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Preface 
When I was a child, two streets away from our home there was a large area of fallow land with a 
small stream, hollows where rain water would accumulate, small groups of bushes that tore at 
one’s clothes and, in the spring and summer, a profusion of wild flowers. On a Sunday afternoon, 
while the grown-ups were doing “important” things, my older brother, Zev, and I would wander 
through these fields. Sometimes, we would dig up a wildflower and bring it home to plant in our 
yard. Other times, we would take soil from different parts, which had different colors, and mix 
them together with creek water to “see what would happen”. We thought of ourselves as 
“experimenting.” (Eventually, Zev went on to become a chemist, and I became a statistician, 
where I dealt with more serious “experiments.”) 

I did not know it, but we were “experimenting” in much the same way as natural philosophers 
had been doing since the time of the ancient Greeks. An “experiment” was when you perturb 
the “natural” order of things to see what might happen. In 1920, years before our “experiments” 
in that fallow field, something happened to this traditional way of “experimenting.” This was the 
arrival of an irascible genius, named Ronald Aylmer Fisher, at an agricultural research station 
north of London. 

This is a book about the revolution that he created in the nature of experimentation. Fisher’s 
innovation was to require that the experiment start with a mathematical model of the 
relationships between things that will be used in the experiment and the observed and 
measured outcome of the experiment. I want to explain the statistical design of experiments to 
readers who have only minimal mathematical knowledge and skills. This is a difficult task 
because Fisher was a consummate mathematician. He had been named “senior wrangler” at 
Cambridge University. This was a title earned by the student with the highest mark on a difficult 
final math exam. Reading his research papers, one has to be ready for him to suddenly pull 
something from the arcane subject of number theory or prove some amazing result by invoking 
multi-dimensional geometry. Aspects of probability theory that Fisher used are now taught in 
graduate courses of advanced calculus. 

Fisher’s innovation has remade the world of science. In most fields, you cannot publish a 
scientific paper describing an experiment if you have not followed Fisher’s dicta. In this book, I 
have tried to explain the statistical theory of experimental design by using examples of studies 
that have succeeded and studies that have failed. Many of these examples are medical studies 
because this is where most of my experience has been. I have tried to avoid mathematical 
notation. Although the use of mathematical symbols and methods clarifies any discussion, there 
are going to be readers for whom even two lines of algebra are impenetrable. Since I cannot use 
the precision of mathematical notation, my “explanations” are relatively vague. It is my hope 
that my examples give such readers an understanding of what is being described.  
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There is only one place in this book where I could not find a way around the mathematics. To 
explain Bayes’ Theorem in Chapter 10, I had to resort to four lines of algebra. Bayes’ Theorem 
falls out of the mathematical description of probability by invoking a symmetry in the notation. 
The result is completely unexpected, and I know of no other way to show where it came from. 

Some readers will find another problem with this book. I describe experiments run on mice and 
rats. Some of them expose the animals to painful stimuli. Some of them involve inducing cancer 
and causing their deaths. We use mice and rats (and other rodents) because their physiologies 
are similar to ours, and we hope that what happens with a mouse is somewhat predictive to 
what might happen with a human. But they are also similar to us in other ways. They seem to 
have emotions. They appear to suffer pain. They are enough like us that we cannot help but feel 
that some experiments are “cruel.” However, it is a fact that some of the experiments that best 
exemplify Fisher’s models are done on living animals, and a great deal of this research has led to 
beneficial medical treatments for human beings. 

So, here it is: Fisher’s great innovation explained by starting with the circulation of the blood and 
the “good” in milk. 
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1.1 The Circulation of the Blood 
In 1628, William Harvey (1578–1657) published the results of his investigations into the nature 
of blood and its circulation. He showed that blood was pumped by the heart to the rest of the 
body through large blood vessels (the arteries) and returned to the heart via smaller vessels (the 
veins). In one of his more spectacular experiments, he placed an evacuated glass column into the 
artery in the neck of a horse and showed how the column of blood moved up and down with 
each beat of the animal’s heart. His careful observations established the nature of blood very 
clearly. He postulated the existence of small blood vessels that connected the two systems, 
although he could not find them.  
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Figure 1.1: William Harvey 

 

Figure source: https://en.wikipedia.org/wiki/William_Harvey  

There was a problem with Harvey’s careful work. The ancient Roman philosopher/physician, 
Galen of Pergamon (130–210 BCE), had stated that there were four fluids in the body that 
carried specific diseases. In addition to “blood,” his other humors were “phlegm,” “black bile,” 
and “yellow bile.” In the Middle Ages, it became the doctrine of the Catholic Church that it was 
impossible to produce new knowledge beyond what the ancient philosophers had written 
because the amount of knowledge had been steadily diminishing since the expulsion of Adam 
and Eve from the Garden of Eden. In fact, the Church had taken the works of philosophers like 
Galen as part of Church doctrine. Who was this William Harvey that he could challenge the 
established knowledge and doctrine? 

About 100 years before Harvey, the Italian mathematician, Gerolamo Cardano (1501–1576) 
wrote a book that he called the Ars Magna, in which he described a new method of calculation 
that had been devised (which we now call algebra). In the introduction to the Ars Magna, 
Cardano states that he realizes that there is nothing new, but he has been unable to find these 
ideas in the works of the ancients. He is presenting this material in hopes that someone more 
knowledgeable would point out where this can be found in the works of the ancients. 

No one ever found the methods of algebra in the works of the ancients, but one member of the 
Church hierarchy did find what was wrong with Harvey’s work. The good bishop noted that 
Harvey had come to his conclusions through experimentation, and, wrote the bishop, it is well 
known that Nature abhors experimentation and will purposely do things wrong if one attempts 
to experiment. 

https://en.wikipedia.org/wiki/William_Harvey
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When I tell this story to experimental scientists, they tend to agree with the 17th Century 
bishop. They tell me about the experiments that went wrong. In a pharmacological experiment, 
a strange virus swept through the lab, and all the mice died. In a clinical study, the wife of one of 
the patients told the doctor that her husband had been flushing the medication down the toilet. 
A carefully laid out agricultural experiment was “knocked for six by some fool of a tractor driver 
hurrying home to his tea via a short cut across the plot” (Salsburg 2001). 

What is an experiment? What is this process that Nature “abhors”? 

This is a book about the use of statistical models to design and execute experiments. These 
models take into account the elements of experimental design that often lead to failing 
experiments. The nature of statistical experimental design will be developed in the following 
chapters with a careful examination of one of the first large statistically based experiments, the 
Lanarkshire Milk Experiment of 1930. There will be side trips looking at other studies (some that 
failed and some that succeeded). The only mathematics that the reader will need to know is 
elementary algebra. The more complicated aspects of experimental design will be referred to 
and described in general without using mathematical notation.  

1.2 The Statistical Model of Experimental Design 
The genius Ronald Alymer Fisher (1890–1962) was the first person to propose the use of 
statistical modeling to design an experiment, his classic text appearing in 1935 (Cochran and Cox 
1992). Before Fisher, experiments were designed and executed at the whim of the experimenter. 
Gregor Mendel (1822–1884), for instance, planted rows of beans and peas, carefully examining 
the frequencies of plants with wrinkled peas, different color leaves, or some other characteristic 
that he found, which seemed to be influenced by specific aspects of the parent plants. He and 
his fellow monks counted and sorted, and he kept planting new seedlings based on what he had 
observed so far.  The data that he displayed in his scientific papers are too perfect to be true. 
When things happen by chance with the probabilities that he proposed, the occurrence of 
specific inherited characteristics is seldom “perfect.” For instance, suppose a given trait is 
recessive, needing copies of the gene from both parents, then the probability that the offspring 
will have that trait is 0.25, but seldom will exactly one fourth of the offspring have the trait. 
There will be plantings where more than or less than one quarter have the trait. In Mendel’s 
publications, the counts that he displays are all exactly “correct.” 

Was Mendel lying? Not exactly. In the 1860s when he published his work, it was common for 
scientists to display results “corrected” so that there were no random variations. The designs of 
reported experiments or sighting (in astronomy for instance) were idiosyncratic to the scientist. 
Results and the degree to which these results agreed with theory were the important thing, and 
experiments were seldom described in sufficient detail for someone else to be able to replicate 
them exactly. 
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Figure 1.2: R. A. Fisher in 1930 

 

Figure source: https://en.wikipedia.org/wiki/Ronald_Fisher  

Fisher was dealing with agricultural experiments, and he realized that the weight of potatoes, for 
instance, depended more upon the rainfall or the general fertility of the soil than it did upon the 
experimental fertilizer dressings being tested. Fisher proposed that an experiment could be 
described with a set of mathematical equations. The general idea was to describe the final 
measurement—call it Y—as dependent upon the various aspects of the experiment that could 
influence the outcome, something like Y = an overall effect uninfluenced by the irregularities of 
weather or soil 

● the effect due to the treatment used in the experiment 

● the effect due to the amount of rainfall that year 

● the effect due to the general fertility of the land being used 

● the effect due to weather conditions other than rainfall 

● an additional effect (hopefully small) due to all the things we cannot account for 

In addition to this algebraic formula, he proposed formulas based on calculus to describe the 
final additive effect (which he called the “error”). 

When put this way, it is obvious that the experimenter needs to be able to estimate the other 
effects before she can estimate the treatment effect. Using such mathematical formulas, some 
possible reasons why experiments fail become clear. For instance, suppose the field is uneven 
and that one specific part of the field consistently produces a higher weight of potatoes than 
another specific part. If the experimenter puts one treatment on the first part and another 
treatment on the second part, then it is impossible to determine how much of the difference in 
output is due to the differences in treatment and how much is due to the differences in fertility 
between parts of the field. Fisher called a situation like this “confounding.” The fertility gradient 
of the field is confounded with the treatment effect. 

https://en.wikipedia.org/wiki/Ronald_Fisher
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Figure 1.3 shows a layout of experimental plantings in 18 small plots of land. Three treatments 
are being compared, and the position of each treatment’s plants varies at random from plot to 
plot. We will examine what it means to assign treatments at random in Chapter 7. 

Figure 1.3: Treatments Assigned at Random Within Blocks 

 

In 1938, soon after Fisher published the Design of Experiments, his student William Cochran 
(1909–1980) spent a year visiting Iowa State University in Ames, Iowa. George Snedecor (1881–
1974) had founded the first department of statistics in the United States and written the first 
undergraduate level textbook dealing with Fisher’s methods and insights. (This was not an easy 
task since Fisher often assumed that his readers were as insightful as he, and parts of his papers 
were almost impenetrable by ordinary mortals). Cochran returned the next year to take a 
position on the Iowa State faculty. There, he worked with Gertrude Cox (1908–1978) to produce 
an undergraduate-level textbook that pulled together all of Fisher’s work on the design of 
experiments and presented the reader with a group of specific designs and their interpretation. 
Cochran and Cox’s Experimental Design (1992) became the “Bible” of statistical design of 
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experiments. It has continued to influence experiments and experimental design well into the 
21st Century.  

