model the underlying stochastic (unknown) time series process. Examples of 
systematic adjustments are currency-unit conversions, exchange rates, trading days, and other known 
systematic variations. Examples of deterministic adjustments are advanced bookings and reservations, 
contractual agreements, and other known contributions or deterministic components. 

By providing suitable adjustment variables in the same data set, you can transform the time series values 
without changing the original series. In the New Project dialog box, assign your dependent variable and 
then click Adjustments, as illustrated in Figure 4.1. Alternatively, for an existing project, select Project ► 
Hierarchy and Variable Settings from the main menu.  
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Figure 4.1: Assign Roles to Variables in Your Data: Adjustments Button 

After you click Adjustments, the Adjustments dialog box appears, as shown in Figure 4.2; it lists the 
existing adjustments that are being applied to the project. Click New to open the Adjustment Properties 
dialog box, which is shown in Figure 4.3. In the Adjustment Properties dialog box, you can specify how 
to accumulate the adjustment variable values, the pre-operation (add, subtract, multiply, or divide), and 
the post-operation (add, subtract, multiply, or divide). Typically, the post-operation is the inverse of the 
pre-operation. So, if the pre-operation is add, the post-operation is subtract. 

 

Figure 4.2: Adjustments Dialog Box        Figure 4.3: Adjustment Properties Dialog Box 
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Figure 4.4: Adjustment Properties Dialog Box        Figure 4.5: Adjustments Dialog Box 

You can apply multiple adjustments. For example, you can select a variable whose values contain 
adjustments for estimated loss of data that occurred on certain dates by selecting Add from the Pre-
operation list. The actual series will be modified according to the first adjustment added, and the results 
will be modified according to the second adjustment. 

You can use pre-adjustment variables to adjust the dependent series prior to model parameter 
estimation, evaluation, and forecasting. After the predictions of the adjusted dependent series are 
obtained from the forecasting mode, you can use the post-adjustment variables to adjust these forecasts 
to obtain predictions that more closely match the original dependent series. 

A typical example is adjusting a monetary-valued series for exchange rates. Suppose that the dependent 
series is product sales in Europe, expressed in Euros, and you want to convert currency to US dollars. 
Select the exchange rate as the adjustment variable and select Multiply from the Pre-operation list. The 
forecast graph will show the original data values, but the forecast will use the values that have been 
adjusted for the exchange rate. If you want to convert these values back to the original metric for display, 
select Divide from the Post-operation list. 

As another example, suppose that your dependent series has missing data in some cases and you want 
to use values of a proxy series in these cases. Select the proxy series as the adjustment variable, and 
select Max from the Pre-operation list. Any nonmissing value of the proxy series will be greater than a 
missing value. The forecast graph will show the original actual values, with missing values, but the 
forecast will use the adjusted series with no missing values. 

FEATURE 5: DEFINE RECURRING EVENTS THAT INFLUENCE THE TIME SERIES 

An event repository stores information about calendar events with a brief description of each event. 
Calendar events can be represented by indicator variables that could be stored in the time series data. 
However, because the influential calendar events can vary from series to series, there might be too many 
to store efficiently and many calendar events will be redundant, making updates difficult. Therefore, to 
allow the reuse and update of the calendar events, it is better to store a brief description of the calendar 
event, reproduce the indicator variable in the computer’s memory when needed, and store the calendar 
events independently of the time series data. 

To create a new event: 

1. You can create new events in the New Project – Step 7 of 8 dialog box (as shown in Figure 5.1), 
or you can create new events for an existing project by selecting Project ► Event Repository 
from the main menu. The Event Repository dialog box appears, as shown in Figure 5.2.  
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Figure 5.1: New Project Window             

2. Click New. The Event Properties dialog box appears, as shown in Figure 5.3.  

3. In the Name box, specify a valid SAS name for the event. You can also specify a description for 
the event in the Description box.  

4. Click Change to specify an event type, and select from Pulse, Level Shift, Ramp, or Temporary 
Change. 

5. Click Add to add an occurrence. The Select Occurrences dialog box appears, as shown in 
Figure 5.4. Select the time period for the occurrence and click OK. The Occurrence box in the 
Event Properties dialog box now displays a list of the occurrences for the event, as illustrated in 
Figure 5.4. 

6. To specify the options for the occurrence, click Edit next to the Options box. The Event Options 
dialog box appears (not shown). In this dialog box, you can specify the duration of the 
occurrences and the time of the occurrences.  

7. To specify recurrence, click Edit next to the Recurrence box. The Event Recurrence dialog box 
appears (not shown). In this dialog box, you can specify how frequently the event recurs and how 
long the recurrence will last. 

Note: Before you can specify a recurrence, you must specify an occurrence. However, you 
cannot specify a recurrence if you have selected two or more occurrences or if you have selected 
a holiday for the event occurrence. 

8. Click OK to save the event. The new event appears in the Event Repository dialog box.  
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Figure 5.2: Event Repository Dialog Box             Figure 5.3: Event Properties Dialog Box 

 

 

Figure 5.4: Select Occurrences Dialog Box        Figure 5.5: Event Properties Dialog Box 

 

FEATURE 6: ADD MODELS BY IMPORTING FROM AN EXTERNAL LIST 

SAS Forecast Studio supports the following types of models: 

• Default models are included in SAS Forecast Studio. You cannot edit or delete these models. 
However, you can copy a default model and customize it to meet your needs. 

• System-generated models are automatically generated by the diagnostics in SAS Forecast 
Studio. You cannot edit these models, but you can delete them and you can copy a system-
generated model and customize it to meet your needs. 

• Custom models are created in SAS Forecast Studio. When you create a model for a particular 
time series, that model is automatically added to the project model repository. After the model is 
added, you can apply it to other series in the project. Because these custom models are user-
defined, you can add, edit, copy, or delete them. 
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• Models from an external list originate from the external list that is specified in the Model 
Generation panel of the Forecasting Setting dialog box. In the model repository, models from 
an external list are listed as having type Custom (Read-Only). You cannot edit or delete these 
models. However, you can copy a model from an external list and customize it to meet your 
needs. 

To select models to fit to each series from an external model selection list: 

1. In the New Project - Step 7 of 8 dialog box, click Change other forecast settings, as shown in 
Figure 6.1. For a previously created project, you can select Project ► Forecasting Settings 
from the main menu. The Forecasting Settings dialog box appears, as shown in Figure 6.2. 

2. Select Model Generation, as highlighted in Figure 6.2. 

3. Select the Models from an external list check box, and click Browse. The Select Model 
Selection List dialog box appears (not shown here), and you can select the model selection list 
that you want to use.  

4. Click OK. 

 

Figure 6.1: New Project – Step 7 of 8         Figure 6.2: Forecasting Settings  

FEATURE 7: USE ROLLING SIMULATIONS TO EVALUATE FORECAST ACCURACY OVER 
THE NUMBER OF PERIODS YOU NEED TO FORECAST 

For a particular time series data set, you can use automatic time series modeling software to select an 
appropriate time series model. You can use various statistics to judge how well each candidate model fits 
the data (in-sample). Likewise, you can use various statistics to select an appropriate model from a list of 
candidate models (in-sample or out-of-sample or both). Finally, you can use rolling simulations to 
evaluate ex-ante forecast performance over several forecast origins. Leonard et al. (2014) demonstrate 
how you can use SAS® Forecast Server Procedures and SAS Forecast Studio software to perform the 
statistical analyses that are related to rolling simulations. 

On the Model View tab, click the rolling simulation button (circled in red in Figure 7.1) or select Series ► 
Rolling Simulation from the main menu.  
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Figure 7.1: Modeling View: Rolling Simulations Button 

 

Figure 7.2: Rolling Simulation: Prediction Plots     Figure 7.3: Rolling Simulation: Statistics of Fit 

Rolling simulations (also called rolling horizon) mimic how the forecast model performs over time. Figure 
7.2 illustrates a rolling horizon of six periods. The actual time series values are the black circles, which 
are connected by the black lines. The colored lines represent the six predictions, each beginning at a 
different origin. Figure 7.3 illustrates a rolling statistic of fit for six periods. 

FEATURE 8: EVALUATE THE EFFECTS OF INDEPENDENT VARIABLES  

Organizations often want to make decisions on the basis of time series forecasts that depend on future, 
controllable causal factors. Examples of future causal factors are pricing and advertising expenditures for 
products and services. To help your organization make better decisions, you can vary the future values of 
the controllable causal factors to help determine the best decision (a what-if analysis). For example, if you 
are forecasting the profit of your company and material cost is an underlying factor, then you could use 
scenario analysis to determine how the forecasted profit would change if the material cost increased by 
10%. Leonard (2000) thoroughly demonstrates how you can use SAS/ETS® software for this purpose and 
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describes the detailed statistical analyses that are related to scenario analysis. To perform scenario 
analyses, click the Scenario Analysis View tab on the Modeling View tab, as shown in Figure 8.1. 

 

Figure 8.1: Scenario Analysis View 

FEATURE 9: GAIN INSIGHT INTO RESULTS BY COMPARING MODELS 

If you have created several models for a time series, then you might want to compare the statistics of fit 
for the models that were fitted to that series. This comparison can help you determine which model you 
want to use to generate forecasts. 

From the Modeling View, click the compare models button (circled in red in Figure 9.1) or select Series 
► Compare Models from the main menu. The Compare Models dialog box appears. 
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Figure 9.1: Modeling View: Compare Models Button 

 

Figure 9.2: Compare Models: Prediction Plots       Figure 9.3: Compare Models: Statistics of Fit 

Figure 9.2 illustrates the model comparison plot for three models that are associated with a single time 
series. The actual time series values are represented by the black circles. The colored lines represent the 
model predictions from three different time series models. For this time series, the models are in close 
agreement. This is a good situation. 

To view the model comparison statistics for the three time series models, click the Statistics of Fit tab, 
as shown in Figure 9.3. The champion model for each statistic is highlighted in green. For this time series, 
the models are in close agreement. This is a good situation. 

FEATURE 10: RUN THE CODE IN BATCH 

Forecasts can be generated either interactively or in batch. When you interact with SAS Forecast Studio, 
it generates SAS code for execution. This code is stored in the system directory of your Forecast Studio 
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projects. These SAS code files implement the forecasting process steps that are associated with SAS 
Forecast Server. Table 1 lists the files and describes their contents. 

 

File Names Contains SAS Code to: 

CREATE_PROJECT_DO_NOT_IMPORT_DATA and 
CREATE_PROJECT_IMPORT_DATA 

Re-create the project. This code includes 
all the data preparation and forecasting 
steps. 

DIAGNOSE_DESTRUCTIVE_DO_NOT_IMPORT_DATA 
and DIAGNOSE_DESTRUCTIVE_IMPORT_DATA 

Re-diagnose the project. This code does 
not include the data preparation steps. 

SELECT_MODELS_DO_NOT_IMPORT_DATA and 
SELECT_MODELS_IMPORT_DATA 

Perform model selection, estimate the 
parameters of the selected model, and 
produce forecasts. This code does not 
include the data preparation, diagnose, fit, 
and forecasting steps. 

FIT_MODELS_DO_NOT_IMPORT_DATA and 
FIT_MODELS_IMPORT_DATA 

Estimate parameters by using the model 
that you specified and then create a 
forecast. No model selection is performed. 
This code does not include the data 
preparation and diagnose steps. 

FORECAST_MODELS_DO_NOT_IMPORT_DATA and 
FORECAST_MODELS_IMPORT_DATA 

Re-forecast the model and parameters. 
When refitting the model parameters, SAS 
Forecast Studio uses the estimate of the 
previous parameter as a starting point for 
re-estimation. This code does not include 
the data preparation, diagnose, and fit 
model steps. 

RECONCILE_FORECASTS_AND_OVERRIDES_DO_ 
NOT_IMPORT_DATA 

Reconcile model forecasts and overrides. 
This code does not include the data 
preparation, diagnose, select, fit, and 
forecast steps. This code can be run only if 
those steps have been executed at least 
once. 

RECONCILE_FORECASTS_DO_NOT_IMPORT_DATA Reconcile model forecasts. This code does 
not include the data preparation, diagnose, 
select, fit, forecast, and override 
reconciliation steps. This code can be run 
only if those steps have been executed at 
least once. 

RECONCILE_OVERRIDES_DO_NOT_IMPORT_DATA Reconcile overrides. This code does not 
include the data preparation, diagnose, 
select, fit, forecast, and reconciliation of the 
forecast steps. This code can be run only if 
those steps have been executed at least 
once. 

Table 1: Batch Execution Files 
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CONCLUSION 

SAS Forecast Server is one of the most feature-rich forecasting products on the market. This paper 
described 10 underused features that can improve your workflow.  
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Paper SAS 3471-2019 

Using SAS® Forecast Server and the SASEFRED Engine to 

Enhance Your Forecast 
 Catherine LaChapelle, SAS Institute 

 

ABSTRACT  

The SASEFRED interface engine is the best-kept secret in SAS/ETS® software. It 

dramatically reduces the amount of time and effort required to include economic indicator 

variables in your time series analysis. Using the SASEFRED engine in SAS® Enterprise 

Guide®, I can directly query the economic database of the Federal Reserve Bank of St. 

Louis. This public database contains over 529,000 economic time series aggregated from 86 

sources. In this paper, I forecast wine demand and enrich my predictions via the inclusion of 

economic variables such as “Retail Sales: Beer, Wine, and Liquor Stores” and “Producer 

Price Index by Industry: Beer, Wine, and Liquor Stores.” Although I use a retail example, 

this technology is relevant to all industries. The diversity of economic variables provided in 

this database ensures that it is useful to virtually every time series analysis and industry. 

This specific example leverages SAS Enterprise Guide and SAS® Forecast Server as 

interfaces. However, this functionality works on SAS® 9.4 as well as on SAS® Viya® 

technology. 

 

INTRODUCTION  

The SASEFRED interface engine is a powerful tool that allows you to seamlessly integrate 

external economic variables into your forecasting project. In this paper I introduce the 

engine, discuss the FRED data source, and show an example of how to pull all this data 

together in a SAS project. By including external macroeconomic variables, I can enhance 

the accuracy of my forecast and answer additional questions about my models and data. 

 

WHY ENRICH TIME SERIES DATA? 

As a forecaster, there are many factors I must consider when I am trying to build an 

accurate model to predict future values of my dependent variable. My goal is to accurately 

identify the signal, while ignoring the noise in the data. Although the signal of my data 

might be represented strongly by my dependent variable, in most cases there are 

independent variables which also add relevant information. For example, if I am trying to 

predict product sales in a given month, it is likely that the promotion I am running on that 

product is relevant. By including these independent variables in my time series model, I can 

create more accurate forecasts. 

 

Another benefit of including independent variables is the ability to perform scenario 

analysis. Scenario analysis allows me to test the “what if” of a situation. For example, if I 

am predicting wine sales and I have a promotion variable, I can test different scenarios. 

Using the previous example, I could examine what would happen if I discounted a particular 

bottle of wine by 20% this month instead of 10%. I might want to look at whether my sales 

increase proportionally and what is the impact on my profit. This example uses a business 

variable I probably already have contained in my database. If we expand from this type of 

scenario, we can look at macroeconomic factors at play. In this paper’s example, I include 
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several wine-specific variables contained within the FRED database. These variables give me 

the ability to look at the larger context surrounding my business problem, not just the ones 

contained within my business. 

 

Typically, when I build a model as a statistician, I am wary of adding too many independent 

variables for fear of introducing too much extraneous noise to my model. One of the great 

benefits of using SAS® Forecast Server and SAS® Visual Forecasting as forecasting tools is 

the automated variable selection feature within the software. In both products, when I am 

creating a forecasting project I am prompted to assign each independent variable to a 

classification for use. The option Use if Significant provides a lot of value and automation 

for the forecaster. This option automatically tests each independent variable for significance 

against each time series evaluated in the project. For example, if you have a hierarchical 

forecasting project with 1,000 individual series, SAS Forecast Server and SAS Visual 

Forecasting will test each of these series individually for significance with each independent 

variable. This automated feature selection makes it more practical to pull in all of the 

possible independent variables, such as economic information from FRED, and test them at 

scale. 

 

HOW SASEFRED WORKS 

The SASEFRED interface engine allows you to directly query the Federal Reserve Economic 

Database of St. Louis. The Federal Reserve Bank of St. Louis is in the Eighth District of the 

Federal Reserve System in the United States. The charter of the Research Division of the 

Bank is to advise the Bank president on relevant factors that influence economic policy. 

These areas of research include money and banking, macroeconomics, and international 

and regional economics. Currently there are over 529,000 individual time series published 

by FRED at varying levels of time series aggregation. These time series are aggregated from 

87 distinct data sources. Due to the breadth of time series in this database, there is relevant 

economic information for virtually every industry.  