Figure 1.4: Gertrude Cox 

 

Figure source: https://en.wikipedia.org/wiki/Gertrude_Mary_Cox 

Recall that, in Fisher’s development of experimental design, the first step is to create a 
mathematical model of the intended experiment. In the chapters that follow, I will examine 
aspects of experiments that become clear only when the experiment is described in terms of a 
mathematical model. To start this journey, we will look at one of the first major experiments 
that used Fisher's insights: The Lanarkshire Milk Experiment of 1930. 

1.3 Summary 
In the 17th Century, Harvey’s discovery of the circulation of the blood was challenged because 
“Nature abhors experimentation.” Until the early years of the 20th Century, scientists used 
idiosyncratic experimental designs, and published results were often ”corrected” to make the 
results fit exactly to the theory being tested. In the 1920s, R. A. Fisher introduced the concept of 
statistically based experimental design where the possible outcomes are described by a set of 
algebraic formulas and the random variation is described through the use of calculus. 

  

https://en.wikipedia.org/wiki/Gertrude_Mary_Cox
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2.1 Pasteurization and the “Good” in Milk 
During the early development of the science of bacteriology in the mid-19th century, many 
dangerous microbes could be found in milk soon after leaving the cow. Louis Pasteur (1822–
1895) found a similar growth of bacteria in the mash used for the production of beer. Pasteur 
suggested that the mash be heated to just under the boiling point in order to kill off the 
unwanted microbes. 

This process, known as “pasteurization,” was also applied to milk in the first quarter of the 20th 
century, and it was shown to reduce the incidence of illness among children who were fed 
pasteurized milk instead of the untreated raw milk. As a result, there was a movement among 
medical authorities to push for legislation that would require that all milk be pasteurized before 
being sold to the public. 

This, in turn, led to a backlash among people who believed that heating the milk destroyed some 
or all of the “good” in the milk. Because of this resistance, very few governments passed 
legislation requiring that milk be pasteurized. It was not until after the Second World War that 
many of the states in the United States of America passed such legislation. In 1973, the federal 
government of the United States began requiring that all milk sold in interstate commerce be 
pasteurized. As of this writing, most western nations require pasteurization of milk and allow for 
raw milk to be sold only under very strict safeguards to inhibit the bacteria in that milk. 

In 1927, when the legislation to require pasteurization of milk was introduced in the British 
Parliament, there were many who believed that pasteurization removed the “good” in the milk. 
This opposition was enough to block passage. The Department of Health of Scotland decided to 
run a study to determine whether this were true. 

What is meant by the “good” in milk? Language has at least two purposes. One is to convey 
information. The other is to convey emotion. These two uses often get mixed up in political 
campaigns or at football games where the audience applauds or even joins in the emotion-laden 
chant. Who, for instance, would want to destroy the “good” in the milk? 

The investigators at the Scotland Board of Health had to find a way to measure the “good” in the 
milk or to count something unambiguously that reflects the “good” in the milk. Doctors Gerald 
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Leighton (1868–1953) and Peter McKinley (1901–1972), who ran this study, decided to look at 
the growth of children, some of them fed pasteurized milk and some of them fed raw milk. They 
could measure the growth of children by measuring the gains in weight and height over a fixed 
period of time. It would have to be a long enough time so that day-to-day fluctuations would not 
have a measurable effect. They could have chosen to look at the days of illness as a measure and 
used adults for the experiment, but this would have been a more variable measure since some 
adults would have had no illness in the period of the study. Similarly, for children, they decided 
not to use days absent from school due to illness.  

One problem with measuring the increase in height and weight is that growth is affected by 
more than the milk consumed. It is very much a function of the child’s economic class. Poor 
children (especially poor children in the 1920s and 1930s when fewer social services were 
available) tend to grow less and more slowly than children from more well-to-do homes. They 
would not want a study in which the children on one type of milk were from different 
backgrounds than those on the other type of milk. (Fisher would call this confounding the social 
status with the effect of the milk). A child’s gain in weight and height is also very much a function 
of genetics. They would not want children of short parents to be compared to children of tall 
parents.  

Oh, the things that can go wrong when you experiment on people! It is far easier to experiment 
on mice, and so, with the reader’s permission, I will digress to look at experiments on mice. 
Although this might disturb some readers, mice are often used on drugs to establish safe dose 
levels and potential efficacy before exposing humans to them. 

2.2 Experiments on Mice  
When using laboratory mice, all the units of experimentation have closely similar genetics and 
are kept in the same environment. The strains of mice used in pharmacological and toxicological 
experiments are ordered from the breeder, who ships boxes of 24 newly weaned mice of the 
same sex from carefully bred dams of very similar genetic background. 

The mice are gregarious creatures and would not last long if housed singly in cages, so the usual 
practice is to house 4–6 mice in a single cage. The mice in cages are kept in the same room under 
controlled climatic conditions. As a result, we have several cages of mice that are as identical as 
possible. 

The only difference between cages is the treatments that we want to compare. Still, something 
might go wrong. A deadly virus might sweep through the colony. So, one or two cages are left 
without treatment. These are the “sentinel” mice. If they take sick, the entire experiment is 
aborted. 
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Figure 2.1: Caged Mice 

 

Figure source: https://www.hrsa.gov/hansens-disease/research/index.html  

In a typical test for cancer treatment, the mice are injected (in the paw usually) with live 
melanoma cancer cells. All of the mice have the same genetic background and the same 
conditions of living. The average time of death per cage is a measure of the efficacy of the 
treatment given the mice in that cage. 

Are all the same? Is it only the treatment that differs? Perhaps, but average time to death is not 
a good measure. True, the conditions and background are as close as we can make them, but, 
even under these conditions, individual mice differ from one another. Suppose the cage starts 
with four animals in the cage. The mice are constantly moving around, jockeying for who will be 
the dominant animal. Then, the disease takes effect, and, one by one, the mice begin to die until 
there is only one mouse left. There is no competition. It does not have to move around, so it sits 
quietly. It lives on and on. Depending on differences that we cannot distinguish, some of these 
solitary remaining mice live longer, much longer than others. This final mouse can increase the 
average when all the other mice have much shorter lives. 

There is another situation where seemingly identical mice differ. Lifetime feeding studies are 
used to look at the results of exposure to drugs or chemicals over a long period of time. The mice 
are usually housed four mice in a cage, in vertical racks that hold six cages. When the first such 
studies were run in the 1960s, they found that the mice in the top cages were dying earlier with 
a larger number of senile lesions. It looked as if there was something in the air about the higher 
cages, so some labs introduced laminar flow air conditioning to maintain the same air 
throughout the room. Still, the mice in the top cages continued to be more sickly. 

The solution to this problem came when one of the toxicologists observed the lab tech who was 
filling the cages from newly arrived boxes of mice. He would open the top cage, reach into the 
box and pull out one animal, then reach down and pull out another, and so on, until he had four 
mice in the cage. He would close that cage, open the next cage and reach down for another 
mouse. What could be wrong with that? 

What was wrong is that all 24 mice in the box were not equally healthy—they never are. 
Reaching into the box, the technician tended to pick up the least lively of the mice, the one that 
did not scoot around as he reached in. The next mouse was the least active of the rest of the 
animals. Once the technician had filled all six cages in the column, the box was empty, so the top 

https://www.hrsa.gov/hansens-disease/research/index.html
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cage in the next column included the least active mice from the next box…and so on. How does 
one deal with a problem like this? Fisher had the answer: randomize. Once the cages are filled, 
the six cages in a column are now randomly re-assigned to different levels.  

Thus, even in the “ideal” experiment where all the test animals have the same genetic 
background and all are subjected to the same environment—even then, differences among the 
test animals can lead to an unexpected bias in the results. If this is true for lab mice, how much 
truer must it be for children who are all raised in different environments and have different 
genetic backgrounds?  

Would it even be possible to design a study whose results would not be twisted in some way by 
the use of different children? Doctors Leighton and McKinley thought they had a way, which we 
will look at in the next chapter. 

2.3 Summary 
In the 1920s, attempts were made to require that all milk sold in the United Kingdom be 
pasteurized to prevent illness and death among children due to bacteria in their milk. This was 
opposed by those who believed that pasteurization took the “good” out of the milk, and the bill 
was defeated in the British Parliament. The Scotland Department of Health set up a study to 
determine whether pasteurized milk was less healthy than raw milk. In planning the study, they 
had to define what was meant by the “good” in the milk. They decided to look at the growth of 
children given either raw or pasteurized milk. The study had to take into account the many 
differences in children that would influence their growth, other than the milk that they drank. 
Mice provide a seemingly perfect example of experimental units that are of the same genetic 
background and have the same environment. However, even in these almost identical 
circumstances, differences in the mice can produce problems in design of the experiments. Two 
examples are given. 
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3.1 “Man Is Not a Big Mouse” 
Bernard Oser (1899–1995) was one of the founders of modern toxicology, and he once published 
an article entitled, “Man is not a Big Mouse.” Let us consider how experiments involving human 
beings differ from those involving mice and how this affected the design of the Lanarkshire Milk 
Experiment. 

One advantage of experimenting on mice is that all the animals are genetically similar and all 
kept in the same environment. In a perfect experiment, we would like to compare two 
treatments, both being applied to the same subject (humans or mice). In fact, as we will see in 
Chapter 8, there is a statistical model developed by Donald Rubin (b. 1943) of Harvard for an 
experiment that postulates two possible outcomes for each experimental unit, one as a result of 
treatment A, the other as a result of treatment B. But before we look at Rubin’s very 
sophisticated model, let us look at how Leighton and McKinley approached the problem in 
planning the Lanarkshire Experiment. 

What they really wanted were pairs of children who were as identical as possible so that one 
member of each pair would get raw milk and the other pasteurized milk. Nature has already 
given us pairs of children with the same genetic background and raised in the same 
environment—identical twins. This would mean finding households where they could make sure 
that the two types of milk were not intermixed in the ice box. (In 1929–30, few households had 
refrigerators but used ice boxes with blocks of ice delivered once a week.) This would call for a 
member of the family (usually the mother) to take on a careful, exacting task while continuing 
her normal duties of making meals, doing the washing, cleaning the house, and taking care of 
her other children. Besides, how many pairs of identical twins could they find? They knew they 
had to get a large number to be able to detect a slight difference in treatment effects. The 
calculation of how many experimental units are needed in a given experiment can be made, but 
only with mathematical ideas that were not fully developed until 10 years after the Lanarkshire 
Experiment. But, even without specific calculations, Leighton and McKinley realized they would 
need far more children than they might find in an identical twins study. 
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How do you choose children who are not identical twins but who are in something close to the 
same environment? The county of Lanarkshire in southern Scotland seemed like a good place to 
start. At that time, the county consisted of only small villages and farms. Choosing children from 
that county meant that the environment would be very similar for all of them. There would not 
be the extremes of wealth and poverty found in big cities. Also, the families living in Lanarkshire 
County had been there for many generations, and almost all were of Celtic background, so the 
genetics would not differ very much. 

As Oser warned us in his famous paper, the children in Lanarkshire may have had similar genetic 
and environmental backgrounds, but they were not big mice. They would differ, some of them in 
fairly dramatic ways. How could they account for those differences?  

Leighton and McKinley did not have the power of a modern computer to help them, but consider 
what they could have done with one.  

In a paper published in 2017, Jose Zabizarreta and Luke Keele of Columbia University (2017) 
were trying to analyze several years of data from the National Educational Census of the nation 
of Chile. In the 1980s, Chile was ruled by a dictatorship, which imposed a number of laws 
implementing very conservative proposals. One of these laws used the nation’s education 
budget to provide vouchers that students could use in public schools or in private schools. The 
National Educational Census collected student test scores on standardized tests, along with 
student names, gender, parent names, and the school attended. Zabizarreta and Keele used the 
data from 2003 to 2006 to follow students and determine their educational gains as a function of 
whether they were in public or private schools.   

Leighton and McKinley did not have the computers available to Zabizarreta and Keele, who 
gathered all the data available on each student and used statistical cluster analyses (involving 
millions of computations) to group together students who were similar with respect to the data 
recorded about them. Although Zabizarreta and Keele did not have identical twins to compare, 
they identified small groups of students who were very much like each other but some of whom 
had been in public schools and some in private schools. (Their conclusions were that there was 
no indication that children sent to private schools did any better than those in public schools 
once children from similar backgrounds were matched against each other.)  

Leighton and McKinley tried to do something like this with the primitive tools that they had. 
They paired off schools that had similar student populations. One school in each of a matched 
pair was provided with bottles, each holding ¾ of a pint of raw milk, to give to the children. The 
other school in the pair was provided ¾ pints of pasteurized milk. They were afraid to provide 
both types of milk to a single school because of the complicated logistics that would be involved. 

In this way, they were able to mount a complex experiment involving 20,000 children.  

3.2 Measuring the “Good” in Milk  
Leighton and McKinley decided that the best way to measure the “good” in milk was to look at 
the gain in weight and height among the children through several months. They would measure 
each child’s height and weight in February and in June. The difference in average height and 
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weight gain would be used to compare children who had been drinking raw milk and those who 
had been drinking pasteurized milk.  

Complications immediately come forward. How do you decide which children would be given 
which type of milk? How do you guarantee that the children assigned a particular type of milk 
would get what they were assigned? And, a very skeptical question, how do you know that milk, 
in either form, plays a role in the increase in weight and height if the children are free to eat 
other foods, including their normal intake of milk? 

You cannot keep children from drinking milk as they normally would. The most you can do is to 
supplement their diet with additional milk (raw or pasteurized). There is an assumption behind 
the design of this study—that additional milk will increase the child’s growth. This meant that 
they really had to have another group of children, those who did not receive an extra ration of 
milk. When you include a group of experimental subjects that receive none of the experimental 
treatments, you are including “controls.” This, of course, makes the experiment even more 
complicated. 

Then, there are the practical problems of running the experiment. Leighton and McKinley could 
not be at the experimental sites each day and supervise the distribution of the milk. They would 
have to depend on teachers or someone else in the schools to keep tabs on the children and the 
milk.  

3.3 Adjusting for Differences among the Children 
At this point, the purity of the experiment has to be changed to take problems like those noted 
in the previous section into account. The people living in Lanarkshire were very similar in 
economic status and genetic background. They would be even more similar if the children given 
different types of milk attended the same school. The possibility of mix-ups could be reduced if 
the children in one school received raw milk, while the children of another school were given 
pasteurized milk—but this would be at the risk of not having comparable subjects. 

In the end, Leighton and McKinley decided that all the children in each school would receive 
either one type of the experimental milk or no extra milk (the controls). They, now, needed to 
“match” the children in each school. Then, the children given extra milk would be as similar as 
possible to the control children given no extra milk.  

How do you match children within schools? They did not have the sophisticated clustering 
computer programs of 2017, and there are many variables to describe socio-economic status 
and genetic background. Do you look at the family income? Do you look at whether the family 
home has central heating? Do you look at the educational level of the parents? And, what do you 
do when two children have parents with the same educational achievements but vastly different 
family income? 

We will look at these questions in the next chapter. 
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3.4 Summary 
Designing a study to compare children given different types of milk runs into problems because 
children differ from each other in many ways that can affect their growth. Identical twins might 
be useful here if one twin is given raw milk and the other pasteurized milk, but there are not 
enough twins to create a proper-sized study, and the distribution of each type of milk would 
depend on a member of the family who would be handing out the milk. Leighton and McKinley 
decided not to match children within schools but to match schools. Modern, computer-based 
statistical clustering methods might be able to match children, but Leighton and McKinley did 
not have that tool. 
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4.1 Matching the Children 
February of 1930 was rapidly approaching. Leighton and McKinley had arranged for the ¾ pints 
of raw and pasteurized milk deliveries. They identified the schools in Lanarkshire County where 
the experiment would be run. They had decided to divide the children in a given school into two 
groups, one to receive an extra ¾ pint of milk per day (raw or pasteurized) and one to receive no 
extra milk and be used as “controls.” 

One problem that they had to face was how to make sure that any biases of the teachers would 
not interfere with the assignment of different types of milk. In a modern study like those 
sponsored by the National Institutes of Health (NIH) of the federal government, there is a 
standard procedure for “blinding” the assignment of treatments. In their report, Leighton and 
McKinley do not describe how they did this, but in a modern NIH-sponsored study, students 
would be assigned numbers, and the bottles of milk would have been labeled at the dairy with 
those numbers, randomly shuffled so that neither the teachers nor the students would know 
what type of milk was being handed out. 

(As a sidelight on nomenclature, it is standard practice to refer to this type of procedure as 
“blinding”—for all except studies sponsored by the National Eye Institute. For such studies, the 
NEI requires that the procedure be referred to as “masking.”) 

These were not mice that they were experimenting on. They were children who came from 
different homes and had different genetic backgrounds. Some of them would fall ill during the 
school year, affecting their growth. Some would engage in greater physical activity than others. 
Some would be well-fed at home. Some would go to bed hungry. It says in the Talmud that when 
an earthly king stamps out coins, they are all alike. When the King of kings stamps out people in 
the image of Adam, they are all different. How much of an effect could the “good” in milk have 
on children’s growth? Is it so small that it would be swamped by all these other factors? If 
Leighton and McKinley kept track of all these other differences in the children, could they find 
some way to “correct” for their influence? Let us look at a simplified version of their problem. 
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Suppose there were only two aspects of the experiment that affected a child’s gain in weight: 
the milk treatment given and the child’s socio-economic status. Suppose, further, that there are 
only two levels of socio-economic status—“poor” and “rich.” One can write a mathematical 
model where the child’s change in weight from February to June is influenced by the treatment 
(raw, pasteurized, or no milk) and by the socio-economic status (rich or poor). 

If the schools where the children were given raw milk had only “rich” children and the schools 
where the children were given pasteurized milk had only “poor” children, then the differences in 
weight gain could be due to either the type of milk or the family status. There is no way of 
determining which. R. A. Fisher, the founder of modern statistical design of experiment theory, 
called this “confounding.” 

4.2 Fisher’s Model 
In Fisher’s case, he was looking at 50+ years of agricultural experiments that had been run at the 
Rathamsted Agricultural Research Station north of London. The typical experiment in the 
Rathamsted archives would dress an entire field of wheat with an experimental fertilizer, and 
the output of that field would be compared to the output of the same field in previous years. Or 
it might compare the output of the treated field that year with the output that same year of a 
particular field that was always left without treatment. Fisher pointed out that the amount of 
rainfall each year had a major effect on the wheat output and that comparing the treated field 
with its previous year’s output confounded the treatment with the difference in yearly rainfall. 
(Recall that by “confounding,” Fisher meant that the two factors being confounded always 
occurred together.) If they compared the treated field with the “control” field in a given year, 
then the differences in fertility from one field to the other were confounded with treatment 
effect. 

Suppose they were to apply both the experimental treatment and the control treatment to grain 
in the same field on the same year. The agricultural scientists claimed they could not do this 
because it was well known that different parts of a given field had different levels of “fertility.” In 
fact, one of the procedures (used before Fisher) was to examine past experiences with a given 
field. Then they would determine a “fertility gradient,” a direction and degree to which the 
field’s fertility diminished. In some previous experiments, they had used the estimated “fertility 
gradient” to add or subtract from the actual yields of different parts of the field. (In one of his 
first published papers, Fisher showed that the whole concept of a simple one-directional 
“fertility gradient” was nonsense.) 

Fisher proposed that they break up the field into small plots and use the fertilizers to be tested 
on different rows of plants in each of those plots. The differences in harvest output would no 
longer be confounded with yearly rainfall since all the treatments would have the same amount 
of rain. The fertility differences between different parts of the field would no longer be 
confounded with treatment since each plot was small enough to have a constant level of fertility 
for all the treatments within it. But, suppose there is a subtle fertility gradient that runs north to 
south. And, suppose you use treatment A on the plants on the north side of each plot and 
treatment B on the south side. Then, the accumulated fertility differences between north and 
south in all the plots would be confounded with treatment effect. 
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You do not know what the subtle fertility gradient is (if it exists). Therefore, you cannot 
counteract the north-south confounding by dividing the plot into east and west, since the 
gradient might run east to west, or some other pattern that mimics any orderly pattern of 
treatment that might be tried.  

4.3 Randomization 
Then came Fisher’s genius. Don’t apply the treatment in any orderly fashion. Randomly switch 
treatments from row to row among the different plots. Recall Figure 1.2 from Chapter 1. The 
different treatments in the University of Georgia example are randomly assigned to each block in 
different patterns in that figure.  

In an intuitive sense, Fisher’s randomization would seem to do the trick. There is no way the 
fertility gradient could shift and twist and turn about to keep up with different random 
arrangements of treatments. The use of random assignment of treatments has become a 
fundamental part of most statistically based experimental designs. Randomization is usually 
posed as a means of counteracting confounding effects, whether they are known about or not. 
In many large complicated experiments, like drug trials in human patients, attempts are often 
made to see whether the randomizations actually “worked,” to see whether there are any 
patterns of other effects that might confound the treatment effect. 

Fisher, ever the careful mathematician, showed that randomization is more than a clever way to 
fool the malevolent “Nature” seen by the 17th Century bishop who sought to prove Harvey 
wrong. Fisher showed that if the treatments are assigned at random, then the probabilities of 
error associated with the experiment can be calculated using a normal or Gaussian distribution. 
This is the famous “bell-shaped curve” that is part of elementary first-year statistics courses. 
Knowing that we can use the normal distribution means that we can calculate the levels of 
uncertainty associated with the conclusions of the study. All that is necessary is that the 
treatments be assigned at random. 