 

This database is published and maintained by the United States government and thus is free 

for anyone to access. It does not require a paid subscription to access the data, but requires 

only the generation of a free API key for the query. More information about the creation of 

an API key can be found in the SASEFRED documentation on the FRED website.  

 

CODE EXAMPLE- WINE SALES FORECASTING 

In this paper I apply the SASEFRED engine to capture wine-related macroeconomic 

variables and enhance my existing wine sales forecasting data set. I use SAS Enterprise 

Guide as an interface to run the program, prepare my data, and then join my tables 

together into a final data set for forecasting. Figure 1 depicts an overview of the process 

flow in SAS Enterprise Guide. 
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Figure 1 is an overview of the data manipulation process in SAS® Enterprise Guide.  

 

Figure 1. SAS Enterprise Guide Project Overview 

 

The SASEFRED engine runs in a SAS LIBNAME statement. The sample code that I use for 

this example is included below. It is easy to copy and paste this code into your own 

program. You can then simply change out the relevant fields such as your file directory 

where you would like to save the generated table and your own individual API key in place 

of the x’s I have here as a placeholder.  

To determine which time series I would like to request for my analysis, I go to the FRED 

website and search for a relevant term for the data I am trying to model. Each series is 

tagged, which makes it easier to narrow my search. I can filter the results by concept, 

geography, geography type, frequency, source, release, and seasonal adjustment. 

In this example, I searched for “wine,” and chose three time series that seemed like they 

could add relevant additional information to my model. Because the series names are a 

string of letters and numbers and are often difficult to decipher, I recommend adding a key 

in a commented section of your code. Every time I add a series to my code, I add the 

description of the series to the comments so that I can easily reference it later. 

 

   title 'Retrieve Economic Indicator Variables'; 

   libname _all_ clear; 

   libname fred sasefred "D:\FRED" 

OUTXML=fredex01 

AUTOMAP=replace 

MAPREF=MyMap 

XMLMAP="D:\FRED\fredex01.map" 

APIKEY='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' 

IDLIST='PCU31213031213009, MRTSSM4453USN, PCU4453104453101' 

START='2014-02-23' 

END='2016-10-23' 

FREQ='m' 

OUTPUT=1 
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AGG='avg' 

FORMAT=xml; 

 

   data econvars; 

    set fred.fredex01 ; 

   run; 

/* Retail Sales: Beer, Wine, and Liquor Stores (MRTSSM4453USN) 

Producer Price Index by Industry: Wineries: Wines, Dessert, 

Effervescent, and Wine Coolers(PCU31213031213009) 

Producer Price Index by Industry: Beer, Wine, and Liquor Stores: 

Retailing of Beer, Wine, and Liquor(PCU44531044531011) */ 

 

Figure 2 is a sample of the first 30 observations from the SASEFRED code example. 

 

Figure 2. Output Table from SASEFRED Code 

 

After I have identified the series I would like to query, the next step is to identify the 

temporal component of the request. The three components of the temporal component are 

the start date, the end date, and the frequency of the desired output. Because the same 

level of aggregation is not available for every series, it is important to review the frequency 

options for each time series on the FRED website. In this example, there are three series 

whose most granular frequency level is monthly, but the wine sales data I am trying to 

predict uses a weekly frequency. Figure 2 contains a sample of the output from the 

SASEFRED code.  

The FREQ option in the SASEFRED engine allows you to convert a higher frequency series to 

a lower frequency series. For example, if it is published in a monthly format and I would like 

quarterly data I can request quarterly data in the FREQ statement and the interface engine 

will automatically do the conversion for me. 
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   proc expand data=econvars out=econexpanded from=month to=week; 

      id date; 

 convert PCU31213031213009; 

  convert MRTSSM4453USN; 

  convert PCU4453104453101; 

   run; 

 

Because I want to change the level of aggregation, I follow my query with PROC EXPAND 

code. The EXPAND procedure allows me to change the temporal aggregation of my input 

data set. Because I am going from a lower frequency (monthly) to a higher frequency 

(weekly), the EXPAND procedure uses a cubic spline of the input data to determine the new 

values of my series. 

 

Figure 3 is a sample of the first 30 observations of the final merged table with all variables. 

 

Figure 3. Final Merged Table with Dependent and Independent Variables 

 

The final step in the process, as seen in Figure 1, is to merge the table of economic 

indicator variables, with the wine sales data. I use the Query Builder in SAS Enterprise 

Guide to join the tables and do the final data preparation. Figure 3 contains the first 30 

observations of the final data preparation step in this process. When my final table is 

prepared for forecasting, I am prepared to use my forecasting engine of choice. With SAS 

Forecast Server and SAS Visual Forecasting, I can leverage the automatic independent 

variable selection feature. This feature tests the statistical significance of my independent 

variables and includes only those variables that are significant, ensuring that I will not 

overfit my time series model by including these independent variables. 
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ADDITIONAL ETS INTERFACE ENGINES 

In addition to the SASEFRED interface engine, there are 10 other ETS interface engines with 

similar functionality to SASEFRED. Each of these additional interface engines connects to a 

different externally published database.  

 

Interface Engine Database 

SASECRSP Center for Research in Security Prices 

SASEFRED Federal Reserve Economic Database of St. Louis (FRED) 

SASEFAME Fame 

SASEHAVR Haver Analytics DLX (Data Link Express) 

SASENOAA National Oceanic and Atmospheric Administration (NOAA) 

SASEOECD Organisation for Economic Co-Operation and Development (OECD) 

SASEQUAN Quandl 

SASERAIN World Weather Online 

SASEWBGO World Bank Group Open (WBGO) data website 

SASEXCCM CRSP/Compustat Merged (CCM) Database 

SASEXFSD FactSet OnDemand data service 

Table 1. Full List of SAS/ETS Interface Engines 

 

Some of these databases require a subscription, but others, such as the FRED data, are free 

to the public. Development work on these interface engines is ongoing, and SAS continues 

to add support for new engines. Table 1 lists of all the current SAS/ETS interface engines 

and the databases to which they are connected. 

 

CONCLUSION 

The SASEFRED interface engine is a powerful tool in every forecaster’s arsenal. With a few 

simple lines of code in a LIBNAME statement, you can quickly and easily integrate 

econometric time series data into a SAS table. Because of the powerful SAS forecasting 

engines, I can pull many times series variables from FRED that might be relevant, and let 

SAS statistical models test their significance for me.   
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Paper SAS1879-2018 

Regime-Switching Models: Capturing Structural Changes in Time Series 

Xilong Chen and Ji Shen, SAS Institute Inc. 

ABSTRACT 

Stock market conditions, government policy changes, or even weather patterns can be regarded as 
stochastic processes that are driven by unobserved regimes. A powerful tool to explore these behavioral 
patterns is the regime-switching model (RSM) that is offered in the HMM procedure and the associated 
action in SAS® Econometrics software. This model, which is widely used in finance, economics, science, 
and engineering, has two characteristics: it allows different parameter values for different regimes, and it 
models the transition probabilities between regimes. These characteristics enable it to fully capture the 
structural changes in the time series. This paper uses two examples to illustrate how you can use RSMs 
to better understand the regime patterns in your data and improve your economic analysis. The first 
example demonstrates how regime-switching autoregression (RS-AR) models help you characterize the 
volatility and dynamics of stock returns. The second example examines the relationship and movement 
between the Japanese yen and the Thai baht by using regime-switching regression (RS-REG) models. 

INTRODUCTION 

Many time series data, such as stock market conditions, government policy changes, weather patterns, 
and so on, follow different dynamics in different time periods; this behavior is called structural change or 
regime switching. One type of model for this kind of behavior is the regime-switching model (RSM). RSMs 
enable you to assign different sets of parameter values to different regimes and model the transition 
probabilities between regimes. They have been powerful tools for sequential data analysis (including time 
series analysis) in finance, economics, science, and engineering for several decades. The HMM 
procedure and the associated action in SAS Econometrics software support RSMs. 

The two examples in this paper demonstrate how you can easily specify RSMs in the HMM procedure, 
perform model selection, and evaluate the predictability performance. The first example shows how 
regime-switching autoregression models enable you to characterize the dynamics of stock returns, 
identify the market states, and forecast the value at risk (VaR). The second example uses regime-
switching regression to explore the relationship and movement between the Japanese yen and another 
East Asian currency, the Thai baht. 

REGIME-SWITCHING AUTOREGRESSION MODELS 

Although bull market and bear market are well-known terms, these market states cannot be directly 
observed; they can be interpreted only from the observed stock prices and other financial data. In this 
example, regime-switching autoregression (RS-AR) models are applied to the S&P 500 index weekly 
returns to analyze the market states and dynamics and to forecast the VaR. The forecasting performance 
is also assessed. 

In the RS-AR models, the observed variables (weekly returns) follow different autoregressive (AR) models 
in different regimes (market states), and the regimes follow a Markov chain: that is, the transition 
probability from the current regime to the next regime does not depend on previous regimes. 

The S&P 500 index weekly returns from January 10, 1950, to December 15, 2017, are considered (S&P 
Dow Jones Indices LLC 2018). The original daily data are retrieved from the FRED database at the 
Federal Reserve Bank of St. Louis and stored in the data set sp500Original. The sample is divided into 
two periods: the in-sample period includes the 2,665 weekly returns before January 1, 2003, and the out-
of-sample period includes the remaining 754 weekly returns. The following statements generate the 
weekly returns from the daily close price and save the client-side data to the server: 
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   %let cutDate = '31DEC2002'd; 

   data sp500w sp500wIn; 

      set sp500Original; 

      format date MMDDYY10.; 

      retain cumReturn 0; 

      return = (log(price)-log(lag(price)))*100; 

      if(return~=.) then cumReturn + return; 

      if(mod(_N_,5)=1 and _N_>1) then do; 

         returnw = cumReturn; 

         w + 1; 

         output sp500w; 

         if (date<=&cutDate.) then output sp500wIn; 

         cumReturn = 0; 

      end; 

      keep w date returnw; 

   run; 

   data cashmm.sp500wIn; set sp500wIn; run; 

   data cashmm.sp500w; set sp500w; run; 

 

To model the weekly returns, how many market states should be considered? How many AR lags should 
a regime include? These are common questions in the model selection process. In this paper, the best 
model is selected using Akaike’s information criterion (AIC): the smaller the AIC, the better the model.  
 
An RS-AR(𝑝) model estimates the likelihood of (𝑇 − 𝑝) observations conditional on the first 𝑝 
observations, where 𝑇 is the sample size. To compare the AICs for the same number of observations 
among different RS-AR(𝑝) models with different 𝑝 values, you need to adjust the sample start dates. In 
this example, the AICs based on the 2,663 weeks of returns before January 1, 2003, are compared. The 
following macro variables specify how many weeks should be skipped for each RS-AR(𝑝) model: 
 
   %let w0 = '31Jan1950'd; * for AR(0), skip first 2 weeks; 

   %let w1 = '24Jan1950'd; * for AR(1), skip first week;    

   %let w2 = '17Jan1950'd; * for AR(2), skip no week;   

     

In the HMM procedure, when you specify TYPE=AR, NSTATE=𝑘, and YLAG=𝑝 in the MODEL statement, 
you specify the 𝑘-state RS-AR(𝑝) model. The estimation of RS-AR models is nontrivial. It is a nonlinear 
optimization problem. For an RS-AR model, there might be many local optima. To increase the chance of 
finding the global optimum, the following measures are applied: 
 

1. The initial parameter values are very important. In the estimation, for 𝑘-state RS-AR(0) models, 
where 𝑘 = 2,… ,10, the initial values are obtained randomly by the HMM procedure, and there is 
no need to use the INITIAL statement. However, for 𝑘-state RS-AR(𝑝) models, where 𝑘 =
2,… ,10, 𝑝 = 1, 2, using the random initial values often leads to bad solutions; an effective 
approach is to use the INITIAL statement to set the initial values as the final parameter estimates 
from the corresponding 𝑘-state RS-AR(𝑝 − 1) models.  

2. Although the maximum likelihood (ML) method is commonly applied to estimating RS-AR models, 
in theory the likelihood of an RS-AR model is unbounded and “the ML estimator as a global 
maximizer of the likelihood function does not exist” (Frühwirth-Schnatter 2006). The introduction 
of the proper prior distribution of the parameters in the MAP method can solve the 
unboundedness problem. You specify METHOD=MAP in the MODEL statement to apply the 
MAP method. In this example, several flat priors for parameters are applied. 

3. A global optimization mechanism, multistart, can be used. When you specify MULTISTART=1 in 
the OPTIMIZE statement, multistart mode is turned on. This mechanism checks thousands of 
initial values and finds the best solution among dozens of local optima.  
 

The following statements estimate 2- to 10-state RS-AR(0) models and save the information criterion for 
model selection. The OUTMODEL= option in the SCORE statement stores model information and 
parameter estimates from the in-sample data, and later they are applied to score the out-of-sample data 
(for example, to forecast VaRs). For the best results, multistart mode is strongly recommended. 
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   * estimate k-state RS-AR(0) models, k from kStart to kEnd; 

   * when qMultiStart=0, multistart mode is off; 

   * when qMultiStart=1, multistart mode is on; 

   %macro estimateRSAR0(kStart, kEnd, qMultiStart); 

      %let p = 0; 

      %do k = &kStart. %to &kEnd.;  

         proc hmm data=cashmm.sp500wIn(where=(date>=&&w&p.)) 

                  outstat=cashmm.sp500StatIn_k&k._p&p.; 

            id time=date; 

            model returnw / type=ar nstate=&k. ylag=&p. method=map; 

            optimize printLevel=3 printIterFreq=1 algorithm=interiorpoint  

               multistart=&qMultiStart.; 

            score outmodel=cashmm.sp500ModelIn&k._&p.; 

            prior tpm~dir(J(&k.,&k.,1)), 

               musigma~niw(J(&k.,1+&p.,0),J(&k.,1,10), 

                           J(&k.,1,0.00001)@I(1+&p.),J(&k.,1,4.00001)); 

         run; 

         data sp500StatIn_p&p._k&k.; 

            set cashmm.sp500StatIn_k&k._p&p.; 

            nStates=&k.; lag=&p.; 

            keep nStates lag logLikelihood AIC AICC BIC HQC; 

         run; 

      %end; 

      data sp500SelectModelIn_p&p.; 

         set sp500StatIn_p&p._k&kStart. - sp500StatIn_p&p._k&kEnd.; 

      run; 

   %mend estimateRSAR0; 

 

   * estimate k-state RS-AR(0), k from 2 to 10, with multistart mode on; 

   * be aware that the following macro might take tens of hours to finish; 

   * uncomment it to run; 

   * even if you do not run this macro here, later you still have a chance to get 

   * estimates of RS-AR(0) models; 

   * %estimateRSAR0(kStart=2, kEnd=10, qMultiStart=1); 

 

For each of the 18 RS-AR(1) and RS-AR(2) models, the INITIAL statement with the corresponding initial 
parameter values is specified. In the following code, only one example, a 7-state RS-AR(1) model, is 
listed to illustrate how to estimate these RS-AR(1) and RS-AR(2) models. The SAS® code for other model 
estimations is omitted here to save space; you can find it online. Multistart mode is turned off, because it 
is not necessary in this example for RS-AR(1) and RS-AR(2) models. 
 
   * for 7-state RS-AR(1) model; 

   * using parameter estimates of 7-state RS-AR(0) as initial values; 

   %macro estimateRSAR(k, p, qMultiStart); 

      ods output FinalParameterEstimates=myParmEst TPM=myTPM ISPV=myISPV; 

      proc hmm data=cashmm.sp500wIn(where=(date>= &&w&p.))   

               outstat=cashmm.sp500StatIn_&k._&p.; 

         id time=date; 

         model returnw / type=ar ylag=&p. nstate=&k. method=map; 

         optimize printLevel=3 printIterFreq=1 algorithm=interiorpoint  

            Multistart=&qMultiStart.; 

         score outmodel=cashmm.sp500ModelIn&k._&p.; 

         prior tpm~dir(J(&k.,&k.,1)), 

            musigma~niw(J(&k.,1+&p.,0),J(&k.,1,10), 

                        J(&k.,1,0.00001)@I(1+&p.),J(&k.,1,4.00001)); 

         initial tpm={0.67872 0.00000 0.00000 0.00000 0.00000 0.02177 0.29951, 

                      0.00000 0.10799 0.00000 0.05413 0.00000 0.83787 0.00000, 

                      0.00000 0.09589 0.90411 0.00000 0.00000 0.00000 0.00000, 

                      0.59099 0.00000 0.00000 0.16756 0.02889 0.00000 0.21257, 

                      0.00000 0.42665 0.48353 0.00759 0.00000 0.00000 0.08223, 
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                      0.00000 0.30024 0.00000 0.00000 0.03013 0.66964 0.00000, 

                      0.02400 0.00000 0.00000 0.24036 0.00000 0.00380 0.73184}, 

            const={0.61433, 2.47350, -0.18333, 1.73559, -5.19095, -0.61715, -0.47292}, 

            cov={0.55251, 2.04663, 20.20570, 0.74352, 1.54215, 3.11860, 1.59261}; 

      run; 

      data sp500StatIn_&k._&p.; 

         set cashmm.sp500StatIn_&k._&p.; 

         nStates=&k.; lag=&p.; 

         keep nStates lag logLikelihood AIC AICC BIC HQC; 

      run; 

   %mend estimateRSAR; 

   %estimateRSAR(k=7, p=1, qMultiStart=0); 

 

After running the estimation of all 27 of the 2- to 10-state RS-AR(0) to AR(2) models, you get Table 1, 
which displays the AICs (the printing code is omitted here). As the table shows, the smallest AIC 
corresponds to the 7-state RS-AR(1) model. 
 

 

Table 1. AICs for 27 RS-AR Models 

The 7-state RS-AR(1) model contains 70 parameters. The following statements print the observation 
parameters and calculate the unconditional mean and variance of weekly returns for each regime (which 
are displayed in the columns “mean” and “variance”), as shown in Table 2. The values of the AR 
coefficients show that the process in each regime is stationary. The standard errors of the AR parameter 
estimates (which are omitted here) show that the AR parameters are significant at the 10% significance 
level in four out of seven regimes. 
 
   %Let k=7; 

   %Let p=1; 

   %Let nTPM = %SYSEVALF(&k.*&k.); 

   %Let nObsParms = %SYSEVALF(3*&k.); 

   %Let nParms = %SYSEVALF(&nObsParms.+&nTPM.); 

   data obsParms; 

      set myParmEst; 

      array myest(&nObsParms.) _temporary_; 

      retain myest:; 

      if _N_ > (&nTPM.) then do; 

         myest[_N_-(&nTPM.)] = Estimate; 

      end; 

      if _N_ = &nParms. then 

         do regime=1 to &k.; 
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            constant = myest[regime]; 

            ar = myest[&k.+regime]; 

            cov = myest[2*&k.+regime]; 

            mean = constant/(1-ar); 

            variance = cov/(1-ar**2); 

            output; 

         end; 

      keep regime constant ar cov mean variance; 

   run; 

   proc print data=obsParms noobs; run;  

 

Table 2. Observation Parameters and Unconditional Means and Variances 

According to the unconditional mean and variance of weekly returns for each regime, you can draw the 
Gaussian kernel for each regime and compare them with the histogram of weekly returns by using the 
following statements. As shown in Figure 1, roughly speaking, three regimes (regimes 1, 2, and 4) could 
be considered bull market states, where the mean of weekly returns is significantly positive and the risk is 
relatively low, and four regimes (regimes 3, 5, 6, and 7) could be considered bear market states, where 
the mean of weekly returns is significantly negative (regimes 5, 6, and 7) or the risk (measured by the 
unconditional variance) is extremely high (regime 3).  
 
   data muSigma; 

      set obsParms end=eof; 

      array mu(&k.); array sd(&k.); 

      retain mu: sd:; 

      mu(_N_) = mean; 

      sd(_N_) = sqrt(variance); 

      if eof then output; 

   run; 

 

   %macro plotLearning(myParm,k,myData,myColumn); 

      data _NULL_; 

         set &myParm.; 

         %do i = 1 %to &k.; 

            call symputx("mu&i.",mu&i.,'G'); 

            call symputx("sigma&i.",sd&i.,'G'); 

         %end; 

      run; 

      proc sgplot data=&myData.; 

         refline 0 / axis=x lineattrs=(thickness=3); 

         histogram &myColumn. / nbins=200; 

         %do i = 1 %to &k.; 

            density &myColumn. / type=normal(mu=&&mu&i. sigma=&&sigma&i.) 

               name="regime&i." 

               legendlabel="Expected Gaussian Dist. for Regime &i."; 
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         %end; 

         keylegend %do i = 1 %to &k.; "regime&i." %end;; 

      run; 

   %mend plotLearning; 

 

   %plotLearning(muSigma,&k.,sp500wIn,returnw); 

 

 

Figure 1. Gaussian Kernels for Seven Regimes 

The following statements display the transition probabilities, the steady-state probability distribution (in the 
column “STPD”), and the expected duration of each regime (in the column “duration”) in Table 3. Regime 
5 is an exceptional bear market state: there is only a 1% chance that the market falls in that regime; and 
even when the market falls in that regime, it quickly recovers. A very bullish market (regime 4) or a very 
bearish market (regime 6) has about a 10% chance, and neither market lasts long. The market has a 50% 
chance to be somewhat bullish (regime 1 and 2) or a 20% chance to be somewhat bearish (regime 7). 
Regime 3 might be highly related to the financial crisis (as discussed later): the risk is extremely high; it 
has a 7% chance of occurring; and when it does occur, it takes a long time to recover (the expected 
duration is about 12 weeks).  
 
   data tp; 

      set myTPM; 

      array tpm(&k.) state1-state&k.; 

      duration = 1/(1-tpm(_N_)); 

      keep state: duration; 

   run; 

   proc print data=tp noobs label; label state='regime'; run; 
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Table 3. Transition Probabilities, Steady-State Probability, and Expected Duration 

 
Next, the INMODEL= option in the SCORE statement is used to forecast the VaRs at different levels, 
such as 1%, 5%, and 10%, as shown in Table 4. The following macros can predict the VaRs for the out-
of-sample period and evaluate the predictive performance by the likelihood ratio (LR) test for the 
unconditional coverage of the VaR forecast (Kuester, Mittnik, and Paolella 2006). 
 
 
   %let alpha1 = 0.80; 

   %let alpha2 = 0.90; 

   %let alpha3 = 0.98; 

   %macro VaREstimation(dsModel,k,p,iStart,iEnd,oosStart,oosEnd,dsForecastPrefix); 

      %do i = &iStart. %to &iEnd.; 

         proc hmm data=cashmm.sp500w(where=(date>=&&w&p.)) 

                  outstat=cashmm.sp500Stat&k._&p.; 

            score inmodel=&dsModel.; 

            forecast out=cashmm.&dsForecastPrefix.&i. alpha=&&alpha&i. online; 

            decode out=cashmm.sp500Decode&k._&p.; 

         run; 

         data &dsForecastPrefix.&i.; 

            set cashmm.&dsForecastPrefix.&i.; 

         run; 

         proc sort data=&dsForecastPrefix.&i.; by date; run; 

         data &dsForecastPrefix.&i.; 

            set &dsForecastPrefix.&i. (FIRSTOBS=&oosStart. OBS=&oosEnd. 

                                       keep=date returnw_Q1 

                                       rename=(returnw_Q1=returnw_Q1_&k.&p.&i.)); 

            time=_N_; nStates = &k; Lag = &p; 

         run; 

      %end; 

   %mend VaREstimation; 

 

   %macro VaREvaluate(dsForecastPrefix,k,p,iStart,iEnd,n,dsOut); 

      data sp500wout; 

         set sp500w; 

         if (date>&cutDate.) then output; 

      run; 

      data forecastData; 

         set sp500wout; 

         time=_N_; 

      run; 

      data forecastData; 

         merge &dsForecastPrefix.: forecastData; 

         by time; 
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      run; 

      data &dsOut.; 

         set forecastData; 

         retain %do i = &iStart. %to &iEnd.; cviol&k.&p.&i. 0 %end; ; 

         retain %do i = &iStart. %to &iEnd.; creturnw&k.&p.&i. 0 %end; ; 

         %do i = &iStart. %to &iEnd.; 

            if returnw le returnw_Q1_&k.&p.&i. then do; 

               cviol&k.&p.&i.=cviol&k.&p.&i.+1; 

            end; 

            creturnw&k.&p.&i. = creturnw&k.&p.&i. + returnw_Q1_&k.&p.&i.; 

         %end; 

         if _N_ = &n. then do; 

            %do i = &iStart. %to &iEnd.; 

               Norminal = (1-&&alpha&i.)/2; 

               Viol = cviol&k.&p.&i. / &n.; 

               LR = 2*(cviol&k.&p.&i.*log(Viol)+(&n.-cviol&k.&p.&i.)*log(1-Viol) 

                  -(cviol&k.&p.&i.*log(Norminal)+(&n.-cviol&k.&p.&i.) 

                   *log(1-Norminal))); 

               pValue = 1 - cdf("CHISQUARE", LR, 1); 

               meanVaR = creturnw&k.&p.&i. / &n.; 

               output; 

            %end; 

         end; 

         label Norminal='Target Prob.' Viol='Violation Ratio' LR='LR Stat.' 

               pValue='Pr > ChiSq' meanVaR='Avg. of VaR' nStates='Number of States' 

               lag='Lag';  

         keep nStates Lag Norminal Viol LR pValue meanVaR; 

      run; 

      proc print data=&dsOut. noobs label;  format Viol LR pValue meanVaR 6.4; run; 

   %mend VaREvaluate; 

 

   %macro VaR(k,p); 

      %VaREstimation(cashmm.sp500ModelIn&k._&p.,&k,&p,1,3, 

         %eval(2665-(2-&p.)),%eval(3418-(2-&p.)),sp500Forecastk&k._p&p.); 

      %VaREvaluate(sp500Forecastk&k._p&p.,&k,&p,1,3,754,VaR_outputk&k._p&p.); 

   %mend VaR; 

 

   %VaR(7,1); 

 

 

Table 4. Predictive Performance of VaR Forecasts 

 

According to the p-values in the “Pr > ChiSq” column in Table 4, at the 1% significance level, no tests can 
reject the null hypothesis that the number of violations is correct. Hence, the 7-state RS-AR(1) model has 
the correct unconditional coverage for the 1%, 5%, and 10% VaR forecasts.  
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In fact, besides the good predictability of the tail of the distribution of the weekly returns as shown in the 
VaR forecast analysis, the 7-state RS-AR(1) model also provides a very good prediction of the whole 
distribution of the weekly returns, which can be shown by comparing the average weekly log likelihoods of 
the in-sample period and the out-of-sample period. The SAS code is omitted here. As shown in Table 5, 
for the 7-state RS-AR(1) model, the average weekly log likelihood in the out-of-sample period is even 
better than in the in-sample period. Compared to both the simplest model, the 2-state RS-AR(0) model, 
which has the fewest parameters and the worst in-sample fit, and the most complex model, the 10-state 
RS-AR(2) model, which has the most parameters and the best in-sample fit, the 7-state RS-AR(1) model 
has the best out-of-sample forecast ability (that is, the largest average weekly log likelihood in the out-of-
sample period). 
 

 
Table 5. Comparison of Average Weekly Log Likelihoods 

 
Finally, the decoded regimes provide a historical view of what happened, given all the available data. The 
data set cashmm.sp500Decode7_1, as a by-product, is generated by the DECODE statement in the 
VaR forecast. The following statements plot the decoded regimes, as shown in Figure 2. Regimes 1, 4, 
and 7 seem to belong to one group, the bullish market: although there are very upward-moving (regime 4) 
and somewhat downward-moving (regime 7) days, the main trend is upward (regime 1). Regimes 2, 3, 5, 
and 6 seem to belong to another group, the bearish market: although there are some upward-moving 
days (regime 2), the main trend is downward (regime 6), even very downward (regime 5) or very volatile 
(regime 3). Regimes 3 and 5 seem to be indicators of a financial crisis; notice their appearance around 
the 1987 financial crisis, the 1997 Asian financial crisis, the Y2K crash, and the 2008 financial crisis. 
When the market is in the bullish state, it lasts for a long time before switching to the bearish state, or vice 
versa. 
 
 
   proc sgplot data=cashmm.sp500Decode7_1(where=(state~=.)); 

      scatter x=date y=state / group=state; 

   run; 
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Figure 2. Decoded Regime for Each Week 

 

REGIME-SWITCHING REGRESSION MODELS 

A paper by Kim, Min, McDonald, and Hwang (2012) uses the regime-switching regression (RS-REG) 
models to find that there are synchronization periods (one regime) and desynchronization periods (the 
other regime) between the Swiss franc exchange rates of floating East Asian currencies and the 
exchange rate between the Swiss franc and the Japanese yen. This example follows ideas of this paper, 
using different data and focusing on only one East Asian currency, the Thai baht, and shows how you can 
use the HMM procedure to estimate the RS-REG models and interpret the results. 
 
The daily exchange rate data (Board of Governors of the Federal Reserve System (US) 2018a, 2018b, 
2018c, 2018d), stored in the data set ero, are retrieved from the FRED database, including US dollar 
(USD) exchange rates from January 1999 to January 2018 for the Australian dollar (AUD), the euro 
(EUR), the Japanese yen (JPY), and the Thai baht (THB). The following statements prepare the weekly 
returns of exchange rates for the RS-REG model. The variable DEXTHUSw is the return of the THB-USD 
exchange rate; DEXJPUSw is the return of the JPY-USD exchange rate; DEXEUUSw is the return of the 
EUR-USD exchange rate; and DEXALUSw is the return of the AUD-USD exchange rate.  
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   data er; 

      set ero(where=(DEXUSEU~=.)); 

      array xr [4] DEXTHUS  DEXJPUS  DEXEUUS  DEXALUS; 

      array xrr[4] DEXTHUSr DEXJPUSr DEXEUUSr DEXALUSr; 

      array xrc[4] DEXTHUSc DEXJPUSc DEXEUUSc DEXALUSc; 

      array xrw[4] DEXTHUSw DEXJPUSw DEXEUUSw DEXALUSw; 

      DEXEUUS = 1 / DEXUSEU; 

      DEXALUS = 1 / DEXUSAL; 

      do i = 1 to 4; 

         xrr[i] = (log(xr[i])-log(lag(xr[i])))*100; 

         if(xrr[i]~=.) then xrc[i] + xrr[i]; 

      end; 

      if(mod(_N_,5)=1 and _N_>1) then do; 

         do i = 1 to 4; xrw[i] = xrc[i]; end; 

         w + 1; 

         output er; 

         do i = 1 to 4; xrc[i] = 0; end; 

      end; 

      keep date DEXTHUSw DEXJPUSw DEXEUUSw DEXALUSw; 

   run; 

   data mycas.er; set er; run; 

 

The following statements estimate the bi-state RS-REG model. You specify the regression in the MODEL 
statement: on the left-hand side is the dependent variable, DEXTHUSw, and on the right-hand side are 
the regressors, DEXJPUSw, DEXEUUSw, and DEXALUSw. You specify TYPE=REG in the MODEL 
statement for the RS-REG model. NSTATE=2 in the MODEL statement indicates that there are two 
regimes. The SMOOTH statement outputs the smoothed probabilities of the two regimes. 
 
   proc hmm data=mycas.er; 

      id time=date; 

      model DEXTHUSw = DEXJPUSw DEXEUUSw DEXALUSw / type=reg nstate=2; 

      smooth out=mycas.erSmooth; 

   run; 

 

The parameter estimates are shown in Table 6. XL𝑘_𝑙_𝑖_𝑗 is the parameter for the 𝑗th regressor at lag 𝑙 in 
the 𝑖th equation for the 𝑘th regime. Because this model has two regimes, 𝑘 can take the value 1 or 2. This 
is a univariate model, so there is only one equation, and 𝑖 is always 1. The regression projects only the 
current regressor; hence lag 𝑙 is always 0. There are three regressors; in sequence, 𝑗 = 1 for the first 
regressor, DEXJPUSw, then 2 for DEXEUUSw, and 3 for DEXALUSw. The main interest is in 
XL𝑘_0_1_1, the relationship between THB-USD and JPY-USD. In the first regime, XL1_0_1_1 is 
significant at the 5% significance level, indicating that regime 1 is the synchronization regime, where the 
THB-USD exchange rate is influenced by the JPY-USD exchange rate; and XL2_0_1_1 is not significant 
at the 5% significance level, indicating that regime 2 is the desynchronization regime, where the THB-
USD exchange rate is not influenced by the JPY-USD exchange rate. This result confirms what has been 
found by Kim et al. (2012). It is also worth mentioning that the covariance of innovations in the 
synchronization regime is much lower than in the desynchronization regime, which is opposite to another 
finding of Kim et al. (2012): there is greater volatility during the synchronization period than during the 
desynchronization period. It might be because the model in this paper has different regressors and uses 
different data. Further discussion of this topic is beyond the scope of this paper. 
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Table 6. Parameter Estimates of RS-REG Model on CHF-PHP 

In this model, the Markov chain is assumed to be stationary, and the initial state probability vector (ISPV) 
is the same as the steady-state probability distribution. The estimates of ISPV are shown in Table 7. The 
synchronization regime has about a 77% chance. This is confirmed by the smoothed probabilities plot in 
Figure 3.  
 