For 60–70 years after Fisher proposed randomization, statistical analyses had to make do with 
these approximations even when the number of observations was not very large. This was 
because any attempt to calculate the exact probabilities was beyond the abilities of one 
statistician and a desk calculator. The modern computer has changed all of that. There are 
computer programs now that will calculate what are known as the “permutation probabilities” 
that result from random assignment of treatment. And, there are purists in the world of statistics 
who insist that permutation probabilities be used instead of their normal approximations. 

In a college course on statistical design of experiments, a great deal of time is spent on the 
problem of confounding. In these courses, confounding is examined in terms of the sets of 
equations that define an experimental design. These can get quite complicated, especially when 
some treatments are tightly linked to possible confounding variables. Experimental designs for 
specific problems have been derived and published in specialized books for many fields like 
psychology and medicine.   

To avoid the problem of confounding the effects of different types of milk and the effects of 
many other ways in which the children’s growth might be affected, Leighton and McKinley chose 
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schools whose student populations had similar background characteristics. They then assigned 
raw or pasteurized milk to different schools at random. To reduce confounding when comparing 
milk to controls, they instructed the teachers to assign students who would receive milk or not at 
random. 

4.4 The Lanarkshire Experiment Begins 
In February 1930, the children arrived in the schools that were participating in the study. They 
were weighed and their heights measured. Information about each child and his or her family 
was recorded on special forms. An indication was made whether the child would (or would not) 
receive a daily ¾ pint of milk. Today, in such a study, the information would be recorded on a 
computer file in a central data office. In 1930, sheets of paper bound into a booklet for each 
child were filled out.   

This recording of data is an important part of any experiment, whether the data are written 
(often in pencil) in a lab notebook, entered into a computer, or entered by means of a scan. The 
human interaction at this point is subject to possible error. The lab assistant who enters the data 
in a lab notebook might have a handwriting difficult to decipher. The scientist who entered the 
data into a computer file might have used a touch-typing setting for his fingers, but, for a brief 
period, his right hand slipped over one key and “weight” became “weogjt.” 

I was once involved with a medical study where the patients were children for whom the dose of 
drug was calculated based on the child’s weight. In one set of case reports, all filled out in the 
same handwriting, whenever the child had a Spanish surname, the same weight—29 kg—would 
be written down.  

At another time, I was involved in a toxicological study of animal pathology. The pathologists 
filled out prepared forms by coloring in the ovals next to the specific pathology findings that they 
saw. These forms (often with spots of dried blood) were fed into a mark-sensing device to be 
turned into a computer file. Each morning, the mark-sensing device had to be “programmed” by 
running a specially marked card through it. After many days of usage, the programming card 
would often become torn. At one point, rather than go to the trouble of marking up a new 
programming card, the technician pasted the old card together with transparent tape. However, 
he failed to line the halves up correctly, and for the next several days, all the data entered into 
the computer were shifted from the appropriate position to the next one in that file. 

Hopefully, the report forms used in the Lanarkshire study were filled in correctly, and the paper 
record was a true representation of what actually happened. We will see in the next chapter 
what happened after Leighton and McKinley sat down to analyze all that data from 20,000 
children. 
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4.5 Summary 
In designing their study, Leighton and McKinley had to find a way of matching children so that 
children given raw milk would be, as much as possible, like the children given pasteurized milk. 
However, there are many ways that differences between children can affect their growth. They 
could differ in family education, in family income, in whether there was adequate food at home 
or they went to bed hungry.   

Fisher’s development of experimental design in agricultural experiments led him to consider 
small plots of land, wherein rows of plants with different treatments would be planted in soil 
with the same “fertility.” To ensure that there were no systematic differences confounded with 
the application of treatments, Fisher proposed randomly assigning treatment to different rows. 
Fisher also showed that random assignment provides a mathematical theorem that the random 
error of the study converges to a normal distribution as the number of plots increases. In the 
Lanarkshire Milk Experiment, pairs of matched schools were assigned to be either raw or 
pasteurized milk stations. In each school, children were randomly assigned to be given the extra 
¾ pint of milk or no additional milk (the controls). 
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5.1 Gossett’s Criticism 
Look at Figure 5.1. It describes average heights of children from the Lanarkshire Milk Experiment. 
Before we pull it apart to see what it actually tells us, note that the most remarkable aspect is 
that the average heights of the children who were controls (no extra milk) is consistently greater 
than the average heights of children who were given extra milk. The lines for those given extra 
raw milk and those given extra pasteurized milk keep crossing and re-crossing, suggesting no 
difference between the two forms of milk. 

Figure 5.1: Results of the Lanarkshire Experiment 
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Figure 5.1 is from a paper written by William Sealy Gossett, whose published papers are 
attributed to “Student” (Biometrika 1931). The Lanarkshire Milk Experiment appeared to have 
been a failure. There was no consistent indication that children given raw milk fared any better 
than children given pasteurized milk. However, the study also seemed to show that the children 
who were given no extra ration of milk did better than those who received either raw or 
pasteurized milk. Gossett was sent by the Royal Statistical Society to examine the circumstances 
and the data associated with the Lanarkshire study.   

Let us pull Figure 5.1 apart. In this display, the children are grouped by age. Along the top of the 
figure, the age grouping is defined. Along the bottom of the figure are the numbers of children 
given no milk, raw milk, and pasteurized milk in each age group. Each segment of the graph 
shows the average height of that group of children in February (at the start of the study), 

indicated by a “.”. The end of each segment, indicated by an “x”, shows the average height of 
that group in June. If we wanted to compare height gain in children given raw milk versus 

children given pasteurized milk, we would look at the difference, “x” minus “.”, but Gossett 
chose this display because it illustrates very clearly the main problem that he found with the 
study. The children kept as controls were, on the average, heavier and taller than the children 
given extra milk of either type. 

In 1933, Ethel Elderton published a paper in the journal, Annals of Eugenics (1933), in which she 
examined the data from the Lanarkshire Experiment in great detail and tried to locate groups of 
children who were very similar in initial height and weight in order to compare the three 
treatments. The better effect on the control children still held in her careful balancing. There was 
also some indication that the older girls on raw milk did better than those on pasteurized milk. 
However, a word of warning. Francis Anscombe (1918–2001), the long-time chairman of the Yale 
University statistics department, once wrote about what he called “will o’ the wisps.” If you look 
at a large amount of data (20,000 children, 27 schools, three treatments) and if you hunt long 
enough, you are bound to find interesting relationships that are nothing more than random 
glitches in the data and that have no predictive power for any other set of related data. 

(Having mentioned Ethel Elderton (1878–1954), I should digress a little and describe this 
remarkable person. In 1849, Bedford College opened in London as the first college in the United 
Kingdom to provide higher education to women. Elderton was one of their most celebrated 
graduates. Sir Francis Galton had founded the Biometrical Laboratory in London to study the 
statistical properties of human measurements and health. He needed to engage in extensive and 
repetitive computations, so he hired women to be his “computers.” One of them was Ethel 
Elderton, whom he hired away from her teaching position. She quickly became one of his most 
trusted assistants. When Karl Pearson assumed control of the Biometrical Laboratory after 
Galton retired, he also leaned heavily on Elderton to organize and interpret the extensive 
calculations that he needed. The pages of the two journals that he controlled, Biometrika and 
the Annals of Eugenics, contain many articles attributed to E. Elderton. A brief biography and 
references to more of her achievements can be found in the entry in the References. 
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5.2 What Went Wrong 
What went wrong in Lanarkshire County, Scotland, in the winter and spring of 1930? Gossett 
traveled among the schools and asked questions. 

A number of the teachers admitted that they had purposely assigned the extra milk rations to 
the children from poorer homes. After all, Lanarkshire consisted of farms and small villages 
where people had lived generation after generation and knew each other. The teachers were 
from the same towns and were also aware of which children came to school hungry. The 
Lanarkshire experiment did not test the difference between raw and pasteurized cow’s milk. It 
tested the milk of human kindness.  

Ethel Elderton noted that the children were weighed with their clothes on and speculated that 
the children from richer homes would have been weighed in February with more and heavier 
clothes than the poor children. However, that would have skewed the results in a different 
direction since the children from more wealthy homes would have been wearing heavy clothes 
in February and lighter clothes in June. Any effect of such confounding would have made the 
gain in weight for the controls less, suggesting that the difference between controls and treated 
was even greater. 

5.3 Mismanaged Experiments 
Studies involving people are often marred by unforeseen prejudices and errors. H. Fairfield Smith 
had been a student of Fisher’s in the early 1930s. The late 1930s found him in British Malaysia, 
working for a rubber company that had plantations of rubber plants. He related to me the 
following story. 

The rubber trees were tapped, and the sap drained out for a few days until the tap sealed up. 
Then the tree would be tapped in another spot. The question arose as to whether it was better 
to tap the tree on the north or on the south side. It was decided to select a stand of trees and 
tap each one on both the north and the south side simultaneously. The difference in the amount 
of sap recovered would show if one side or the other had an advantage. 

Perhaps, someone suggested, the effects of direction are really based on an east/west 
comparison. So, it was decided to compare north, south, east and west. However, they did not 
want to tap a given tree in more than three places, lest the large number of taps harmed the 
tree. 

North, south, east, or west, but only three on any given tree! Fisher’s theories of the statistical 
design of experiments had, in fact, considered just such a situation. Furthermore, H. Fairfield 
Smith had published several papers on what were called “incomplete block designs.” Using the 
theorems of abstract algebra that are needed to consider complicated designs like this, Smith 
drew up a plan that would enable the research team to test east versus west and north versus 
south. He prepared diagrams of tree trunks with the appropriate places of taps indicated, and 
the rubber tappers were sent out to the trees with bundles of these diagrams. 
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However, the rubber tappers were, for the most part, illiterate and had no appreciation for the 
subtle mathematics behind Smith’s plans. All they understood was that they needed to put three 
taps on each tree. The result was a collection of data from trees, some of them tapped three 
times on the same side, some two on one side and one on another, and so on. Smith’s 
incomplete block design was in shambles. 

The data that he was given from the study consisted of drawings of circles with the place of the 
three taps indicated and with the output of each tap recorded. He drew an east/west line across 
the circles for each of the trees. If all the taps were on one side of that line, he discarded that 
data. If some taps were on both sides of the east/west line, he averaged the output of the taps 
on the south side and of the taps on the north side and took the difference as a single data point.  
He told me this story to illustrate that, in any sufficiently well-designed study, you can always 
aggregate data to a point where you have individual answers to the question posed and use the 
variability among those aggregates to estimate the level of uncertainty. 

This is what Ethel Elderton did with the Lanarkshire study data. Her conclusions were that there 
were no substantial differences in the growth of the children whether they were given raw or 
pasteurized milk. The slight weight advantage of raw milk for older girls entering puberty could 
be one of Anscombe’s will o’ the wisps—so much for the “good” in the milk! 