  

Table 7. Initial State Probability Vector (Steady-State Probability Distribution) 

The following statements plot the smoothed probabilities of the synchronization regime. Figure 3, which 
can be compared to Figure 2 in Kim et al. (2012), shows that the degree of synchronization is high for the 
Thai baht. 
 
   proc sgplot data=mycas.erSmooth; 

      series x=date y=state1; 

   run;  
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Figure 3. Smoothed Probabilities of Synchronization Regime 

 

CONCLUSION 

By using the HMM procedure, you can exploit regime-switching models to better understand the regime 
patterns in your data and improve your economic analysis. Beyond the topics discussed in this paper, 
PROC HMM also provides support for Gaussian HMMs and Gaussian mixture HMMs, which are two 
other powerful tools for time series analysis. You can also use the HMM procedure to analyze cross-
sectional time series data (also known as panel data).  
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Paper SAS1673-2018 

Getting More Insight into Your Forecast Errors with the GLMSELECT and 
QUANTSELECT Procedures 

Gerhard Svolba, SAS Institute Inc. Austria 

ABSTRACT 
Is it sufficient just to monitor the quality of your forecast models over time? Can data science methods 
identify the drivers for large forecast errors and provide more insights than descriptive statistics? Do 
demand planners really improve forecast accuracy with their manual overwrites? Using a real-life case 
study, this paper answers these questions. It shows how you can study the impact of factors like product 
group, forecast horizons, seasonality, or the forecast model type on forecast accuracy and convert them 
into actionable results. You learn how univariate methods provide first insights into the structure and 
relationships of your forecast data. You gain insight into how manual overwrites of the statistical forecast 
change forecast accuracy in both directions and how you use analytical and graphical methods to 
illustrate these findings. You see how multivariate analytical methods like linear and quantile regression 
provide additional relevant insight. You learn how to use the GLMSELECT, QUANTSELECT, and 
QUANTREG procedures to identify the most important influential factors on the forecast error. You see 
how you can enhance and interpret the output of these procedures to quantify the effects of the influential 
factors. You learn how to convert the results from the SAS® procedures into actions to improve your 
forecasting process. The paper shows an outline of how to use the REGSELECT and QTRSELECT 
procedures to apply these methods in SAS® Viya®. 

INTRODUCTION 

APPLY ANALYTICAL METHODS ACROSS DIFFERENT BUSINESS DOMAINS 
Analytical methods can leverage the analysis outcome for various business questions. Going one level 
deeper than simple descriptive methods provides insights in the relationship between influential variables. 
Analytical methods also help you spot multivariate relationships and enable you to receive an objective 
and data driven answer to your business questions. 

The book Applying Data Science: Business Case Studies Using SAS® (Svolba 2017) is dedicated to the 
application of analytical methods to different types of practical questions. It shows how analytical methods 
that have been successfully used in certain business domains can and should be applied also to other 
business areas. For example, you can apply survival analysis techniques to analyze the retention time of 
employees, or you can use ARIMA methods and multivariate adaptive regression splines to automatically 
detect breakpoints in your time series data. 

CASE STUDY: ANALYZING THE FORECAST ERROR 
This paper deals with a case study from the demand forecasting area. The focus is to investigate the 
forecast error, which is measured as the deviation between the forecasted demand and the actual 
demand. It shows how analytical methods like regression analysis can be used to identify factors that 
have an impact on the magnitude of the forecast error.  

The case study does not deal with the creation of the statistical forecast itself but with the evaluation of 
the forecast quality. Typical business questions in forecast quality are discussed and this paper shows 
how they can be solved with analytical methods, like descriptive analyses or general linear models.  

USING REGRESSION ANALYSIS 
The statistical tools that are shown here include boxplots, histograms, and descriptive measure like 
mean, median, and the quartiles, as well as linear regression and quantile regression methods. 
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The analysis provides insight about the drivers for different levels of forecast quality. It shows that general 
linear models are perfectly suited to answer business questions related to forecast quality.  

● General linear models enable you to automatically select the most important variable for the analysis.  

● They provide an answer about the importance of different influential factors.  

● They express the mathematical relationship between forecast error and analysis variable.  

STUDYING THE EFFECT OF MANUAL OVERRIDES 
In the forecasting process, statistical forecasts are often overridden with judgmental forecasts by the 
forecaster or demand planner. The analysis shows whether the overall forecast quality is improved with 
manual overrides. A detailed analysis of the characteristics of the manual overrides shows their effect on 
the forecast quality. 

The case study also explains the main assumptions and deliverables of regression analyses and 
illustrates the main features with results from the business questions.  

BUSINESS QUESTIONS FOR THE ANALYSIS 
From a business point of the view, the following questions are of interest and are analyzed in this case 
study. 

● What is the distribution of the forecast error over all products? 

o What is the average forecast error? 

o What is the forecast error that is not exceeded by the top 25%, 50%, and 75% of the 
forecasts? 

● Which factors influence the forecast error? 

o Is the forecast error different between product groups or price categories? 

o Does the launch month or the age of the product influence the forecast error? 

o Do different forecast models generate different forecast quality? 

o Do forecasts get better if the target months get closer? 

o Is there a difference in forecast quality between the calendar months or between years? 

● How do the manual forecasts compare to statistical forecasts? 

o What is the average improvement of applying judgmental corrections? 

o Are there areas where judgmental corrections have a larger benefit? 

o Are there cases where judgmental corrections decrease forecast quality? 

● Are there trends over time in the forecast errors that can be detected? 

BUSINESS BACKGROUND OF THE CASE STUDY 

NEED FOR DIFFERENT TYPES OF FORECASTS AND ARTICLE SEGMENTATION 
In this case study the business department is the operational planning department of an international 
retail and manufacturing company. For their sales and demand planning, demand forecasts on a monthly 
basis are needed. These forecasts are generated automatically with analytical models in SAS® Forecast 
Server and SAS® Enterprise Miner™.  

Some of the articles that are sold by the company have been in the assortment already for some years, 
and other articles remain in the product offering only for a limited period of time, like 6 or 12 months. With 
part of its product range, the company operates in the fashion business. Here, articles are retired when a 
new collection comes on the market or when articles do not sell as expected. 



3 

Note that in some industries, the term SKU is often used instead of “articles”. SKU is the abbreviation for 
Stock Keeping Unit. In this case study, the term “article” is used. 

Article Segmentation 
For the forecasting process, the articles are segmented into LONG and SHORT articles, based their 
available data history. 

● LONG articles have a history of 15 months or more and are forecast with time series forecasting 
methods like exponential smoothing and ARIMA models. 

● SHORT articles have a history up to 14 months and are forecast with a predictive model based on 
attributes of the product itself. 

The future forecast horizon for which forecasts shall be created ranges from 4 to 18 months. These 
forecasts are used for different purposes: 

● The rolling monthly forecasts for sales and demand planning are created for 4-6 months in the future.  

● Forecasts of up to 18 months are used for budget planning for the next business year. 

Target Months and Create Month 
A forecast for a particular month, TARGET_MONTH, is usually created in more than one period of time 
(CREATE_MONTH). The forecast for the target month July might be created in the create months 
February, March, April, May, and June. Table 1 illustrates this case. 

 Target Month 

Create_Month 03/2016 04/2016 05/2016 06/2016 07/2016 08/2016 09/2016 

February 2016     

T
a

rg
et

 M
o

n
th

   
March 2016       

April 2016       
May 2016       
June 2016       

Table 1. Target Month and Create Month  
For a particular target month, forecasts from different create months are available in the data. These 
records have the same TARGET_MONTH but different values of the CREATE_MONTH. 

 

Output 1. Forecasts from Different Create Months 
Forecasts can also be differentiated by the LEADTIME, which is the interval in the future for which they 
are created. The lead time of a forecast for July that is created in February, is 5. 

MEASURING THE FORECAST ERROR OF STATISTICAL AND JUDGMENTAL FORECAST 

Statistical and Judgmental Forecast  
The forecasts that are created by analytical methods are called statistical forecasts. For articles in the 
segment LONG, three different model types are available to create the statistical forecast; for articles in 
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the segment SHORT, two different models are available. For each article, one of these models is defined 
as the champion model, and the other models are treated as challenger models for model quality 
performance monitoring over time. 

The forecast can either directly be used for the demand planning, or it can be overwritten by the demand 
planner and is then called a judgmental forecast. 

Usually, the demand planners use information about short-term market trends, promotion activities, or 
other factors that are not considered in the analytical model for the judgmental forecast.  

There is a lot of discussion in forecasting practice about whether manual overrides truly improve forecast 
quality. See also Goodwin 2009 or Gilliland 2010 for this topic. 

The data that are shown here are based on real world data. However, they have been amended for data 
privacy reasons. 

Variety of Forecast Measures 
There are many different measures to quantify the forecast error. Depending on the industry, the nature 
of the forecasting problem, and personal preferences, different methods are applied. The methods range 
in complexity of the calculation method, and some of them are combinations of other basic measures. In 
the forecasting community, there is no general agreed-upon “best measure” for the forecast error. 
Gilliland, 2010, for example, discusses the forecast value added (FVA). The FVA is the added value of 
the forecast in accuracy, compared to a naïve or baseline forecast. 

Using the MAPE 
In the example shown here, the forecast error is measured with the MAPE, the mean absolute 
percentage error. There are many critics for using the MAPE. 

● The MAPE is asymmetric; a perfect fit results in a MAPE of 0. However, there is no restriction to the 
upper limit. 

● For an observed demand of 0, the MAPE formula causes a division by zero. 

● A forecast of 0 leads to a MAPE of 100. Thus, a forecasting model could learn this feature and limit its 
forecast error by forecasting 0 for all time points. 

The advantage of the MAPE, however, is its interpretability, and it is thus very broadly used in business 
forecasting. The MAPE is calculated with the following steps: 

1. Calculate the absolute value of the difference between the forecasted value and the actual value 
(that’s where the A in MAPE comes from). 

2. Convert the absolute difference into a relative difference by dividing it by the actual value. This 
expresses the forecast error as a percentage of the actual value (that is, the origin of the P and the E 
in the abbreviation MAPE). 

3. Finally, you average these absolute percentage errors over all available time points and receive a 
Mean Absolute Percentage Error (this is where the M comes from). 

Calculating the APE for the Analysis 
For the task of analyzing the forecast error per month, only the APE and not the MAPE is calculated. This 
means that the last step of averaging the forecast errors per article is not performed.  

In forecast error analysis, you want to see the deviation for each individual point in time. This provides 
more detailed insight and also allows analyzing potential seasonal effects in the forecast error. It also 
provides insight into the change of forecast quality from different forecast create months for a particular 
target month. 

For this case study, the forecast error is the absolute percentage error between the statistical forecast 
and the actual demand. The abbreviation APE_STAT is used for it. 
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AVAILABLE DATA AND DATA PREPARATION 

OVERVIEW OVER THE AVAILABLE DATA SOURCES 
The data table for the analysis is built based on three tables:  

Name Description Primary Key Columns 
STATFC Contains the statistical forecast. This table is filled 

from the statistical forecasting process, and it is also 
used as basis for the judgmental forecasting by the 
demand planners. 

ID, CREATE_MONTH, 
TARGET_MONTH 

MANFC Contains the forecasts that are finally committed by 
the demand planner. 

ID, CREATE_MONTH, 
TARGET_MONTH 

MATERIAL Contains the product base data. ID 

Table 2. Data Sources for the Analysis Data Mart 
The full process of data preparation and more details about the available data is explained in Svolba 
2017, Chapter 10.  

 

Output 2. Important Input Variables for the Analysis 
Table 3 lists these variables with a short description and the measurement type. The measurement type 
determines the type of descriptive analysis and graph that can be used and defines how this variable is 
treated in the regression analysis. 

Variable Name  Description Measurement Type 
PRODUCT_GROUP Product group Category 
PRICE_INDEX Price index Interval 
LAUNCH_MONTH Calendar month of 

product launch 
Category 

PRODUCT_AGE Number of months since 
the article was launched 

Interval 

MODEL Model that was used for 
statistical forecasting 

Category 

LEAD_TIME Number of months in 
the future for which the 
forecast is created 

Interval 

TARGET_CALMONTH Calendar month for 
which the forecast is 
created 

Category 

TARGET_YEAR Year for which the 
forecast is created 

Interval 

Table 3. Important Input Variables for the Analysis 

CALCULATING DERIVED VARIABLES 
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The creation of selected derived variables is illustrated in this section. You see selected code lines from a 
larger DATA step that prepares the data. 

Product and Forecast Process-Related variables 
Derived variables from the date variables are created with the YEAR function and the MONTH function. 

 /*** FC-derived variables ***/ 

 Create_CalMonth = month(create_month); 

 Create_Year     = year(create_month); 

 Target_CalMonth = month(target_month); 

 Target_Year     = year(target_month); 

 

The LEAD_TIME and the PRODUCT_AGE are calculated as the difference between the two respective 
date values using the INTCK function. The INTCK function is very convenient to calculate the number of 
intervals (in this case, months) that lie between two date variables. Compare also Svolba 2006. 

/*** Lead Times ***/ 

 Lead_Time = intck('MONTH',create_month,target_month); 

 Product_Age = intck('MONTH',launch_date,target_month); 

 if Product_Age > 120 then Product_Age=120; 

 

Calculating Forecast Error 
You create the average percentage error, APE, by calculating the absolute difference between the 
forecast value and the observed value. Divide this value through the observed value to receive a 
percentage error. 

 /*** MAPE-Block ***/ 

 format APE_Stat APE_Man APE_Stat_Shift APE_Man_Shift 8.1; 

 APE_Stat = abs(statfc - actual)/actual * 100; 

 APE_Man  = abs(JudgmFC - actual)/actual * 100; 

 

A variable with shifted APE values is created where extreme large outliers are shifted to a lower value. 
Otherwise, the graphs and the regression analyses might be dominated by these outliers.  

 ape_stat_shift = min(ape_stat,300); 

 ape_man_shift  = min(ape_man,300); 

 

Calculating the Difference between the Manual and the Statistical Forecast 
Two variables are created that describe the difference between the manual and the statistical forecast: 
APE_DIF and FC_DIF. 

APE_DIF contains the difference between the average percentage error of the statistical and the manual 
forecast.  Positive values mean that the APE of the judgmental forecast is larger. 

APE_DIF = ape_judgm - ape_stat; 

 

Extreme values beyond -500 and 500 are shifted toward -500 and 500, respectively. 
if APE_DIF ne . and APE_DIF < -500 then APE_DIF = - 500; 

else if APE_DIF > 500 then APE_DIF = 500; 

 

FC_DIF contains the difference between the judgmental forecast and the statistical forecast.  



7 

● Positive values mean that the judgmental override increased the forecast.  

● Negative values represent a decrease of the forecast through the override. 
FC_DIF  = JudgmFC-statfc; 

 

Extreme values beyond -5,000 and 5,000 are shifted toward -5,000 and 5,000, respectively. 
if FC_DIF ne . and FC_DIF < -5000 then FC_DIF = - 5000; 

else if FC_DIF > 5000 then FC_DIF = 5000; 

DESCRIPTIVE ANALYSIS OF THE FORECAST ERROR 
This section shows that you can gain initial insight into the relationships of your data just by using 
descriptive methods. Only selected results are shown here. For more insight refer to Svolba 2017, 
Chapter 10. 

CHECKING THE DISTRIBUTION OF THE FORECAST ERROR 
The mean of APE_STAT is 86.5 with a standard deviation of 585.8. The median is 40.6. Looking just at 
the mean and the median, it seems that the forecast quality of this company is quite bad. On average the 
forecast is 86.5% away from the true demand. And 50% of the forecasts have a forecast error of larger 
than 40.6%.  

However, bear in mind that many products with a very short data history are forecasted in this business 
example. Products that were just put on the market do not provide a lot of insight in their demand pattern. 
In many of these cases, only a rough estimate can be created. Rough estimates based on fewer data 
points have a higher forecast error. The influence of the available history can also be seen later on when 
the model type or the product age is analyzed. 

You also see that the distribution of the forecast error is heavily skewed to the right. The mean is twice as 
large as the median and the standard error is extremely high, due to a few outliers with extreme values. 
Table 4 also reveals that the maximum forecast error is higher than 230,000. 

Quantile  Value 

100% Max 238,954.6 
95% 276.6 
90% 169.5 
75% Q3 81.7 
50% Median 40.6 
25% Q1 18.0 
10% 7.0 
0% Min 0 

Table 4. Quantiles of APE_STAT 
The statistics in this table have been created with the following SAS code. 

proc means data=fc_mart mean std min p10 q1 median q3 p90 p95 max maxdec=1; 

 var APE_Stat; 

run; 
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Output 3. Histogram for APE_STAT_SHIFT 

Calendar Month of Product Launch 
Output 4 shows that the forecast quality also differs by calendar month. You see that products launched 
in May or June have larger forecast errors compared to products launched in July.  

● This might be due to an association between the launch of product groups that are easier to forecast 
in certain months of the year.  

● Another reason might be the interaction between the launch month and the seasonal demand pattern, 
like the larger demand around Christmas. Products that are launched in July might directly move from 
a demand peak in the launch phase to a demand peak in the pre-Christmas season. 

 

Output 4. Histogram for APE_STAT_SHIFT by Launch Month 
A multivariate analysis with interaction might give more insight into this question. This is shown in the 
subsequent sections. 
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DIFFERENT FORECAST MODELS PRODUCE DIFFERENT FORECAST ERRORS OVER 
TIME 
Before interpreting the forecast error of the different model types, you have to bear in mind that for each 
article, the model that generates the best forecast is selected.  

● This also implies that Model A might be selected for the easy-to-forecast articles, while Model B, 
which is more robust, is selected for articles with a complicated demand pattern.  

● In terms of average forecast quality, Model B might look bad compared to Model A, as it is mostly 
used to forecast complicated articles. 

The result is shown in Output 5. 

 

Output 5. Median Course over TARGET_YEAR of Different MODEL Types 

Interpretation of the Results 
You see that there are different courses of the forecast error over time for different model types. The red 
dashed line and the violet double-dashed dotted line represent the median course of the forecast error of 
the models with short demand history.  

● You see that there is a slight increase in the forecast error of the SHORT ShiftLevel model over time.  

● The SHORT XT model has some variation over time, but stays stable on average. 

You see that model LONG DownTrend was discontinued in 2011 and replaced by model LONG XT. It is 
interesting to see that only in 2011, model LONG XT has a better forecast quality. The forecast error 
however increases in the later years.  

● This might be an indication that model LONG XT is overfitted and only fit well when it was first 
introduced.  

● It might also be the case that the articles with a complicated demand pattern were forecast with 
model LONG XT. If these articles were forecast with the LONG Pure model, the average forecast 
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error for this model might have increases as well. 

Creating the Line Chart of the Medians 
In order to display the context in a single chart, a line plot of the median forecast errors per target year 
and model type can be created. First you calculate the median forecast error per subgroup with the 
MEANS procedures and store the results in a data set APE_MEDIAN. 

PROC MEANS DATA=fc_mart NWAY NOPRINT; 

  VAR ape_stat; 

  CLASS model Target_year; 

  OUTPUT OUT=ape_median mean= median= /autoname; 

RUN; 

 

Note that the NOPRINT option suppresses printed output in the results window. NWAY specifies that only 
the lowest level of the subgroup hierarchy, MODEL x TARGET_YEAR, is stored in the output data set. 

Next you use the SGPLOT procedure to plot the median course over target year, by model type. 
PROC SGPLOT DATA=ape_means; 

  SERIES X=Target_year Y=ape_stat_median / group=model; 

  YAXIS LABEL ="APE_STAT" min=0 max=100; 

RUN; 

THE EFFECT OF MANUAL OVERWRITES 

ORIGIN OF MANUAL OVERWRITES 
In the operational forecasting process, the statistical forecast is often not used as the final forecast. 
Demand planners perform a judgmental correction to the statistical forecast.  

● This correction is based on their personal experience with the business context.  

● They might have additional information available that should influence the forecast value, like a 
regionally isolated marketing campaign for a certain product that is planned to run next month.  

● It might also be the gut feeling of the demand planner.  

● The judgmental correction might also have a political reason. 

● Sometimes the values of the statistical forecast are just rounded to add a judgmental flavor to it. 

AWARENESS OF THE DEFINITION OF THE DERIVED VARIABLES 
For a clear interpretation of the results, it is a best practice to show and repeat the definition of the 
derived variables in the comments or in the results file. This makes sure that the value and the sign of the 
difference can immediately be interpreted by the analyst. 

In the case of the difference in percentage error, the following definition is used: 

APE_DIF = APE_MAN – APE_STAT 
● Thus, a positive value of APE_DIF means that the forecast error got larger because of the manual 

correction. The manual correction did not improve the accuracy of the forecast. 

● A negative value of APE_DIF means that the forecast error got smaller by the manual correction and 
it improved the accuracy of the forecast. 

FC_DIF = JUDGMFC – STATFC 
● A positive value indicates that the manual override increased the forecast; a negative value 

decreased the forecast. 

THE BENEFIT OF LARGE OVERWRITES 
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Output 6 shows the manual override on the X axis and the change in the average percentage forecast 
error at the Y axis. 

 

Output 6. Relationship between FC_DIF and APE_DIF 
Note that the override values at the X axis are rounded to 10 in order to avoid a too busy graph. For each 
override value at the X axis, you can have several observations. Thus, the median and the first and third 
quartile are calculated.  

● The median is shown by a solid black line. 

● The first and third quartile are displayed by a band. 

You see that larger changes of the forecast value have on average a much larger effect in decreasing the 
forecast error. This finding corresponds with the work of Goodwin 2009, who states that small changes to 
the forecast value usually do not improve forecast quality, while larger changes have a positive effect. 
Small changes to the forecast are made by the demand planner with less care than large changes. If a 
large change to the statistical forecast has to be applied, the planner investigates, in much more detail, 
whether the adjustment shall be made or not.  

The consequence should not be to recommend large changes instead of small changes. Rather, the goal 
is to eliminate the small changes that do not add any benefit and save the time for analyzing whether 
large changes shall be made. 

Again you see that a decrease of the forecast through the manual overwrite had on average a positive 
effect. You however also see that even large positive changes have a positive effect on the forecast 
quality. Demand planners obviously put more thought into large changes and apply them only if they are 
really convinced about it. 

Creating the Line Chart and the Band Chart with SGPLOT Procedure 
The above graph has been created in two steps. First the median and the first and third quartile have 
been calculated with the MEANS procedure. Note that the AUTONAME option has been used to 
automatically create the respective variable names that contain the name of the descriptive statistic: 

proc means data=fc_mart noprint nway; 

 class fc_dif10; 

 var ape_dif; 

 output out= dif10_mean median= q3= q1= / autoname; 

run; 
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Next the data is plotted with the SGPLOT procedure. Note that the BAND statement should precede the 
SERIES statement for the mean value. Otherwise, the line hides behind the band. 

proc sgplot data=dif10_mean; 

 band x=fc_dif10 lower=ape_dif_q1 upper=ape_dif_q3; 

 series x=fc_dif10 y=ape_dif_median; 

 refline 0 / axis=y; 

run; 

 

QUANTIFYING THE EFFECT OF DRIVERS FOR THE FORECAST ERROR WITH 
THE GLMSELECT PROCEDURE 

OVERVIEW 
OLS regression enables you to quantify the effect of each explanatory factor, like PRODUCT_AGE or 
PRODUCT_GROUP on the forecast error. You can run a univariate regression with only one input 
variable for each influential factor.  

This provides insight into the explanatory power of the respective variable on the forecast error. It also 
allows quantifying this relationship using the regression coefficients.  

● If you use an interval input variable, you receive one coefficient.  

● If you use a categorical input variable, you receive a coefficient for all categories expect the reference 
category. 

Interpretability versus Statistical Correctness 
As in many business analyses, the decision between interpretability and applicability of the results and 
the statistical correctness needs to be made. From a statistical point of view, the target variable 
APE_STAT should be definitely log transformed before being used in the regression model. 

The price that is paid in this case is that the regression coefficients cannot then be interpreted in units of 
the target variable. Svolba 2016 shows in more detail that the model fit of the model using the log-
transformed variable is not better than those of the untransformed variable. In this case, to be on the safe 
side, it is better to leave the variable untransformed for better interpretability.  

It always makes sense, however, to check both models for their model fit. This enables you to see how 
much the fit between the two modeling approaches differs. 

UNIVARIATE ANALYSIS USING THE GLMSELECT PROCEDURE 
The following code example shows how you can perform this analysis for using the GLMSELECT 
procedure for an interval variable and a categorical variable. 

PROC GLMSELECT DATA=fc_mart; 

 MODEL ape_stat_shift =  product_Age  /  SHOWPVALUES; 

RUN; 

 

PROC GLMSELECT DATA=fc_mart; 

 CLASS product_group / PARAM=effect; 

 MODEL ape_stat_shift =  product_group / SHOWPVALUES; 

RUN; 

 

Table 5 shows the available input variables ordered by descending R2. You see that variable MODEL, 
PRODUCT_AGE, and PRODUCT GROUP are the most influential variables. 
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Ranking  Input Variable R-squared linear Beta linear 
1 MODEL 0.0554  
2 PRODUCT_AGE 0.0433 -0.51 
3 PRODUCT_GROUP 0.0224  
4 LAUNCH_MONTH 0.0172  
5 TARGET_YEAR 0.0102 4.16 
6 TARGET_CALMONTH 0.0084  
7 LEAD_TIME 0.0046 1.68 
8 PRICE_INDEX 0.0016 -0.02 

Table 5. Input Variables Sorted by Descending Adjusted R-Square 
The coefficient of PRODUCT_AGE of -0.51, for example, can be interpreted as the average decrease in 
forecast error for each additional month of demand history. You can conclude that an additional year of 
forecast history results on average in a decrease of around 6 percentage points (0.51 times 12 months). 

Variables Model Type and Product Age 
You see that the two top variables are model type and product age with an R2 in the linear model of 
5.54% and 4.33%, respectively. Variable model type implicitly also contains information about the product 
age, as the models are separated by short and long data history.  

The fact that the explanatory power of the variable model type is higher than those of variable product 
age indicates that the model type contains more information than just the length of the available data 
history. 

In a multivariate regression model, it is interesting to see whether both variables are still selected or 
whether the additional explanatory power of the second variable is not high enough to cause the second 
variable to be added to the model. Using a multivariate regression model enables you to investigate the 
relative importance of a variable compared to the fact that other variables are already in the model. 

MULTIVARIATE ANALYSIS OF THE INFLUENCE ON THE FORECAST ERROR 

Code of GLMSELECT Procedure 
The following code has been used to perform a multivariate regression analysis with stepwise selection of 
the input variables: 

PROC GLMSELECT DATA=fc_mart; 

 CLASS product_group launch_month model target_calmonth / PARAM=effect ; 

 MODEL ape_stat_shift =   

                  product_group|price_index|launch_month|product_age| 

                  model|lead_time|target_calmonth|target_year_shift     @1  

                      /DETAILS=steps  

                       SELECTION=stepwise (SELECT=sl)  

                       ORDERSELECT  

                       SHOWPVALUES; 

RUN; 

 

Note the following from the code: 

● The CLASS statement, which lists all four categorical variables, is used and the EFFECT coding is 
requested with the PARAM option. 

● The MODEL statement contains the list of input variables. Note that the list of variables could also be 
specified with blanks between the variables.  

● Using the “pipe” | has the advantage that the MODEL statement can be used in a flexible way if, for 
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example, quadratic terms shall be requested.  

● @1 indicates that you want to use these variables only to the power of 1.  

● @2 would cause the normal effect and the quadratic effect for each variable. 

● This feature is not limited to the GLMSELECT procedure; it can be applied for all regression 
procedures with MODEL statements. 

● A stepwise regression is requested with the SELECTION= stepwise option.  

● The SL option specifies that the significance level of each variable to enter or leave the model shall 
be checked.  

● Information about each forecasting step is requested with the DETAILS= steps option. 

● The option ORDERSELECT causes the parameters in the final parameter estimates table to be 
sorted in the order of their inclusion into the model, instead of alphabetic order. 

● The SHOWPVALUES options requests that p-values are shown in the parameter estimates table. 

Results of the Multivariate Regression 
Table 6 shows the list of input variables in their selection order for the linear regression for the non-
transformed target error. You see that all available eight variables are selected, even if the last variable 
only marginally contributes to the improvement of the model fit. This is also due to the large number of 
observations (> 400,000 records).  

Ranking  Input Variable 
Adjusted  
R-square 

0 INTERCEPT 0% 
1 MODEL 5.46% 
2 TARGET_CALMONTH 6.58% 
3 PRODUCT_GROUP 7.59% 
4 TARGET_YEAR_SHIFT 8.50% 
5 PRODUCT_AGE 9.04% 
6 LEAD_TIME 9.76% 
7 LAUNCH_MONTH 9.90% 
8 PRICE_INDEX 9.90% 

 Table 6. Input Variables Sorted by Adjusted R-Square of the Multivariate Model 
The first variable MODEL has been selected, which adds 5.46% of the explanation of the values in 
variable APE_STAT_SHIFT. Note that in Table 5 you have also seen variable MODEL on top of the list 
ordered by their univariate contribution, so its selection is intuitive. 

Additional Information Is Prioritized 
In step 2, however, variable TARGET_CALMONTH has been selected, although it was only at rank 6 of 
the ordered list in Table 5. It can be assumed that it “overtook” the other variables, because after variable 
MODEL was selected, the additional explanatory power of the variable TARGET_CALMONTH was higher 
than that of the others. 

At rank 2 of the univariate analysis in Table 5, you saw PRODUCT_AGE. In the multivariate model it is 
selected only in the fifth step. In the multivariate regression model, the variables are considered in a 
combined or simultaneous way.  

As variable MODEL is already in the regression equation, the additional explanatory power of variable 
PRODUCT_AGE is not that high anymore. Variable MODEL has already “told” part of its information, for 
example, that older products, forecasted with “LONG-models” have a lower forecast error than younger 
products, forecasted with “SHORT-models”.  
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True Increase of Model Fit 
Thus, the relative benefit of variable PRODUCT_AGE is not 4.75% as in the univariate model but only 
0.54% (9.04 – 8.50). Variables TARGET_CALMONTH, PRODUCT_GROUP, and TARGET_YEAR are 
selected first as they obviously can “tell new details”. 

You also see that the additional explanatory power of PRODUCT_GROUP is not 2.24% as shown in 
Table 5 for the univariate results. It is only around 1%. This indicates that variables MODEL and 
TARGET_CALMONTH have already contributed more than half of what variable PRODUCT_GROUP 
could contribute in a univariate model.  

STUDYING THE REGRESSION RESULTS VISUALLY 

Univariate Analysis of PRODUCT AGE 
Output 7 shows the plot of the predicted APE_STAT values from a univariate OLS regression with 
variable PRODUCT_AGE. The actual values are plotted as blue circles. The predicted values are plotted 
as a solid red line. You see a decreasing trend of the forecast error over the increasing values of product 
age.  

This result corresponds with the findings shown Table 3. A larger data history for a product decreased the 
forecast error. 

 
Output 7. Plot of the Predicted APE_STAT Values from the Univariate Regression Model 

Multivariate Analysis of Product Age Provide More Insight 
Output 8 shows the same plot, however, based on the predicted values of a more detailed regression 
model. In this model all selected variables have been included. (Compare Table 6.)  

You still see a downward trend of the forecast error over product age. However, the relationship is no 
longer a straight line as the effect of product age is not only measured on its own. It is corrected for the 
effect of the other available variables. 

Thus, Output 8 shows the effect of the variable PRODUCT_AGE after correcting for the influence of other 
co-variables.  

This provides much more detailed insight in the effect of variable product age. All other co-influences 
have already been filtered and this enables you to view only the remaining effect of variable product age.  

● You see an interesting drop of the forecast error around month 3, which is hard to explain from a 
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business point of view.  

● You see that additional months of data history have the strongest effect between months 18 and 24, 
this is when a second full year of data history is achieved.  

● You see a rather linear decreasing trend after month 24. 

 
Output 8. Plot of the Predicted APE_STAT Values from the Multivariate Regression Model 

SAS Code 
The code for the multivariate analysis is shown here. Note that an OUTPUT statement is added to the 
GLMSELECT procedure to output the predicted values from the regression model. These predicted 
values are then used in the SGPLOT procedure. 

PROC glmselect DATA=FC_Mart_10smp ; 

  partition rolevar=_ROLE_ (train = 'TRN' validate='VAL'); 

  CLASS product_group launch_month model target_calmonth / PARAM=effect ; 

  MODEL ape_stat_shift = product_group|price_index|launch_month|  

                         product_age|model|lead_time| 

                         target_calmonth|target_year @1    

                    /selection=stepwise(choose=validate slentry=0.001);; 

    output out=LinReg1Pred p=APE_STAT_PRED  

RUN; 

 

The SGPLOT procedure is used to combine a SCATTER plot for the actual data value with a SPLINE plot 
for the predicted values. 

proc sgplot data=LinReg1Pred; 

 scatter y=ape_stat_shift x=product_age/ 

              markerattrs=(size=5) transparency=0.5  

              filledoutlinedmarkers; 

 pbspline y=APE_STAT_PRED x=product_age/ 

              lineattrs=(thickness=2 color=red) nknots=20 nolegfit   

              curvelabel="0.5 Quant" curvelabelattrs=(color=red) nomarkers; 

   xaxis values= (0 to 120 by 12) ; 

   yaxis max=200; 

   where product_age ne 0; 

run;         
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GETTING ADDITIONAL INSIGHT WITH QUANTILE REGRESSION 

BASIC IDEA OF QUANTILE REGRESSION 

Idea of Linear Regression 
With a linear regression model, as presented in the previous section, an important implicit assumption is 
made: The conditional mean of the dependent variable is modeled.  