The teachers had been told to choose the children for the extra ration of milk at random. But 
they were never told how to choose at random. So, how do you choose at random? We will look 
at that question in the next chapter. 

5.4 Summary 
The Lanarkshire Milk Experiment produced a strange “finding.” The children given no extra milk 
(the controls) were heavier, taller, and gained more in weight and height on the average than 
the children given an extra ration of milk. There were no clear differences in growth between the 
children given raw and those given pasteurized milk. William Sealy Gossett was sent to 
investigate why the controls (no extra milk) did so much better than the others. He found that 
the teachers had been told to choose the children at random for extra milk. However, many of 
them took pity on the children from poorer homes and assigned them to receive the extra ration 
of milk. Ethel Elderton tried to analyze the study by matching children within groups. An example 
of another botched study of tapped rubber trees showed how it was possible to recover the 
essential parts of a study as Elderton did, provided the study was properly designed. 
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6.1 Random versus Haphazard Treatment Assignment 
How does one go about randomizing, anyway? The teachers in Lanarkshire County did not do it 
correctly. They gave the milk to the poorest children, thereby confounding the difference 
between milk drinkers and controls with the difference between poorer and richer families. If 
they were to assign milk at random, how should they have done it? 

First of all, random assignment does not mean haphazard assignment. Humans tend to have 
orderly minds, so if they try to assign treatments at “random” without any structure, the 
haphazard result is bound to have structure and patterns in it. Let us consider what is meant by 
“random assignment.” 

Suppose we could write down all the possible ways in which different treatments could be 
assigned to the children. “Random assignment” means that each of these possible ways is 
equally probable. If there are 1,000 different possible assignments, then we choose one with 
probability 1÷1,000. 

How do you choose a set of treatment assignments that are drawn at random from all possible 
assignments? In a simple case, this is easy to do. Suppose you have four children and two 
treatments, A or B. There are six possible assignments: 

ABAB 
ABBA 
AABB 
BABA 

Initially, to 

BAAB 
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You can make a token for each of the six possible assignments, shake them up, pull one out, and 
use that assignment. However, if you want to assign a larger number of children to treatment at 
random, the number of tokens you will need to have for all possible assignments gets extremely 
large. 

Another method that allows for all possible assignments to be equally probable is to start with a 
table of random numbers. Suppose we know that there are 100 or fewer possible assignment 
patterns. Suppose we have some means of choosing a two-digit number in such a way that all 
the numbers from 00 to 99 are equally probable. (This is called a “uniform distribution.”) Initially, 
to get uniformly distributed random variables, R. A. Fisher went to the most recent census of 
Great Britain and looked at the populations of individual towns. He took the last two digits of 
each town’s population and listed them in a table. It can be shown with a mathematical proof 
that the least significant numbers in a series of population counts are uniformly distributed. 

For instance, here are the 2014 populations of eight towns in the state of Connecticut: 

Andover 3,272 
East Hartford 51,033 
Monroe 19,867 
Sherman 3,671 
Ansonia 18,959 
East Haven 29,044 
Montville 19,635 
Simsbury 23,975 

The last two digits in this set of number are 

72 
33 
67 
71 
59 
44 
35 
75 

If there are any duplicate numbers in the set, one of each duplicate is thrown out. It can be 
shown that numbers chosen in this way come from a set of uniformly distributed random 
numbers from 00 to 99 

Fisher’s table sufficed for much of his early work, but you cannot use the same sample of 
random numbers over again without destroying the theoretical properties of numbers drawn 
from that table. In order for the different experiments to be properly “randomized,” Fisher 
needed another and larger table, so he and his student Frank Yates (1902–1994) went to a table 
of logarithms. They took the 10th through the 19th digits of each logarithm until they had 15,000 
digits from 0 to 9, which they put into pairs. (The logarithm of a number, N (denoted log(N)), is 
the solution to the equation: 10log(N) = N.) 
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Several other tables of random numbers were published for the next 50 years, culminating in a 
large volume generated by the Rand Corporation (2001). Using the time between emissions of 
beta rays from a radioactive substance, they constructed one million random digits arranged in 
groups of five. Martin Gardner (1914–2010), whose column discussing mathematics appeared in 
Scientific American for many years, called this the “epitome of the 20th Century.” Not only did no 
other century produce such a book, but no one in a previous century would have ever thought of 
making such a book. 

The Rand tabulation of a million random digits has an introduction, explaining how to use the 
book. You do not open it “at random.” After all, the first few uses of the book would have broken 
the binding. Any future attempt to let the book fall open where it might well bring you back to 
the same region. Here is how one should use the book.  

1. Open “at random” and choose a number “at random.” Suppose that number is 47174. 
2. The first three digits, 471, tell you what page to go to. 
3. The next digit, 7, tells you to start in the 7th row of numbers on that page 
4. The next digit, 4, tells you to go four numbers into that row and start there. 

Only then are you ready to have a truly random set of numbers. 

6.2 Using Random Numbers to Assign Treatments 
Now that we have a sequence of random numbers, how do we use that to assign treatments at 
random? This is best described in an example. Suppose we want to assign three treatments to 21 
children. Let the treatments be identified by P (for pasteurized), R (for raw), and C (for controls). 
We start with 21 random numbers (which I drew out of a table in a widely used textbook by 
Dixon and Massey (1969)): 

36 
43 
31 
84 
78 
41 
13 
82 
25 
69 
46 
38 
04 
01 
70 
73 
87 
92 
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47 
67 
11 

Write symbols for treatments next to each number.  

36 P 
43 P 
31 P 
84 P 
78 P 
41 P 
13 P 
82 R 
25 R 
69 R 
46 R 
38 R 
04 R  
01 R 
70 C 
73 C 
87 C 
92 C 
47 C 
67 C 
11 C 

Then order the numbers, smallest to largest, along with treatment assignments: 

01 R 
04 R 
11 C 
13 P 
25 R 
31 P 
36 P 
38 R 
41 P 
43 P 
46 R 
47 C 
67 C 
69 R 
70 C 
73 C 
78 P 
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82 R 
84 P 
87 C 
92 C 

Thus, as the children enter the classroom, the assignments are R R C P R P P R P P R C C R C C P R 
P C C.   

That is how you randomize assignment of treatments, not haphazardly, not with an eye toward 
the poverty of the child, but strictly following a random sequence of uniformly distributed 
random numbers. 

We now have all the tools needed, the mathematical model, the identification of blocks within 
which to apply treatments, the avoidance of confounding, and the use of random assignment. 
We can now go out and run a properly designed experiment. Except that there are times 
when…but that is the subject of the next chapter. 

6.3 Pseudo Random Numbers on the Computer 
In actual practice, the Rand Corporation’s book of a million digits has been superseded by 
computer programs called Random Number Generators. Of course, the computer is unable to 
“create” anything that is truly random. It can only follow the instructions of the programmer, 
which are determined (not random) in advance. A computer program that can generate 
uniformly distributed random numbers or engage in any other complicated analysis is called an 
“algorithm.” It produces what are known as “pseudo random numbers.” For readers who are 
interested in such details, section 6.4 of this chapter describes how a pseudo random number 
generator works. 

There are a couple of problems with these pseudo random numbers. Once the sequence of 
“random” numbers repeats a number that has been seen before, the generator repeats all the 
numbers that came after it. It cycles. In fact, for many random number generators, the cycle can 
be quite short, 5–10 numbers. Using mathematical number theory, it is possible to set a lower 
bound on how many numbers a generator will produce before it cycles. Random number 
generators that are used in carefully constructed software are usually set to stop before that 
lower bound is reached.  

There is another problem with pseudo random number generators. Mathematician George 
Marsaglia (1924–2011) plotted successive pairs of pseudo random numbers and discovered that 
the plots fell into orderly parallel lines. Nobody knows what this means because the pseudo 
random numbers met all the conditions of uniform random variables. But it was disturbing to 
have this regularity hidden in the sequence. A “solution” to Marsaglia’s problem is what is 
known as a shuffle random number generator. In a shuffle generator, there are two sequences 
of pseudo random numbers. One is used to generate the random numbers that will be used. The 
other generates a number from 1 to 10 at random. When the program is initialized, the main 
generator creates 10 random numbers, which are stored in slots labeled 1 to 10. When called 
upon, the program generates a new random number and a number from 1 to 10. The new 
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random number is stored in the slot determined by the second generator, and the number that 
was in that slot is used. This destroys the regular pattern that Marsaglia found. 

6.4 How a Pseudo Random Number Generator Works 
A random number generator starts with two large numbers that are relatively prime, that have 
no factors in common. Prime numbers are numbers that have no proper divisors other than 1. 
The first eight prime numbers are 3, 5, 7, 11, 13, 17, 19, 23.  

The number 21,505 is the product of 5, 11, 17,and 23. The number 5,187 is the product of 3, 7, 
13, and 19. Since they share no divisors in common, division of one of them by the other will 
produce a remainder infinite decimal. In this case, if we divide 21,505 by 5,187, we get 
4.14979757… The first five digits of the remainder, 14979 is the first “random number.” This first 
random number, 14,979, is then divided by 5,187, yielding 2.88779641… and our second random 
number, 88779. In turn, 88,779 is divided by 5,187, and so on. For each random number 
generator, specific pairs of starting numbers, called “seeds,” have been extensively tested to be 
sure the random numbers that they produce have a uniform distribution and lack any correlation 
between successive numbers. Useful seeds have been determined for each random number 
generator. 

6.5 Summary 
Randomization of students to treatment starts with a table of random numbers, numbers whose 
order is purely random. Early tables of random numbers used the final digits of populations of 
English towns. Fisher and Yates took the central digits from pages of calculated logarithms. The 
Rand Corporation produced a book of one million random numbers based on times between 
emission of beta rays from a radioactive substance. Modern computers use pseudo random 
number generators that are dropped before reaching a cycling point. 

This chapter shows, from an example, how to use random numbers to establish random 
assignment of treatments in an experiment. 
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7.1 Observational Studies 
William Cochran (1909–1980), co-author with Gertrude Cox of the first textbook on design of 
experiments, creator of Cochran’s C test, Cochran’s Q test, and Cochran’s Theorem, was 
chairman of the newly formed Department of Statistics at Johns Hopkins University from 1949 to 
1957. The public housing authority of the city of Baltimore was concerned that placing families in 
public housing projects might lead to breakup of those families. There was anecdotal evidence 
that putting families in the “sterile” environment of public housing has caused breakups of some 
of those families. The housing authority developed a questionnaire that measured the degree of 
family cohesiveness in a given family, and they wanted to test whether public housing made a 
difference as measured by that instrument.  
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Figure 7.1: William Cochran 

 

Figure source: https://www.york.ac.uk/depts/maths/histstat/people/cochran.gif 

They were about to open a new block of public housing, and they came to the Johns Hopkins 
Statistics Department to see how they might use this opportunity to run an experiment and 
determine whether public housing changed the level of family cohesiveness. Cochran took on 
the case. The solution was fairly obvious. Cochran (along with Gertrude Cox) had written the first 
textbook that covered Fisher’s theories and methods in detail and that provided designs for 
specific types of studies. All the housing authority had to do was to take the families who had 
applied for public housing and randomly assign new housing to some and leave the others as 
controls in their current situation. How many families should be involved in this experiment? 
That was also easily solved using tables in the text by Cochran and Cox. 

There was only one problem. The housing authority had told the families applying for public 
housing that the new homes would be provided on a first-come-first-served basis. They would 
lose their credibility if they allowed a computer (and a pseudo random number generator, at 
that) to decide who would get these coveted spots. 

Can you run an experiment where the treated families would be different from the non-treated 
families because the first ones to apply would surely be different in their attitudes and 
cohesiveness than those who applied later? Isn’t this like the Lanarkshire study where the 
children from poorer homes got the extra milk? 

Suppose, Cochran mused, we could identify other factors that affect family cohesiveness and 
measure those factors on all families. Suppose we use those other factors to predict the change 
in family cohesiveness and compare the two groups of families’ scores after we subtract the 
predicted effect of these other factors. How could they do that? 

https://www.york.ac.uk/depts/maths/histstat/people/cochran.gif
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In fact, Fisher had already provided the answer. In one of his papers, Fisher had considered the 
combined effect of treatment on both the weight of the wheat produced and the weight of the 
straw. If the treated plants were affected by the fertilizer, then this should result in an increase 
in both wheat and in straw. Fisher found a way to account for that nuisance accumulation of 
straw. He called it the “analysis of covariance” and provided the mathematical techniques 
needed to subtract the influence of the treatment on the production of straw. Cochran applied 
the analysis of covariance to the “experiment,” which did not use random assignment. 

In the end, the housing authority study showed that there was a slight increase in the average 
score of family cohesiveness for the families moved to public housing. This held in spite of the 
anecdotal evidence that some families broke up after moving to their new homes. 

Cochran described this study in a paper that he published in the journal Biometrics (1968). In the 
paper, he called this an “observational study.” The basic idea was that one could compare 
treatments even when the treatment assignment has not been random, provided you have 
enough information about the possibly confounding variables to estimate their effect. Cochran’s 
observational study approach was to have an unexpected effect on modern medical research. 

7.2 The Development of “Evidence-Based Medicine” 
R. A. Fisher’s formulation of the statistically based experimental design quickly caught on in a 
number of fields. In 1925, he published a book entitled, Statistical Methods for Research 
Workers (1970), which eventually went through 14 editions in English and more than 10 foreign 
language editions. There are no mathematical proofs in this book, just descriptions of statistical 
methods that can be used to design and analyze experiments. By the beginning of World War II, 
statistical methods had come to dominate experiments in sociology, psychology, pharmacology, 
chemistry, anthropology, and even archeology. In all these fields, one could find a copy of 
Fisher’s Statistical Methods for Research Workers on the shelves of almost everyone engaged in 
running experiments, and this book is often included in the list of references. 

One exception was the field of medical science. If you look into a medical journal from the 1930s 
or the 1940s, you will find it dominated by case studies. The typical article would describe the 
patient’s symptoms, a differential diagnosis, the treatment given, and the outcome. If not case 
studies, then a typical article would describe a series of patients presenting with the same 
symptoms, the author’s proposed etiology, and the outcomes of treatments. This was how 
medicine had advanced for hundreds of years. In the hands of a perceptive physician like Sir 
William Osler in the late 19th Century, it produced remarkable insights into the nature of illness, 
as did Osler in his identification of congestive heart failure. 

In the hands of less perceptive physicians, however, it produced medical “cures” like powdered 
mummy to counteract poisons, and bleeding to reduce fever. This was how medicine had been 
taught since the time of the ancient Roman philosopher Galen. 
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7.3 The DES Debacle 
In the late 1930s, pharmacologists had identified a class of estrogens, female hormones deeply 
involved in the birth process, and chemists began creating synthetic analogs. One of these was 
Diethyl-Silbesterol (DES), which had a long half-life, so it remained in the body longer than 
naturally occurring estrogens. In 1938, it was approved by the Food and Drug Administration of 
the United States for the treatment of acute acne. 

But many obstetricians thought DES might have another use. Some of them began injecting 
pregnant women who had had a history of miscarriages with high doses of DES. They reported 
remarkable success, particularly in the Boston area. Women who had suffered two or three or 
even four prior miscarriages were carrying their babies to full term. In the cases where the 
treatment failed, the leaders of this new therapy recommended increasing the dose—until the 
average dose being used was more than seven times the dose recommended for severe acne.  

In a 1949 issue of the journal Obstetrical and Gynecological Survey, Dr. O. Watkins Smith of the 
Free Hospital for Women in Brookline, Mass., reported on a series of pregnant women who had 
been treated with DES. This became one of the most widely cited papers in that field over the 
next few years. Dr. Smith reviewed 589 cases, dividing them into 219 where spontaneous 
abortion was “threatened,” 272 where the DES was used prophylactically, and 98 with 
premature delivery. He reported that 73% of these women had “live and well babies.” He 
compared this to his prior experience where over half of such patients would be expected to 
have miscarriages. 

Opposed to the long heritage of case studies that was traditional in medicine, randomized 
controlled studies based on Fisher’s model were being proposed for medicine in the early 1950s. 
Austin Bradford Hill (1897–1991) of the Medical Research Council in the United Kingdom and 
Joseph Berkson (1899–1982) of the Mayo Clinic in the United States were advocating the use of 
randomized controlled trials instead of case studies to investigate medical claims. 

7.4 Deickmann’s Study 
In 1951, Dr. William Deickmann (1897–1957) of the University of Chicago School of Medicine 
began entering pregnant women into just such a trial. Eventually, he had 1,940 women who met 
his entrance criteria in that trial. Unknown to the patients, half of them had been given DES and 
half had been given saline injections. Under modern ethical guidelines, he should have asked the 
women if they would want to be part of a study, explained the nature of the study, and given 
them the opportunity to opt out. However, at that time, DES injections for women suspected of 
having difficulty was the standard of care, and Deickmann did not see the need to notify the 
patients. 

When he published the results in 1952, he showed that both the placebo and DES groups had 
exactly the same incidence of miscarriages. Deickmann’s results were eventually corroborated 
by controlled studies in the United Kingdom and in Scandinavia. The supporters of DES claimed 
that Deickmann had not used the “right” type of patient. If he had restricted his study to women 
who were “prone” to miscarriage, he would have had a different result. However, Deickmann’s 
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entrance criteria were exactly the same as the indications the obstetricians who “discovered” 
DES had used in deciding which women should be treated. 

In spite of these clear findings, DES continued to be used for this purpose well into the 1970s, 
and it has been estimated that over 10 million women were treated worldwide. However, 
Deickmann’s study was a wake-up call to the editors of medical journals and leading professors 
at medical schools. Following the publication of his study, editorials began to appear in the 
medical journals noting the need for controls, that individual case reports or series of patients 
were inadequate to establish either the safety or efficacy of a given treatment. The effects of the 
treatment on patients had to be compared to similar patients who had not been so treated in a 
properly randomized study.   

Eventually, this perceived need for controls evolved into today’s insistence on evidence-based 
medicine among the leaders of the medical community. The randomized controlled clinical trial 
is now considered the gold standard for evidence-based medicine. Most important medical 
journals ceased publishing case studies and descriptions of series of patients. One journal, 
Lancet, did continue to publish these but under the heading, “Preliminary Reports.” 

7.5 The Misuse of Observational Studies 
However, it is very difficult to mount a double-blind randomized clinical trial. It is far easier to 
follow a group of patients given different treatments (but not chosen at random) by practicing 
physicians. Cochran’s paper describing observational studies came as a godsend to many in the 
medical field. As a result, journals began to publish comparisons of treatments that had not been 
randomly applied but that were the result of the medical judgment of the attending physician 
and calling them “observational studies.” Seldom, however, do these meet the criteria proposed 
by Cochran for what he called an observational study. 

Since the beginning of the 21st century, exciting new insights have been made about the nature 
of probability and statistical design, and a new type of design has been—but that is the subject 
of the next chapter. 

7.6 Summary 
William Cochran coined the phrase “observational study” to describe a study where it is 
impossible to randomize individuals to treatment and the analyst has to use baseline data to 
account for inherent differences among the subjects that might influence the final outcome. He 
called these “observational studies.” The term “observational study” has come to be used in 
many situations where subjects are not randomized to treatment and no attempt is made to 
provide the types of correction Cochran proposed. The DES debacle is described as an example 
of problems that arise in medicine when studies do not have adequate controls. 
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8.1 Crossover Designs 
Let us start with the cow, the source of the milk. In a modern dairy farm, the cow is primarily a 
machine that makes milk. She is artificially inseminated with carefully selected bull sperm. She is 
pregnant for around 280 days. A few days after birth, the calf is weaned from its mother and fed 
a gruel of cooked grain. The mother cow is now ready to be milked two or three times a day. Can 
we find feed additives that increase amount of milk from the cow? 

Figure 8.1: Cow Being Milked 

Figure source: https://www.loc.gov/resource/fsa.8b23639/  

https://www.loc.gov/resource/fsa.8b23639/
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Suppose we experiment with two different additives to the grain that she is fed. Call them 
additive A and additive B. The reader should now know the design that we need to use: 
randomly assign cows to A or B and measure the amount of milk produced in the A-treated cows 
versus the B-treated cows. However, different cows produce different amounts of milk. In 2016, 
Gigi, a cow in Wisconsin, produced a record 75,000 pounds of milk in one year (Holstein 
Association USA 2016).The typical cow produces around 2500 pounds of milk a year (Holstein 
Association USA 2016). If Gigi were assigned treatment A and ordinary Bessie treatment B, then, 
regardless of what the other cows produce, the average output for cows treated with A would 
be much greater than the average output of cows like Bessie. 

The amount of milk that a cow produces on a given day changes from day to day, but the day-to-
day differences for any one cow are much less than the difference in output between one cow 
and another. In order to reduce the amount of variability (measured by the variance of the error 
term in Fisher’s model from Chapter 1) it makes sense to try both treatments on each cow. In 
this type of study, cows are randomly assigned to either treatment A or treatment B for the first 
week. Then they are crossed over to the other treatment for the next week. This is a crossover 
design. Each cow is her own control. 

There is one problem with this crossover design when used to compare the milk output of cows. 
The amount of milk a cow gives each day steadily diminishes from the time she gives birth. Even 
champion Gigi produced most of her record amount of milk in the first few months of 2016. At 
the end of one year, a cow’s daily output could have been as much as half her initial daily output. 
Thus, the treatment effect on the output of milk is confounded with the order in which the 
animals are treated.  