In linear regression, the model equation is:  

𝑌𝑖 = 𝑥𝑖
′𝛽 + 𝜀𝑖 

And the vector β is determined by minimizing the errors: 

min∑𝜀𝑖
2

𝑛

𝑖=1

 

In many cases the conditional mean is what should be modeled and predicted and not a lot of thought is 
put into that fact. There are, however, some cases where you are not interested in a model that explains 
or predicts the conditional mean of the distribution of the dependent variable, but you are rather interested 
in specific quantiles.  

Ordinary least squares regression models the relationship between one or more covariates X and the 
conditional mean of the response variable Y given X=x. Quantile regression extends the idea of 
regression models to conditional quantiles of the response variable, such as the 90th percentile (0.9 
quantile). 

Quantile Regression  
Here the quantile regression comes into play. It allows you to model selected conditional quantiles. You 
receive a model that predicts the value of a certain quantile instead of the mean. The model equation for 
a quantile 𝜏 is the following: 

𝑄(𝜏|𝑋 = 𝑥) = 𝑥′𝛽(𝜏) + 𝜀𝑖 

Here the following expression is minimized, 

min∑𝜌𝜏|𝜀𝑖|

𝑛

𝑖=1

+∑(1 − 𝜌𝜏)|𝜀𝑖|

𝑛

𝑖=1

 

where 𝜌𝜏|𝜀𝑖| and (1 − 𝜌𝜏)|𝜀𝑖| are the penalty terms for over and under estimation.  

In the case of the forecast errors analysis, this might answer the following business questions: “What 
influences the 1st quartile of the target variable?” 

● Do you want to see the predictors for a better quarter of the forecast errors?  

● Quantile regression shows you the list of variables and their parameters that are related to the 
forecast error value, which is not exceeded by the 25% of time series with the lowest forecast error. 

You can perform the same procedure for the 3rd quartile to get insight on those variables that relate to 
the upper range of the forecast errors. 

● You also might want to know whether the list of influential factors for the upper and the lower quarter 
of forecast error differs. 

QUANTILE REGRESSION FOR THE STATISTICAL FORECAST ERROR  
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Rationale of Using Quantile Regression 
Quantile regression allows you to better understand the influence of independent variables for different 
quantiles of the statistical forecast error. The 0.75 quantile regression enables you to identify and 
parameterize those factors that influence whether a certain forecast error is not exceeded by 75% of the 
time series. 

Linear regression only deals with the analysis of the average location of the forecast error and the 
variables that influence this average error. 

Quantile regression enables you to make assumptions about the extreme areas. “Which forecast error is 
not exceeded, if I have data history of more than 24 months?” From a business point of view, the 
information that “75% of the time series have a forecast error smaller than x” is more important than the 
average forecast error. 

The same applies to the 0.25 quantile: You receive information about the forecast error that is not 
exceeded by your best 25% of the time series, if you increase the available time history. 

Quantile Regression for Selected Quartiles 
In this example, the quantile regression for the 0.1, 0.25, 0.5, 0.75 and 0.9 quantile of the statistical 
forecast error is performed using the following SAS code: 

PROC QUANTSELECT DATA=fc_mart_10smp; 

  CLASS product_group launch_month model target_calmonth / PARAM=effect ; 

  MODEL ape_stat_shift = product_group|price_index|launch_month|  

                         product_age|model|lead_time|  

                         target_calmonth|target_year @1  

                    /quantile= 0.1 0.25 0.5 0.75 0.9  

                     selection=stepwise(choose=validate slentry=0.001);     

  ods select SelectionSummary; 

RUN; 

 

Note that the QUANTILE option in the MODEL statement is used to specify the quantiles of interest. 

Variables Selected for Different Quantiles 
Tables 7–9 show the variables that have been selected by different quantile regressions. You see that 
these sets differ. This indicates that for different quantiles, different combinations of influential factors are 
relevant. 

● You see that variables model type, product age, product group, and lead time are selected in every 
model.  

● You also see that the model for the 0.25 quantile uses a smaller set of variables than the model for 
the 0.5 and the 0.75 quantiles. 

● You could also study the coefficients of the parameter for each model. In that case, you would see 
that the coefficients differ for each model, even if the same set of variables is selected. 

Step EffectEntered SBC 
1 Model 36293.1995 
2 Product_Group 36356.7482 
3 Lead_Time 36356.6815 
4 Product_Age 36330.2975 
Table 7. Variables Selected for the 0.25 Quantile 
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Step EffectEntered SBC 
1 Model 43049.0936 
2 Launch_Month 43118.2647 
3 Lead_Time 43087.3543 
4 Product_Group 43094.7320 
5 Product_Age 43077.2793 
6 Target_CalMonth 43123.6095 
7 Target_Year 43125.2832 
Table 8. Variables Selected for the 0.5 Quantile 
 

Step EffectEntered SBC 
1 Model 44077.9745 
2 Target_CalMonth 44027.8505 
3 Launch_Month 44054.7556 
4 Lead_Time 43978.5909 
5 Product_Age 43929.8234 
6 Product_Group 43931.3299 
7 Target_Year 43882.6948 
Table 9. Variables Selected for the 0.75 Quantile 

Displaying the Results Visually 
Output 9 displays the results of the multivariate quantile regression in the same way as shown in Output 8 
for the OLS regression.  

 
Output 9. Plot of the Predicted APE_STAT Values from the Multivariate Quantile Regression Model 
The blue circles represent a scatter plot for PRODUCT_AGE and APE_STAT of the actual data. You see 
solid lines in different colors for the predicted values of APE_STAT from the multivariate quantile 
regression for different quantiles. The relationship of product age, however, is not only measured on its 
own. It is corrected for the effect of the other available variables as multivariate regression model is used. 
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● It is remarkable to see that for the 0.1 and the 0.25 quantile of the forecast error (the value that is not 
exceeded by your top time series) the relationship between the product age and forecast error is very 
flat. 

● You see that the increase in forecast errors around months 12 (which is hard to explain from a 
business point of view) increases with larger quantiles. It is almost not present for quantile 0.25 and 
0.5. 

● You also see that additional data history after month 36 has only a marginal effect, except  for 
quantile 0.9, where additional time history does matter for higher product age values. 

Results from Univariate Quantile Regression for Variable PRODUCT_AGE 
Output 10 shows the results from a univariate quantile regression model that uses only variable 
PRODUCT_AGE. Similar to Output 7, you see only linear trends, as the influence is not corrected for 
other available variables. You clearly see that the slope for the trend curve is different for the different 
quantiles. Larger quantiles have a steeper curve than the lower quantiles.  

This leads to the interpretation that additional available data history has a much stronger positive effect 
on the higher quantiles than the lower quantiles. The times series with a smaller forecast error do not 
benefit as much from additional data history as those that are in general harder to predict. 

 
Output 10. Plot of the Predicted APE_STAT Values from the Univariate Quantile Regression Model 

Create the SCATTER and SPLINE Plot  
The plot is generated in a similar way as shown above. Here you use a separate PBSPLINE statement 
for each quantile. 

proc sgplot data=QuRegPred; 

 scatter y=ape_stat_shift x=product_age/ 

         markerattrs=(size=5)   transparency=0.5 filledoutlinedmarkers; 

 pbspline y=APE_STAT_PRED1 x=product_age/ 

        lineattrs=(thickness=1 color=green ) nolegfit  

        curvelabel="0.1 Quant" curvelabelattrs=(color=green) nomarkers; 

 pbspline y=APE_STAT_PRED2 x=product_age/ 

       lineattrs=(thickness=2 color=orange) nolegfit  

      curvelabel="0.25 Quant" curvelabelattrs=(color=orange)  nomarkers; 

 pbspline y=APE_STAT_PRED3 x=product_age/ 
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        lineattrs=(thickness=2 color=red) nolegfit  

        curvelabel="0.5 Quant" curvelabelattrs=(color=red) nomarkers ; 

 pbspline y=APE_STAT_PRED4 x=product_age/ 

        lineattrs=(thickness=2 color=orange) nolegfit  

        curvelabel="0.75 Quant" curvelabelattrs=(color=orange) nomarkers;     

 pbspline y=APE_STAT_PRED5 x=product_age/ 

        lineattrs=(thickness=1 color=green ) nolegfit  

        curvelabel="0.9 Quant" curvelabelattrs=(color=green) nomarkers; 

   xaxis values= (0 to 120 by 12) ; 

   yaxis max=200; 

run;         

 

CREATING A PROCESS PLOT FOR THE PARAMETER ESTIMATES 

General Idea 
Output 10 shows that with increasing quantiles, the coefficient of variable PRODUCT_AGE changes. This 
“quantile process” can be easily analyzed with the QUANTSELECT and the QUANTREG procedure. 
However, only the QUANTREG procedure enables you to create the process plot that enables you to 
visually study the effects.  

A quantile process means that a quantile regression for all quantiles from 0 to 1 is performed. The results 
enable you to study the relationship of an independent variable on a target variable across the quantiles. 
This provides insight into the influence of the independent variable on different quantile levels. 

Process Plot and Interpretation 
The process plot for variable product age is shown in Output 11. 

 

Output 11. Process Plot for PRODUCT_AGE 

● From the plot, you see the range of quantiles on the horizontal axis and the parameter estimate for 
product age on the vertical axis.  

● The value for the ordinary least squares estimator is shown as a horizontal line and is labeled as 
OLS. Note that the OLS estimate for the (conditional) mean is constant around -0.3. It does not 
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depend on the quantile level. 

You see that the estimate in the quantile regression for parameter product age decreases over the 
quantile process. 

● For larger quantiles of the forecast error, the estimate of product age decreases to -1. Here an 
additional month decreases the forecast error by 1 percentage point. 

● One additional month of product age decreases the conditional 0.2 quantile of the forecast error by 
around 0.1 percentage points. 

● One additional month of product age decreases the conditional 0.8 quantile of the forecast error by 
around 0.35 percentage points. 

You learn that the influence of product age is not constant over the quantile process. Higher quantiles of 
the forecast error benefit much more (by getting smaller) from an additional month of product age 
available in the data. 

Using the QUANTREG Procedure 
The QUANTREG procedure can be used to create a quantile process and the process plot with the 
following code: 

PROC QUANTREG data=fc_mart_smp10000 algorithm=simplex ; 

 CLASS Product_Group  model  ; 

 MODEL ape_stat_shift =  product_group Product_Age model target_year_shift 

                         /   QUANTILE=process  

                             PLOT=quantplot(Product_Age) /UNPACK OLS  

                              ; 

RUN; 

Note that the shifted average percentage error is used here. Otherwise, the outliers in the 0.99 and 1.00 
percentile would also cause extreme values in the estimate of product age for these quantiles. 

● You specify the value PROCESS with the QUANTILE = option to request the analysis of the quantile 
process for quantiles from 0 to 1. 

● The PLOT = QUANTPLOT option requests the quantile plot for PRODUCT_AGE.  

o The UNPACK option creates an individual process plots.  

o It enables you to specify the OLS option that shows the ordinary least squares estimate 
as a horizontal line in the plot for comparison. 

RUN TIMES, SAMPLING, AND DATA PARTITIONING 

SAMPLING THE DATA FOR QUANTILE REGRESSION 
The following run times are measured on 4 core Intel i7 processor with 2.3 GHz. Running stepwise linear 
regression on the entire data set of 411743 observations takes 4 seconds. Running stepwise quantile 
regression for the median on a sample of 10.000 observations takes 29 seconds real time and 1 minute 
16 seconds CPU time. Note that the real time differs from the total CPU time as the procedure distributes 
computing across the available nodes. 

This result shows that quantile regression is very compute intense. It thus makes sense to sample the 
available data. SAS®9 provides the SURVEYSELECT procedure to sample the data. 

proc surveyselect data=FC_MART method=srs smpsize=10000  

                  seed=60502    out=FC_Mart_10smp; 

run; 

 

You specify method SRS for simple random sampling. The SEED option enables you to fix the seed for 
the random sampling to generate reproducible results with every run. 
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PARTITIONING THE DATA 
In order to partition the data into training and validation data, you can use the PARTITION statement in 
the GLMSELECT or QUANTSELECT procedure. Here you can either split the data randomly or split the 
data according to a predefined ROLE variable. 

Using a predefined ROLE variable makes sense if you want to use a fix seed for the portioning. As in the 
case so sampling, fixing the seed makes sense if you want to generate reproducible results with every 
run.  

The PARTITION statement in the GLMSELECT or QUANTSELECT procedure does not enable you to 
specify the seed. Using a SAS DATA step you can use a fixed seed to partition the data. 

data FC_Mart_10smp; 

 set FC_Mart_10smp; 

 format _ROLE_ $3.; 

 call streaminit(seed=2311);  

 if rand('Uniform') > 0.3 then _ROLE_ = 'TRN'; 

 else _ROLE_ = 'VAL'; 

run; 

 

You initialize the random number generation with the CALL STREAMINIT statement, where you specify 
the seed. You assign the TRAIN or VALID role depending on the values of the random number generated 
with the RAND function. 

SAS Viya provides the REGSELECT procedure for linear regression and the QTRSELECT procedure for 
quantile regression.  

LINEAR AND QUANTILE REGRESSION WITH SAS VIYA 

Sampling and Partitioning the Data 
SAS Viya allows distributed high performance computing for large-scale data. SAS Viya provides the 
REGSELECT procedure for ordinary least squares regression and the QTRSELECT procedure for 
quantile regression. 

SAS Viya provides very good performance. If you still want to sample your data in SAS Viya, you can use 
the PARTITION procedure in a similar way as shown above with the SURVEYSELECT procedure. 

proc partition data=FC_MART samppct=10 seed=60502; 

   output out=FC_Mart_10smp; 

run; 

 

Different to SAS9 the PARTITION statement in the SAS Viya QTRSELECT procedure enables you to 
specify a seed and thus fix the partitioning for reproducible results. 

The QTRSELECT procedure 
The following code shows how the QTRSELECT procedure can be called in SAS Viya to run the same 
quantile regression as presented in the previous chapter. You see that the code is very similar to the code 
used for the QUANTSELECT procedure. 

PROC qtrselect DATA=FC_Mart_10smp ; 

 partition fraction(validate=0.3 seed=2311); 

 CLASS product_group launch_month model target_calmonth / PARAM=effect ; 

 MODEL ape_stat_shift =   

                  product_group|price_index|launch_month|product_age| 

                  model|lead_time|target_calmonth|target_year_shift @1  

                    /quantile= 0.1 0.25 0.5 0.75 0.9; 

    selection method=stepwise(choose=validate slentry=0.001)  ; 

    output out=cas1.QuRegPred  
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           copyvars=(price_index product_age ape_stat_shift)  

           p=APE_STAT_PRED  

           role=Role; 

    ods output selectionsummary=work.selectionsummary; 

RUN; 

 

Note that when using the OUTPUT statement, you have to explicitly specify the variables that shall be 
copied to the output data set. 

CONCLUSION 
You have seen that the application of analytical methods provides many relevant insights to help you 
make better business decisions. This is not only the case for the analysis of the forecast error as 
presented in this paper, but also for many other business questions. Svolba 2016 presents a collection of 
examples and SAS code where relevant business questions are analyzed with analytical methods. 

In the example presented here, you have seen that the descriptive method also provides a lot of insight. 
Using linear regression enables you to better quantify the importance of different influential factors and to 
assess the strength and the direction of different categories. You see that the multivariate analysis 
provides a more comprehensive picture than the isolated univariate analysis of influential factors. 

Quantile regression enables you get a clearer picture about the extremes of your distribution. You learn 
which influential factors trigger the fact that forecast errors do not exceed a certain limit. In the above 
example you have seen that some variables are important to explain the higher quantiles of the outcome 
but not the lower quantiles of the outcome. 

The SAS platform with SAS9 and SAS Viya procedures provides a comprehensive set of analytical 
methods that enable you gain more insight in the relationships between your data and your business 
processes. 
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APPENDIX 

THE %CALC_REFERENCE_CATEGORY MACRO 

Introduction 
The %CALC_REFERENCE_CATEGORY macro enables you to calculate the “hidden” coefficients of the 
reference category in dummy coding when the EFFECT parameterization has been used.  

When using the EFFECT parameterization, the coefficient of the reference group (the “missing 
coefficient”) can be calculated by summing the coefficients of the other categories and changing the sign. 
This is also referred to as the negative sum of the coefficients of the other categories.  

http://www.sascommunity.org/wiki/Data_Preparation_for_Analytics
http://www.sascommunity.org/wiki/Data_Quality_for_Analytics
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Although it is technically possible to perform these calculations by hand, it is more convenient and 
efficient to use a program to do this automatically. 

Prerequisites for the Macro 
The macro has the following prerequisites. 

● In the model, the EFFECT coding has been used for the creation of the dummy variables. 

● The dummy variables have been automatically created using the CLASS statement. This is, for 
example, possible in the GLMSELECT and the QUANTSELECT procedure.  

● Note that the DMREG procedure in SAS Enterprise Miner also creates dummy variables based on 
EFFECT coding. However, the macro has not been tested for the output of the DMREG procedure. 

● The parameter estimates file contains the p-value for each parameter. This can be requested with the 
option SHOWPVALUES in the MODEL statement. 

● The macro assumes that the input table that is used in the macro call has been created using the 
ODS OUTPUT statement in the respective regression procedure.  

● The ODS objects PARAMETERESTIMATES and CLASSLEVELINFO can be created with the 
following ODS OUTPUT statement in the respective regression procedure: 
ODS OUTPUT ParameterEstimates= ParameterEstimates 

           ClassLevelInfo    = ClassLevelInfo; 

Limitations of the Macro 
The current version of the macro has the following limitations: 

● The categories of the CLASS variables must not contain blanks. For example, a category value 
“Model 1” is invalid. It needs to be transformed, for example, to “Model1” or “Model_1” before the 
regression analysis is run. 

● Note that the macro ignores interaction terms in the output table. The reason for this is that the effect 
names that are created from the interaction terms are often abbreviated and cannot be reproduced by 
the macro from the ClassLevelsList. 

Macro Parameters 
The following parameters can be specified with the macro. 

● ParmEst:  The name of the data set that contains the ParameterEstimates, created with the ODS 
OUTPUT statement. Default = ParameterEstimates. 

● ClassLevels: The name of the data set that contains the ClassLevelInfo, created with the ODS 
OUTPUT statement. Default = ClassLevelInfo. 

● OutputDS: The name of the data set that shall contain the output data set. Default = _ParmEst_XT_. 

Refer to Svolba 2016, Chapter 12 for a comprehensive explanation of the macro and its functionality. The 
macros can be downloaded here: http://www.sascommunity.org/wiki/Data_Quality_for_Analytics_--
_Download_Page. 
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Monitoring Forecast Models Using Control Charts
JOSEPH H. KATZ

PREVIEW In this article, Joe Katz presents a new application of control charts for automatic 
monitoring of forecast errors. He reviews the traditional rules for statistical process control 
and then applies these along with custom rules to determine whether a forecasting model 
should be maintained, adjusted/refit, or discarded and replaced.

INTRODUCTION

When should a forecasting model 
be adjusted or replaced? This is 

an important consideration, because an 
inappropriate model results in avoidable 
forecast bias and error and can consume 
management resources making manual 
forecast adjustments.

Until now, there has not been an auto-
mated capability for monitoring forecast-
model fitness for each time series to deter-
mine when models need to be discarded, 
adjusted, or left unchanged. Automating 
this process becomes even more critical 
when the number of time series is very 
large. The two main questions that need 
to be answered are

• �Is it possible to evaluate forecast-model 
suitability and viability for each indi-
vidual time series as time passes, and 
as new data points are added to the 
historical data?

• �Can this forecast monitoring method-
ology be automated?

The answer to both questions is yes! The 
approach described in this article dem-
onstrates that it is possible to evaluate 
and automate the monitoring of forecast-
model fitness using control charts. Please 
note that this methodology is patented 
and owned by SAS Institute (Katz, 2015).

BACKGROUND

Today automatic forecasting software 
is available. These software tools will 
develop candidate models, incorporate 
events and independent variables, select 

the “best” model with optimized param-
eters, and generate forecasts—all without 
the need for human intervention. Yet the 
monitoring of model performance—de-
termining when a model must be adjusted 
or discarded—has not reached a similar 
level of sophistication.

There are two common practices for mon-
itoring model performance:

• �Assess all time series based on a com-
mon criterion, such as “MAPE > 50%.” 
In this approach, every time a forecast 
error exceeds the criterion, the time 
series is flagged for review.

• �Replace models for all time series at
fixed intervals (e.g., weekly, monthly, 
quarterly, biannually, or annually).

Note that both methodologies use a “one 
size fits all” approach, where all time series 
are treated in the same manner. This is 
problematic and inefficient. Regarding 
the first approach, a single forecast may 
exceed the error criterion just by chance, 
with nothing fundamentally wrong with 
the model. Such a model would not need 
to be reviewed. Or for a stable, easy-to-
forecast time series, the error may always 
fall below the criterion, yet still be much 
higher than should be achievable with a 
more appropriate model. In this case, 
such a model should be replaced even 
though it may never be flagged for review.

Regarding the second approach, a suit-
ably performing model does not need to 
be replaced on a routine basis. Doing so 
is just a waste of time and computational 
resources. Also, frequent model replace-
ment is neither practical nor advisable as 

Forecast Accuracy Measurement
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it can result in a lack of forecast-model 
stability and cause forecasts to fluctuate, 
in some cases dramatically.

Once forecast models are selected and 
forecasts are generated, the resultant 
models need to be monitored for quality 
and continued suitability, as time passes 
and new data points are added to the his-
torical data. This ability to automatically 
evaluate each individual time series would 
represent a paradigm shift from the “one 
size fits all” approach that currently exists 
in many forecasting tools. The approach 
described below demonstrates that it 
is possible to automate the monitoring 
of forecast-model fitness using control 
charts.  

RESIDUAL ANALYSIS METHODOLOGY

For each individual time series, the new 
approach begins with an examination of 
model residuals—the difference between 
the forecast value and the actual value. The 
focus on residuals makes it different from 
the discussion of process behavior charts 
in forecasting (Joseph and Finney, 2013), 
which is based on time series of product 
sales. For a more general discussion on 
statistical process control and control 
charts, refer to Wheeler and Chambers 
(1992) and Montgomery (2009). 

When the forecast model is well speci-
fied, the residuals will be centered on 
a mean of zero, appear random with no 
specific patterns evident, and thus repre-
sent a process that is in control. Since the 
method uses only model residuals, it is 
model agnostic. The models used could be 
traditional time-series based, machine-
learning based, ensemble models, or hy-
brid models.

The method analyzes residuals using 
Shewhart Control Charts for individual 
measurements, since the data is time-
series based and there is one observation 
for each time period. The control chart, as 
shown in Figure 1, is constructed around 
the mean, X ,of the residuals, with UCL/
LCL representing the Upper/Lower 
Control Limits. Zone C, in green, repre-
sents the 1-sigma range above and below 
the mean. Zone B, in yellow, represents 

■ �While automatic forecasting algorithms are 
adept at simplifying the model-selection 
process and generating forecasts without 
manual input, the monitoring of model 
performance—determining when a model 
must be adjusted or discarded—has not 
reached a similar level of sophistication. 

■ �Once forecast models are selected and 
forecasts are generated, the resultant 
models need to be monitored for quality and 
continued suitability as time passes and new 
data points are added to the historical data. 
Automating this process would be a valuable 
advance, and one even more critical when the 
number of time series is very large.

■ �An automated monitoring method based on 
the application of control charts to forecast 
model residuals is demonstrated. The method 
flags residuals for classification into severity 
zones. User rules then determine the action 
to be taken: Low Severity—No model changes 
required; Medium Severity—Adjust/refit 
existing model parameters; High Severity—
Discard current model and develop new 
model. 

■ �The process is illustrated in detail using time 
series of product sales at two distribution 
centers. 

Key Points

Figure 1. Control Chart Zones
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the 1-sigma to 2-sigma range above and 
below the mean. Zone A, in red, repre-
sents the 2-sigma to 3-sigma range above 
and below the mean.

Once the control limits and zones have 
been specified, exceptions are identified 
in the residual patterns using a combina-
tion of standard Western Electric rules 
and additional rules that are customiz-
able by the user to best suit their business 
needs. As such, these rules can be made 
to be very sensitive to changes in residual 
patterns or structured to take a more con-
servative approach. The rules below try 
to strike a balance and are provided as 
guidelines.

The standard Western Electric Rules or 
Tests are shown in Table 1.

The custom rules/tests that we have 
employed in this example are shown in 
Table 2. 

These custom rules/tests provide an ex-
ample of how a user might set the trigger 
conditions for when to discard and rede-
velop a model, when to adjust and refit 
a model, or otherwise when to just leave 
the current model alone. They represent a 
judgment call on how sensitive or conser-
vative the user wishes the method to be. 

We use the term model vintage to repre-
sent the date of the last model update or 
adjustment. You can think of it as the date 
of the most recent actual value included 
in the latest model update. 

Once the exceptions are identified for 
dates greater than or equal to the model 
vintage date, residual process anomalies 
are classified by applying additional logic/
business rules to the exceptions flagged 
from the Shewhart Control Charts. The 
anomalies are then sorted by level of se-
verity and appropriate action is taken:
• �Low Severity—No model changes 

required
• �Medium Severity—Adjust/refit existing 

model parameters
• �High Severity—Discard current model 

and develop new model

Table 1. Western Electric Rules or Tests (Source: SAS®/QC 
Documentation)

Table 2. Shewhart Residual Analysis Custom Control Chart 
Rules/Tests

Figure 2. Historical Data for SKU Code=603-560613 at 
Distribution Center DC1

Figure 3. Historical Data for SKU Code=603-560613 at 
Distribution Center DC5

	
The	standard	Western	Electric	Rules	or	Tests	are	shown	in	Table	1.	
	
Table	1:	Western	Electric	Rules	or	Tests	(Source:		SAS®/QC	Documentation)	

Rule/Test	 Pattern	Description	
1	 One	point	beyond	Zone	A	(outside	the	control	limits)		
2	 Nine	points	in	a	row	in	Zone	C	or	beyond	on	one	side	of	the	central	line	(The	

number	of	points	can	be	specified	as	7,	8,	9,	11,	14,	or	20)		
3	 Six	points	in	a	row	steadily	increasing	or	steadily	decreasing	(The	number	of	points	

can	be	specified	as	6,	7,	or	8)		
4	 Fourteen	points	in	a	row	alternating	up	and	down		
5	 Two	out	of	three	points	in	a	row	in	wZone	A	or	beyond		
6	 Four	out	of	five	points	in	a	row	in	Zone	B	or	beyond		
7	 Fifteen	points	in	a	row	in	Zone	C	on	either	or	both	sides	of	the	central	line		
8	 Eight	points	in	a	row	on	either	or	both	sides	of	the	central	line	with	no	points	in	

Zone	C		
	

The	custom	rules/tests	that	we	have	employed	in	this	example	are	shown	in	Table	2.		
	
Table	2:	Shewhart	Residual	Analysis	Custom	Control	Chart	Rules/Tests	

Rule/Test	 Pattern	Description	
Discard/Redevelop	 2	out	of	2	points	beyond	3-sigma	limits		
Discard/Redevelop	 7	out	of	7	points	between	1-sigma	and	3-sigma	limits		

Adjust/Refit	 3	out	of	3	points	beyond	2-sigma	limit		
Adjust/Refit	 5	points	in	a	row	increasing		
Adjust/Refit	 5	points	in	a	row	decreasing		

	
These	custom	rules/tests	provide	an	example	of	how	a	user	might	set	the	trigger	conditions	for	when	to	
discard	and	redevelop	a	model,	when	to	adjust	and	refit	a	model,	or	otherwise	when	to	just	leave	the	
current	model	alone.	They	represent	a	judgment	call	on	how	sensitive	or	conservative	the	user	wishes	
the	method	to	be.		
	
We	use	the	term	model	vintage	to	represent	the	date	of	the	last	model	update	or	adjustment.	You	can	
think	of	it	as	the	date	of	the	most	recent	actual	value	included	in	the	latest	model	update.		
	
Once	the	exceptions	are	identified	for	dates	greater	than	or	equal	to	the	model	vintage	date,	residual	
process	anomalies	are	classified	by	applying	additional	logic/business	rules	to	the	exceptions	flagged	
from	the	Shewhart	Control	Charts.	The	anomalies	are	then	sorted	by	level	of	severity	and	appropriate	
action	is	taken:	
	

• Low	Severity—No	model	changes	required	

	
The	standard	Western	Electric	Rules	or	Tests	are	shown	in	Table	1.	
	
Table	1:	Western	Electric	Rules	or	Tests	(Source:		SAS®/QC	Documentation)	

Rule/Test	 Pattern	Description	
1	 One	point	beyond	Zone	A	(outside	the	control	limits)		
2	 Nine	points	in	a	row	in	Zone	C	or	beyond	on	one	side	of	the	central	line	(The	

number	of	points	can	be	specified	as	7,	8,	9,	11,	14,	or	20)		
3	 Six	points	in	a	row	steadily	increasing	or	steadily	decreasing	(The	number	of	points	

can	be	specified	as	6,	7,	or	8)		
4	 Fourteen	points	in	a	row	alternating	up	and	down		
5	 Two	out	of	three	points	in	a	row	in	wZone	A	or	beyond		
6	 Four	out	of	five	points	in	a	row	in	Zone	B	or	beyond		
7	 Fifteen	points	in	a	row	in	Zone	C	on	either	or	both	sides	of	the	central	line		
8	 Eight	points	in	a	row	on	either	or	both	sides	of	the	central	line	with	no	points	in	

Zone	C		
	

The	custom	rules/tests	that	we	have	employed	in	this	example	are	shown	in	Table	2.		
	
Table	2:	Shewhart	Residual	Analysis	Custom	Control	Chart	Rules/Tests	

Rule/Test	 Pattern	Description	
Discard/Redevelop	 2	out	of	2	points	beyond	3-sigma	limits		
Discard/Redevelop	 7	out	of	7	points	between	1-sigma	and	3-sigma	limits		

Adjust/Refit	 3	out	of	3	points	beyond	2-sigma	limit		
Adjust/Refit	 5	points	in	a	row	increasing		
Adjust/Refit	 5	points	in	a	row	decreasing		

	
These	custom	rules/tests	provide	an	example	of	how	a	user	might	set	the	trigger	conditions	for	when	to	
discard	and	redevelop	a	model,	when	to	adjust	and	refit	a	model,	or	otherwise	when	to	just	leave	the	
current	model	alone.	They	represent	a	judgment	call	on	how	sensitive	or	conservative	the	user	wishes	
the	method	to	be.		
	
We	use	the	term	model	vintage	to	represent	the	date	of	the	last	model	update	or	adjustment.	You	can	
think	of	it	as	the	date	of	the	most	recent	actual	value	included	in	the	latest	model	update.		
	
Once	the	exceptions	are	identified	for	dates	greater	than	or	equal	to	the	model	vintage	date,	residual	
process	anomalies	are	classified	by	applying	additional	logic/business	rules	to	the	exceptions	flagged	
from	the	Shewhart	Control	Charts.	The	anomalies	are	then	sorted	by	level	of	severity	and	appropriate	
action	is	taken:	
	

• Low	Severity—No	model	changes	required	
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ILLUSTRATIVE EXAMPLES

For illustrative purposes, we’ll execute the 
method for the two time series shown for 
an item sold from Distribution Centers 
DC1 in Figure 2 and DC5 in Figure 3. 
The data are weekly, spanning February 
28, 2016 through December 30, 2018. 

The patterns for these time series look 
somewhat similar except near the end of 
the series. The difference in their behav-
iors becomes apparent, however, when 
analyzing the residuals over time. 

Shown in Table 3 are the initial models 
created via automated model selection, 
using actuals posted through November 
18, 2018 (which becomes the model vin-
tage date). 

Using a forecast horizon of six periods, 
the plot of the initial model for DC1 is 
shown in Figure 4 with a fit MAPE = 
2.63%. The model for DC1 is a traditional 
exponential-smoothing model with linear 
trend and additive seasonality. For DC5, 
a seasonal ARIMA model was chosen. 
(For Foresight tutorials on exponential 
smoothing and ARIMA models, see 
Stellwagen, 2012 and 2013.) 

Using a forecast horizon of six periods, 
the plot of the initial model for DC5 is 
shown in Figure 5 with a fit MAPE = 
4.46%.

As noted, our monitoring methodology 
begins with the calculation of the residu-
als from a forecasting model. Control 
limits are then determined based on the 
residuals. Residuals are, in effect, the “fit 
error” of the model over history. 

Once the control chart has been created, 
we begin evaluating each new observa-
tion starting on the model vintage date. 
How the current model has fit in the past 
is no longer relevant since it isn’t action-
able: the model developed on November 
18, 2018 can’t be used to assess what 
happened in history—even though there 
may be several historical points outside 
the control limits or patterns detected. 
We react only to new observations and 
associated patterns that are actionable. 

Example for DC1
Figure 6 illustrates the Shewhart 
Control Plot when the next week of data 
(November 25) becomes available.