(Recall that to say “treatment is confounded with order” means the following: the algebraic 
formulas that define the experiment show that whenever treatment changes, so does order. 
Therefore, it is impossible to disentangle the effects of treatment from the effects of this steadily 
diminishing output from each cow.) 

Theoretically, we could randomly assign treatment orders to a very large group of cows and 
compare the average output. However, when it is over, someone is bound to point out that we 
randomized Gigi to go from A to B, and ordinary Bessies went from B to A. How do we know 
whether the deterioration in output is the same for supercow Gigi as it for the others? 
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Figure 8.2: Schematic of Cross-back Design 

 

In order to determine whether feed additives can increase the amount of milk, university studies 
run for the dairy industry use a “cross-back design.” Half the animals are randomized to be 
treated by A, then by B, then by A. The other half goes from B to A to B. See Figure 8.2. Since the 
output of milk is steadily decreasing for each cow, the amount of milk in the first treatment can 
be averaged with the amount of milk in the third treatment, and the amount of milk in the 
middle treatment compared to this average. The BAB cows are treated the same way. Thus, if 
Gigi happens to be in the ABA group, the relative difference between A and B can be 
determined, not by Gigi’s immense output in general, but by the relative difference between A 
and B for Gigi. 

8.2 Carry-over Effects 
In clinical research, there is a strong temptation to use the patient as his or her own control. 
Different patients respond differently to the same treatment, and human responses to medical 
treatment often contain a high level of “placebo response,” where the act of being “treated” is 
often enough to bring relief, even when the “treatment” is only a sugar pill. For this reason, it is 
often useful to “use the patient as his own control,” applying both the treatment being tested 
and placebo to the same patient at different times. 

There is a problem with crossover designs when the patient has a chronic disease like diabetes. 
Symptoms of chronic diseases fluctuate and, often, patients are entered into clinical trials when 
the disease is at its worst. So the measured symptoms of disease will often have an improving 
trend over time, regardless of treatment. This is much like comparing the milk output of Gigi and 
Bessie, but there is an added wrinkle in clinical studies. 

Medical treatment seldom provides immediate relief over a short interval of time. Often, 
extensive time is needed for the treatment to take effect. Drugs given by mouth have to be 
absorbed, enter the blood stream, do whatever they are designed to do, and then remain in the 
blood as the drug is slowly metabolized and eliminated from the body. The amount of time the 
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drug is still “working” in the blood is estimated using a statistical model of probability known as 
an exponential distribution. This particular model implies that small amounts of drug will remain 
in the body for a very long time. The delay in elimination is measured by the “half-life” of the 
drug—the amount of time needed for half the drug to be eliminated. Thus, for a drug with a 12-
hour half life, the patient’s blood will have half the dose taken after 12 hours, one-fourth of the 
dose after 24 hours, one-eighth of the dose after 36 hours, and so on. 

In a crossover study comparing treatments A and B, this means that the effects of the previous 
treatment remain (albeit at a reduced level) when the second treatment begins. One way to 
eliminate the carry-over effect is to have a “wash-out” period between the two treatment 
periods. The “wash-out” time has to be great enough to make sure that almost all the effect of 
the first treatment to be over. But chronic illnesses have their own natural ups and downs. If you 
wait too long before giving the second treatment, the patient’s condition might be drastically 
different. In that case, you lose all the advantages of having the patient as his own control. 

Recall that the statistical design of experiments starts with a set of equations that describe the 
course of the study in terms of the observed values (indicated in Roman letters) and controlling 
parameters (indicated in Greek letters) that have to be estimated from the observed data. When 
involved in a cross-over study, those equations can include an element to describe the 
diminishing carry-over effect of the first treatment. 

One advantage of having this set of equations to describe the study is that we can determine the 
conditions necessary for us to be able to estimate the values of unobserved parameters like the 
carry-over effect. 

8.3 Latent Response Models 
This brings us to the work of Donald Rubin of Harvard. Rubin set up mathematical descriptions of 
the probabilities associated with a study. This mathematical description can contain symbols for 
every conceivable aspect of the study, whether they can be observed or not. For instance, if 
there are two treatments, the model can include the response of each subject to each of the 
treatments. A particular patient will be given only one of the treatments, but the mathematical 
function contains a Greek letter for that subject’s latent “response” to the treatment not given. 
Rubin goes even further, including symbols for the carry-over effect and for missing variables. 
Once the nature of the experiment is laid out this way, these mathematical functions can be 
used to predict differences in response and relationships between the observable values. 
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Figure 8.3: Donald Rubin 

 

Figure source: https://statistics.fas.harvard.edu/people/donald-b-rubin  

For instance, we can examine the detailed mathematical model of the probabilities of response 
to determine which factors can be isolated. We can look at different methods for estimating the 
values of the parameters in the model. Most important, we can look at the structure of the 
probability and decide which questions can and cannot be answered using the data from this 
study.  

8.4 Summary 
When animals used in experimentation differ greatly from one another, the study can have a 
crossover design. In such a design, each unit of experimentation is given both treatments that 
are being compared, one after the other. There are problems with crossover studies. The 
measurements being made might be steadily changing, regardless of treatment. In such cases, 
the effects of that trend have to be subtracted off when comparing two treatments. In some 
crossover studies, there is a carryover effect from the first treatment to the time of the second 
treatment. Different designs are used to account for these problems. Donald Rubin of Harvard 
has developed a wide range of designs based on the course of measurement over time.  
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9.1 Fisher’s Model 
Statistical design of experiments began with Fisher’s work on agricultural experiments. Recall 
that Fisher split the experimental field into small plots, each plot sufficiently small so that the 
variation in fertility across the plot is negligible. Then, within each plot, he planted rows of 
plants, each row with a different treatment. Finally, the rows used for specific treatments were 
chosen at random. This schema is displayed in Figure 9.1. 
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Figure 9.1: Treatments Randomized within Blocks 

 

Let us use Fisher’s more general terminology. He called the individual plots “blocks.” So his 
experiment consisted of “blocks” and “treatments.” For a given block, the average weight of 
grain (putting all the treatments together) was a measure of the fertility of that block. For each 
treatment, the average weight of grain (putting all the values for each treatment in all the blocks 
together) was a measure of the efficacy of the treatment.  
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There is a widely used measure of the variability of a group of observations called the “variance.” 
If you ignore the division of the field into blocks and treatments, but just look at all the weights 
of all the rows in all the blocks, you can estimate the overall variance of the experiment. With a 
little manipulation of the mathematics involved in these estimations, it turns out that  

(overall variance) = (variance of blocks) + (variance of treatments) + (the underlying “error” 
variance of the measure used) 

This last element of the equation Fisher called the “error variance.” If the treatments differed in 
effect, then the ratio  

(variance of treatments)÷(error variance)  

will be large. Furthermore, that ratio will also tell us how great the differences in effect are 
among the treatments. Fisher called this procedure, “analysis of variance.” 

Keep in mind Fisher’s basic abstraction: 

Blocks + Treatment + Error. 

There is nothing in this abstraction about wheat or potatoes in an agricultural field. It can be 
applied to many other types of experiments. The “blocks” could be schools and the “treatments” 
different methods of teaching. The “blocks” could be batches of steel and the “treatments” 
different methods of annealing. The “blocks” could be states of the United States and the 
“treatments” different minimum wage laws. As we saw with the work of Fairfield Smith, the 
“blocks” could even be rubber trees and the “treatments” different angles for the taps. 

The analysis of variance and experimental study designs involving “blocks” and “treatments” 
form a model used in almost every scientific field. Computer software for running analyses of 
variance is available in almost all commercial packages used in scientific work. 

9.2 “Errors” to “Residual” 
When I first went to work for Pfizer Pharmaceuticals in their clinical research department, I was 
one of a group of statisticians being hired by pharmaceutical companies because the FDA was 
now requiring that they prove their new drugs were efficacious, using clinical studies that 
followed Fisher’s pattern. The whole idea of statistical design and analysis was new to medicine 
at that time, and few in the company’s senior management had even seen a formal statistical 
analysis with analysis of variance tables. 

I generated the standard analysis of variance tables for one of the clinical studies. This bothered 
a member of senior management. Here, in my table, I had indicated a line for “error.” What 
errors? Had we made “errors” in this study? he asked me. I explained that this was the standard 
table produced by standard computer software. He said, “I still don’t like the word ‘error’.” 
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I called a statistician I knew, who had been working for a food company for years, and asked her 
if she had ever run into this problem. She laughed and said that, indeed, her senior management 
was reluctant to admit “error.” In their analysis of variance tables, they called this final bit the 
“residual.” And so, in the material we sent to Washington, the analysis of variance tables listed 
lines for  

Clinics + treatment + residual. 

In mathematics, we often use ordinary words (like “error”) but give them exact and restricted 
meanings. This can cause confusion among readers who use these words in a more vague and 
general sense. For instance, throughout this book, I have used the words “estimation” or 
“estimator” to describe the process of using observed data in a specific way to calculate a value 
for an unknown parameter (indicated by a Greek letter in the algebraic formula used to describe 
the experiment). In ordinary language, these words often carry an overtone of wild guessing. In 
statistics, “estimators” are always used to reach hard conclusions.   

9.3 Extensions of Fisher’s Model 
Consider now the amazing flexibility of Fisher’s simple analysis of variance. Suppose, for 
instance, that the row of wheat seeds given treatment A in one of the plots failed to germinate. 
What should be done with this missing data? You can go to the set of equations that describe 
the experiment, insert a dummy symbol (Greek letter) for the missing value, manipulate the 
mathematics, and come up with an estimate of the missing value. This was done early in the 
development of statistical design by Frank Yates (1902–1994), and most computer packages will 
use Yates’ correction to estimate missing values. 

Another problem that can arise is when there is not enough “room” in the blocks to apply every 
one of the treatments being examined. This leads to an “incomplete block design.” This type of 
design was investigated by Fairfield Smith and was applied to the problem of determining if the 
direction of the tap had an effect on the amount of rubber tree sap recovered. 

The blocks used in a designed experiment need not be identified in advance. As an example, 
consider a clinical study with a high drop-out rate. The ethics of a study in humans require that 
the study subjects be free to leave the study whenever they want. In some long-term studies, 
the patients are brought into a clinic for several hours of measurement at each visit. In some of 
those studies, patients are put through exercise tests or undergo invasive evaluations. In such 
studies, some patients drop out. Sometimes the clinician knows the reason for the drop out 
(such as no improvement in symptoms). Other times, the patient just fails to show up. She might 
have moved. She might have been hospitalized for a non-related problem. 

9.4 Propensity Scores 
What can be done in such cases? We have early measures of efficacy on these drop out patients, 
but seldom enough to evaluate the full course of the experimental treatment. In 1983, Donald 
Rubin and Paul Rosenbaum of the University of Pennsylvania produced a method of analysis 
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known as “propensity scores”. Here is how propensity scores are being used in tackling the 
problem of early patient drop-out: 

Taking just the material available at baseline, they run a statistical analysis (using a method 
known as log-odds regression) with which they determine the degree to which baseline variables 
predict the probability that this patient will drop out, which they called the “propensity score.” 
Once they have these scores, they can order the propensity scores and divide patients with 
similar propensity scores into blocks. Like the varying fertility among the blocks in an agricultural 
experiment, the varying propensities to drop out can be used to block patients into groups. 