The residual of 1.34 for November 25, 
highlighted above, is within the control 
limits with no patterns detected so no 
additional action is taken. This residual 

Table 3. Initial Models by Location

Figure 4. Winters Model Fit and Forecast SKU Code=603-560613 at 
Distribution Center DC1

Figure 5. ARIMA Model Fit and Forecast SKU Code=603-560613 at 
Distribution Center=DC5

	
 
Figure 3: Historical Data for SKU Code=603-560613 at Distribution Center DC5 

	
	
The	patterns	for	these	time	series	look	somewhat	similar	except	near	the	end	of	the	series.	The	
difference	in	their	behaviors	becomes	apparent,	however,	when	analyzing	the	residuals	over	time.		
	
Shown	in	Table	3	are	the	initial	models	created	via	automated	model	selection,	using	actuals	posted	
through	November	18,	2018	(which	becomes	the	model	vintage	date).		
	
Table	1:	Initial	Models	by	Location	

Location	 Model	Type	 Model	Specification	
DC1	 Winters	Method	(Additive)	 α=0.0327137184,	β=0.0265873762,	and	γ=0.001	
DC5	 ARIMA	 P	=	((1)(52))	D	=	(1)	Q	=	(1,2,3)	

	
Using	a	forecast	horizon	of	six	periods,	the	plot	of	the	initial	model	for	DC1	is	shown	in	Figure	4	with	a	fit	
MAPE	=	2.63%.	The	model	for	DC1	is	a	traditional	exponential-smoothing	model	with	linear	trend	and	
additive	seasonality.	For	DC5,	a	seasonal	ARIMA	model	was	chosen.	(For	Foresight	tutorials	on	
exponential	smoothing	and	ARIMA	models,	see	Stellwagen,	2012	and	2013.)		
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Figure 6. IR Chart Distribution Center=DC1 SKU Code=603-560613 
Posted History through: 25NOV18 Model Vintage: 18NOV18
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evaluation process is conducted each 
week as the new actual is observed and 
posted. Fast-forwarding four weeks, with 
actuals posted through December 23, 
2018, the updated control chart is shown 
in Figure 7.

Except for December 2, where the re-
sidual is outside the 3-sigma limit, we 
see that the residuals posted each week 
from November 25 to December 23 all fell 
within the control limits, so no action was 
required. We do not want to overreact to 
a single point being outside the 3-sigma 
limits. The original model developed 
on November 18 has remained in place 
without the need for any updates. (Note: 
A “Clipped Point” indicates an extreme 
value beyond the scale of the axis to make 
the chart more readable.)

Using an out-of-sample range of six peri-
ods, the plots of the Winters model with 
a November 18 vintage date and data 
through December 30 is shown in Figure 
8 with a fit MAPE = 2.63% and an Out-of-
Sample MAPE = 6.57%.

Example for DC5
Figure 9 shows the Shewhart control 
chart plots with actuals posted through 
December 2, two weeks following the 
vintage.

We now see five consecutive points in-
creasing in value, which indicates (per 
Table 2) that the model needs an adjust-
ment/refit. In this case, the pattern start-
ed prior to the model vintage date but 
continued after it. Since the test is not 
signaled for these five points until after 
the model vintage date, it is a legitimate 
pattern that has been flagged. But we also 
observe that a Test 1 exception is thrown 
for both November 25 and December 
2—two consecutive points beyond the 
3-sigma limits indicates (per Table 2) that 
the model should be discarded.

Since the discard flag is of higher priority 
than the refit flag, the model will be dis-
carded and redeveloped with a new model 
vintage date of December 2, 2018. The 
new model is as follows:

Figure 7. IR Chart Distribution Center=DC1 SKU Code=603-
560613 Posted History through: 23DEC18 Model Vintage: 
18NOV18

Figure 8. Winters Model Fit and Out-of-Sample Forecast SKU 
Code=603-560613 at Distribution Center=DC1

Figure 9. IR Chart Distribution Center=DC5 SKU Code=603-
560613 Posted History through: 02DEC18 Model Vintage: 
18NOV18

ARIMA: P = 1 D = (1) Q = ((1,2,3)(52)) + AO02DEC2018D + AO25NOV2018D

Residual

Residual
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The plot of the new model is shown in 
Figure 10 with a fit MAPE = 4.38%. 

This residual evaluation process is con-
ducted each week when the new actual 
is observed and posted. Fast-forwarding 
four weeks, with actuals posted through 
December 23, 2018, the updated control 
chart is shown in Figure 11.

The residuals posted each week from 
December 9 to December 23 all fell within 
the control limits with no patterns de-
tected, so no action was required.

The plot of the new ARIMA model with 
a December 2 vintage date and data 
through December 30 is shown in Figure 
12 with a fit MAPE = 4.38% and an Out-
of-Sample MAPE = 13.51%.

For DC5, the original model developed 
on November 18, 2018 was discarded and 
redeveloped on December 2.

SUMMARY

The methodology demonstrates an inno-
vative use of control charts for monitor-
ing forecasts and determining forecast-
model suitability. Each time series is 
managed and modeled (i.e., discard/
redevelop, adjust/refit, or reforecast) 
based on its individual residual pattern 
and characteristics. 
The methodology can be extended for 
use with each level in hierarchical fore-
casting and other modeling techniques. 
The methodology is efficient, robust, 
customizable/extendable, and scalable. 
It also avoids the “one size fits all” limita-
tion that exists in many forecasting tools 
today.
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We are entering the second Machine Age. This first began with the Industrial Revolution, 
which was driven primarily by technology innovation – the ability to generate mechan-
ical power to make humans more productive. Rather than the steam engine that started 
the Industrial Revolution, the second Machine Age uses computers and other digital 
advancements to help our brains understand and shape our environments. 

Impressive advances in artificial intelligence (AI) and machine learning (ML) during the 
past decade are supported by supervised deep learning to train ML algorithms to 
perform narrow, single-domain tasks. The learning is supervised because you’re telling 
the algorithm the correct answer as it is exposed to many examples using big data sets. 
But we’re now seeing unsupervised learning systems that learn faster, require less data 
and achieve impressive performance. These supervised and unsupervised intelligent 
automation techniques can help humans automate tasks. That doesn’t eliminate the 
need for humans, it just allows them to do their work more effectively.

Intelligent automation techniques can be applied to all kinds of activities across your 
organization to reduce the everyday repetitive work while uncovering key insights to 
improve the effectiveness of your processes, as well as your workforce.

How intelligent automation enhances  
existing processes
Intelligent automation driven by AI and ML are disrupting the way companies do 
business. The rapid deployment of automation is helping us set new standards 
of efficiency, speed and functionality. 

Instead of being replaced, humans will see unprecedented job creation and new 
opportunities to add more value. Intelligent automation techniques can be 
applied to all kinds of activities across your organization to reduce the daily 
repetitive work while uncovering key insights to improve the effectiveness of your 
processes and your workforce. 

Applications can range from routine to groundbreaking, such as collecting, 
analyzing and making decisions about textual information to guiding demand 
planners to anticipating consumer purchasing behavior. It is already helping 
companies surmount conventional performance tradeoffs to achieve unprece-
dented levels of efficiency that reduce costs while increasing profitability. 

The variety of business challenges to which intelligent automation can be applied 
is expanding as technologies for voice recognition, natural language processing 
and ML improve. These technologies are becoming increasingly available as IoT 
devices capture streaming information and open-source cloud-based services 
become more widespread. 

1

“�The challenge is that 
people have not devel-
oped the level of trust 
in artificial intelligence 
and machine learning 
that they have in other 
technologies that  
automate tasks. People 
sometimes confuse auto-
mation with autonomy.”

Oliver Schabenberger, 
COO and CTO, SAS

https://www.sas.com/en_us/solutions/ai.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/deep-learning.html
https://www.sas.com/en_us/insights/analytics/what-is-artificial-intelligence.html
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Leading organizations are driving more of their processes into smarter machines. 
They are rethinking what they do across every area of the enterprise – from their 
business processes to the customer experience. Some activities where intelligent 
automation is helping companies are: 

•	 Data collection.

•	 Security and systems monitoring. 

•	 Transaction management with ERP systems.

•	 Scheduling and staffing.

•	 Accounting and finance.

•	 Business planning.

•	 Customer experience.

•	 Marketing and communications.

The levels of automation include: 

•	 Basic automation of frequent repetitive simple tasks.

•	 Advance automation that orchestrates workflows across departments and 
applications.

•	 Intelligent automation that mimics complex research and expert decision making.

 The foundational elements for intelligent automation are: 

•	 Institutionalized business process.

•	 Reducing effort and increasing accuracy.

•	 Centralized application with auditing and instrumentation.

•	 Quantifiable metrics to measure and inform model improvements.

•	 Analytics infrastructure to support machine learning.

•	 APIs to allow software agents to mimic and drive tasks.

•	 Continuous monitoring and automation governance.   

Intelligent automation is empowering humans with advanced smart technologies and 
agile processes for faster, more intelligent decisions. The key benefits of intelligent 
automation in business include: 

•	 Improved productivity.

•	 Increased process efficiency.

•	 Improved customer experience.

•	 Unprecedented value (ROI).
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We hope you have enjoyed this excerpt of “Assisted Demand Planning Using Machine Learning for CPG and Retail.” 

To access the full whitepaper, please visit https://www.sas.com/en/whitepapers/assisted-demand-planning-109971.html. 

https://www.sas.com/en/whitepapers/assisted-demand-planning-109971.html
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The Forecasting Dilemma
Forecasts never seem to be as accurate as we would like, or need, them to be. As a 
result, there’s a temptation to throw money at the problem in hopes of making it go 
away. There are plenty of consultants and software vendors willing to take that money  
in exchange for lots of promises, but are these promises ever fulfilled? How many  
organizations are you aware of − perhaps even your own – that have thrown thousands 
or even millions of dollars at the forecasting problem, only to end up with the same 
lousy forecasts? 

The questions boil down to: 

• Why do forecasts always seem to be wrong and sometimes terribly wrong?

• Is there anything you can do about it?

This white paper explores why forecasting is often poorly done and offers suggestions 
for improving it. Because forecasting is a core capability of AI, it also examines the 
emergence of AI and machine learning to enhance traditional time-series forecasting 
methods.

Why Are Forecasts Wrong?
There are at least four reasons why your forecasts are not as accurate as you would like 
them to be.

The first reason is unsuitable software − software that doesn’t have the necessary capa-
bilities, has mathematical errors or uses inappropriate methods. It is also possible that 
the software is perfectly sound but due to untrained or inexperienced forecasters, it is 
misused.

The second reason is untrained, unskilled or inexperienced forecasters who exhibit 
behaviors that affect forecast accuracy. One example is overadjustment, or as W. 
Edwards Deming put it, “fiddling” with the process. This happens when a forecaster 
constantly adjusts the forecast based on new information. Research has shown that 
much of this fiddling makes no improvement in forecast accuracy and is simply wasted 
effort.1 Forecasting should be objective and scientific. 

The third reason for forecasting inaccuracy is contamination by the biases and personal 
agendas of the process participants. Instead of presenting an unbiased best guess at 
what is going to happen, the forecast comes to represent what management wants to 
have happen − no matter what the marketplace is saying. Forecast value added (FVA) 
analysis, described later, can identify these sorts of biases and help streamline the fore-
casting process.

Finally, bad forecasting can occur because the desired level of accuracy is unachievable 
for the behavior you are trying to forecast. Consider the example of calling heads or 
tails in the tossing of a fair coin. It doesn’t matter that you may want to achieve 60, 70 or 
90 percent accuracy. The reality is that over a large number of tosses, you will only be 
right half of the time and nothing can change that. The nature of the behavior deter-
mines how well you can forecast it − and this applies to demand for products and 
services just as it does to tossing coins.

1
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Inadequate, Unsound or Misused Software
A common mistake in bad or misused software is choosing a forecasting model based 
solely on the model’s “fit to history” (often referred to as “best fit” or “pick best” func-
tionality). The software provides (or the forecaster builds) several models so you can 
evaluate them against recent history. The model that has the best fit to history is 
selected to create forecasts of the future. 

In Figure 1, the history consists of four weeks of actual sales: 5, 6, 4 and 7 units. You can 
see these as the four dots in each graph. Let’s consider four models for forecasting 
future sales.

Model 1 is simply the average of the four points of history, and it forecasts 5.5 units for 
week 7. Model fit over the four points of history has a mean absolute percent error (or 
MAPE) of 18 percent.

Model 2 is a least squares regression line that shows an upward trend, and it forecasts 
7.2 units for week 7. It has a fit error of 15 percent over the four points of history.

Model 3 is a quadratic equation with a fit error of only 8 percent, and it forecasts 16.5 
units in week 7.

Finally, Model 4 is a cubic equation that fits the history perfectly with a fit error of 0 
percent. It forecasts about 125 units in week 7.

Remember, the objective is not to fit a model to history − it is to find an appropriate model 
for forecasting future weekly sales. Fitting a model to history is easy. Anyone can do it, 
and it is always possible to find a model that has a perfect fit. But having perfect fit to 
history is no guarantee that the model will generate accurate forecasts. In this example, 
bad software (or misguided forecasters) using fit to history as the sole criterion for selecting 
the forecasting model would have chosen Model 4. Unless you have good reason to 
believe that sales of this product are about to explode, Model 4 actually appears to be 
the worst choice of the forecasting models. Models 1 or 2 (the ones with the worst fit) 
are probably the most appropriate models for forecasting the future, given the limited 
historical information.

Figure 1: Confusing fit to history with appropriateness for forecasting.
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We hope you have enjoyed this excerpt of “What Management Must Know About Forecasting.” 

 

To access the full whitepaper, please visit https://www.sas.com/en_us/whitepapers/management-forecasting-104529.html.  

 
 

https://www.sas.com/en_us/whitepapers/management-forecasting-104529.html




APPENDIX 
For further reading, we suggest the following resources. 

Books and Journals 
Brocklebank, J., Dickey, D., and Choi, B. (2018). SAS for Forecasting Time Series (3rd edition). SAS Institute. 

Chase, C. (2016). Next Generation Demand Management: People, Process, Analytics and Technology. Wiley. 

Gilliland, M. (2010). The Business Forecasting Deal. Wiley. 

Gilliland, M., Tashman, L., and Sglavo, U. (eds.) (2015). Business Forecasting: Practical Problems and Solutions. 
Wiley. 

Kolassa, S. and Siemsen, E. (2016). Demand Forecasting for Managers. Business Expert Press. 

Makridakis, S., Wheelwright, S., and Hyndman, R. (1998). Forecasting: Methods and Applications (3rd edition). 
Wiley. 

Makridakis, S. and Petropoulos, F. (eds.) (2020). International Journal of Forecasting, Vol. 36, Issue 1. Special 
issue containing 35 articles with results, analysis, and commentary on the M4 Forecasting Competition.  

Morlidge, S. (2018). The Little Illustrated Book of Operational Forecasting. Troubador. 

Whitepapers and SGF Papers (downloadable) 
Chase, C. (2014) Using Multitiered Causal Analysis to Improve Demand Forecasts and Optimize Marketing 
Strategy.  

Gilliland, M. (2015). Forecast Value Added Analysis: Step by Step.  

Joshi, M. (2018). Economic Capital Modeling with SAS® Econometrics. 

Leonard, M. and Elsheimer, B. (2015). Count Series Forecasting. 

Leonard, M. and Elsheimer, B. (2017). Automatic Singular Spectrum Analysis and Forecasting. 

Quirino, T., Leonard, M., and Blair E. (2018). Scalable Cloud-Based Time Series Modeling and Forecasting. 

Selukar, R. (2017). Detecting and Adjusting Structural Breaks in Time Series and Panel Data Using the SSM 
Procedure. 

https://www.sas.com/store/books/categories/usage-and-reference/sas-for-forecasting-time-series-third-edition/prodBK_68469_en.html
https://www.amazon.com/Next-Generation-Demand-Management-Technology/dp/1119186633/ref=sr_1_2?dchild=1&keywords=next+generation+demand+management+chase&qid=1586359355&s=books&sr=1-2
https://www.amazon.com/Business-Forecasting-Deal-Eliminating-Practices-dp-0470574437/dp/0470574437/ref=mt_hardcover?_encoding=UTF8&me=&qid=1586358726
https://www.amazon.com/Business-Forecasting-Practical-Problems-Solutions/dp/111922456X
https://www.amazon.com/Demand-Forecasting-Managers-Stephan-Kolassa-ebook/dp/B01KKGF2CE/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Forecasting-Applications-Spyros-G-Makridakis/dp/0471532339
https://www.amazon.com/Little-Illustrated-Book-Operational-Forecasting/dp/1789013429/ref=sr_1_4?dchild=1&keywords=morlidge+forecasting&qid=1586358800&s=books&sr=1-4
https://www.sas.com/en_nz/whitepapers/multitiered-causal-analysis-107019.html
https://www.sas.com/en_nz/whitepapers/multitiered-causal-analysis-107019.html
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/forecast-value-added-analysis-106186.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2114-2018.pdf
https://support.sas.com/resources/papers/proceedings15/SAS1754-2015.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0586-2017.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2027-2018.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0456-2017.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0456-2017.pdf
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