Propensity scores can be computed for other elements that interfere with the full completion of 
a clinical study. Rubin and Rosenbaum’s propensity scores have been widely used in modern 
clinical research. This has been especially true in areas like cardiology, where many minor 
problems with patient compliance can result from complicated protocols. 

Now comes a question that has bedeviled the use of analysis of variance since it was first used 
on experiments other than Fisher’s agricultural experiments. Consider Fisher’s plots of land, the 
blocks in which he planted his different experimental seeds. His blocks do not get up and wander 
all over the field. They are fixed in advance, and all the unexplained randomness can be summed 
up in the error term. But what about Rosenbaum and Rubin’s propensity scores (predictions of 
probability of drop out developed out of the data from the study)? You do not know in advance 
which patients will end up in which blocks. The division of patients into blocks depends on the 
predictions of the propensity scores. Whether a given patient would drop out is a random event. 
Thus, the division of patients into propensity groups is the division of patients based on random 
events. Fisher’s mathematical derivation of analysis of variance assumed that the blocks were 
fixed and contained no random element in their definition. If the boundaries of the blocks are 
random events, Fisher’s derivation will not work out. Fortunately for the future of statistical 
design of experiments, Fisher later recognized this problem and worked out the mathematical 
derivations needed when the boundaries of the blocks are random events. 

Why is it important to know whether the blocks are fixed in advance or arise at random as the 
study continues? It changes the criteria for deciding if a “significant” difference has been seen 
between treatments. Which of Fisher’s two derivations is appropriate in analyzing the data? If 
the blocks were fixed, and you used the random block analysis, then you will miss important 
differences in treatment effects. If the blocks were random and you used the fixed block 
analysis, you will flag differences among treatments as “significant” when, in fact, the 
differences can be attributed to random noise. 

It seems obvious when comparing blocks of patients with similar propensity scores or when 
comparing results in agricultural field studies. But what about studies of hereditary problems? 
Are families fixed or random blocks? Real-life problems are seldom as obvious as the examples 
found in textbooks. 
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9.5 Regression 
In addition to developing new studies of artificial fertilizer for Rothamsted, Fisher kept plowing 
through what he called 50+ years of “muck”—the experimental data derived before Fisher. One 
field had been left untouched by the different experimental fertilizers and had been used as a 
control to compare against the treated fields. Careful records had been kept of rainfall, weed 
infestation, type of seed used, times of planting and reaping, and so on. Was it possible to 
predict the field’s output, using only these measures of weather and other natural conditions 
during the time the plants were growing? 

Francis Galton (1822–1911) had addressed a similar problem in the last decade of the 19th 
century. He had set up a biometric laboratory in London and invited families to come and be 
measured. He had hoped to establish the nature and heredity of intelligence by looking at both 
children and parents. Measurement of intelligence proved to be very difficult, but he was able to 
measure their heights and weights and examine the effects of heredity on these measures. 

Figure 9.2: Sir Francis Galton 

 

Figure source: https://en.wikipedia.org/wiki/Francis_Galton 

It made sense, to Galton at least, that children of tall parents should be tall and that children of 
short parents should be short. He compared the heights of tall fathers to the heights of their 
sons and the heights of short fathers to the heights of their sons. He discovered that, on the 
average, sons of tall parents were shorter than their fathers and sons of short parents were taller 
than their fathers.  

After some thought, Galton realized that this had to be true. Suppose the sons of tall fathers had 
averaged their fathers’ heights and sons of short fathers had averaged their fathers’ heights. 
Then, in each generation there would have to be some sons of tall fathers who were taller than 
their fathers and some sons of short fathers who were shorter than their fathers. If this 

https://en.wikipedia.org/wiki/Francis_Galton
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happened generation after generation, then the human populations would include some 
extremely tall men (well over 10 feet?) and some extremely short men (well under 1 foot?). 

Galton called this (now obvious) phenomenon “regression to the mean.” He proposed a general 
biological principle: in any species, there is a theoretical mean configuration toward which all 
individuals tend. 

(At this point, we are using the highly specific meanings of words in mathematics. We distinguish 
between the “mean” and the “average” in this fashion. The “average” is computed from a group 
of observations. The average is the sum of all the observed values, divided by the number of 
observations. The “mean,” on the other hand, is a theoretical parameter of a probability 
distribution. It is represented by a Greek letter in the mathematical formulas. It is the center of 
the probability distribution, and, in most situations, it is best estimated by the average of the 
observed data. Galton’s “regression to the mean” refers to the theoretical center of a 
distribution.) 

Fisher, ever the consummate mathematician, worked out the mathematical relationships that 
represented regression to the mean. He noted that these formulas for regression could be used 
in any situation where you have a set of imperfect “predictors” and final outcomes. Galton’s 
formula could be used to predict a future outcome based on these predictors. Fisher called this 
mathematical model “regression.” Although it has been used for problems far afield from the 
inheritance of height, this technique of analysis is still called regression. When embedded in an 
analysis of variance, Fisher called this analysis of covariance. It was this analysis of covariance 
that William Cochran used in defining observational studies. 

9.6 Uses for the Computer 
For most of his professional life, Fisher had to do all his calculations on a hand cranked desk 
calculator. The algorithms that he invented were designed to be used on a desk calculator. 
Analysis of covariance, as defined by Fisher, involves tedious calculations that can take hours on 
such a calculator.  

With a modern computer, I can write the mathematics and ignore the difficulties that might arise 
during the calculations that were difficult or impossible on a desk calculator. The modern 
computer can now read such complicated mathematical formulas and grind away generating 
solutions. Russell Wolfinger at SAS Institute is a leading scientist in the use of computers for 
complicated calculations. He has created programs that are part of the commercial software 
available from the SAS Institute. Using these programs, modern statisticians have been able to 
make the computer engage in statistical calculations that were once thought to be intractable. 

Among these are problems involving more complicated experiments where the treatments are 
randomized among more than one type of block, so Fisher’s equation becomes: 

Overall variance(Y) = (variance of block type I) + (variance of block type II) +…+(treatment 
variance) + (error variance). 
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Wolfinger’s programs can deal with situations where some of the block divisions are random and 
some are fixed and where missing data consists of much more complicated types than 
envisioned by Yates. These modern computer programs usually start by putting the problem into 
one big regression equation, examining the relationships among the variables that can affect the 
output, and then calculating the results for patterns of equations that can be solved for this 
unique set of data. 

These computer programs often require millions of calculations. The computer is not like Fisher 
sitting at his desk calculator. It does not have a wife and children to go home to. It does not have 
an arm that gets weary of pulling the lever. It does not worry whether the results make sense. It 
just grinds on and prints out its results. 

The modern scientist running a complicated experiment does not need to know how the 
mathematics work, but she or he has to be able to interpret the output of the program and 
needs to understand the nature of the data. When I run an analysis of data, I first look at the 
data that will be crunched by the computer. I let the numbers stream slowly across the 
computer screen, looking for anomalies. If these are rats in a toxicological experiment, I know 
that there is a problem if one of the rats is recorded as weighing several thousand grams. If it is 
an agricultural study, there might be a section of the field where the plants have stunted growth. 
If it is an experiment designed to determine whether pasteurization takes the “good” out of the 
milk, I would want to see whether all the children given extra milk came from the poorer 
families. 

But the subject of cleaning data is a topic for another book than this one. 

9.7 Summary 
Fisher’s first designs used small plots of land (called “blocks”) into which he planted rows of 
grain, each with a different treatment. He showed that the simple formula 

Observation = treatment + block + error   

carries over into the variability due to different parts of the design, where variability is measured 
by the variance of the observations 

(overall variance) = (variance between treatments) + (variance between  

       blocks) + (error variance)  

and that the differences in output due to different treatments can be tested by the ratio 

(variance due to treatments)÷ (error variance). 

This method of analysis is called “analysis of variance.” Frank Yates used Fisher’s formulations to 
propose a method of dealing with missing data. 
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In dealing with more complicated situations, Fisher took Francis Galton’s concept of “regression 
to the mean” and generalized it (under the name “regression”) to take care of the influence of 
other elements besides treatment. The modern computer has enabled the statistician to deal 
with much more complicated problems. However, even the most complicated computer 
program starts with a model descended from Fisher’s analysis of variance structure. 
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Note to the reader: In all the other chapters, I have been able to explain the basic ideas without 
resorting to mathematical notation. In this one chapter, I have had to use mathematical notation 
because Bayes’ Theorem falls out of a symmetric relationship in the mathematical notation and 
makes sense only within the framework of those mathematical formulas. 

10.1 What is Probability? 
In the 18th century, there was a Swiss family of mathematicians named Bernoulli. There were the 
brothers, Johann (1667–1748) and Jacob (1654–1765), and Jacob’s son Daniel (1706–1787). 
Although the Bernoulli family was in the spice business, these three all became professors of 
mathematics at different universities. They were busy measuring and counting. They were 
followers of Galileo who, about 100 years before, had insisted that knowledge can only be 
gained by careful measurement. The Bernoullis measured air pressure, the flow rates of water, 
the weights of different substances, and Daniel decided to look at probability. 

The concept of probability had been around for a long time. In the Babylonian Talmud (which 
records the debates of the rabbis of the 1st and 2nd centuries of the common era), the principle is 
stated that, if there are two interpretations of the law and if one is as probable as the other, 
then the more lenient one should be used. Aristotle is recorded as saying, “It is the nature of 
probability that improbable things will happen.” The concept of probability in these ancient 
discussions referred to something that is not quite certain, and no attempt was made to put a 
number on it or to compare one probability with another. 

The Bernoullis started with games of chance. The probability of getting a 6 with one throw of a 
six-sided die was  

1÷6 = (no. of favorable outcomes)÷(no. of possible outcomes)=1/6 

The probability of getting a “6” or a “1” was 

2÷6 = 1÷3 = 1/3. 
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Thus, with games of chance, probability was measured on a scale from zero to one. No matter 
how complicated the game, the basic idea was that probability of an outcome equals  

(number of ways to gain that outcome)÷(total number of possibilities).  

And, it would always be a number between zero and one. 

Following this lead, mathematicians could measure probability whenever there was a well-
defined set of possible outcomes. Through the rest of the 18th and most of the 19th centuries, 
probability calculations were a sidebar in the development of mathematics. To calculate 
probabilities, mathematicians used tricks in calculating combinatorial events.  

By the time Karl Pearson (1857–1936) came on the scene in 1898, the mathematics of 
probability was a large bag of somewhat related formulas that produced probabilities for specific 
types of outcomes. To understand Pearson’s innovation, consider a living animal as some type of 
a machine, with muscles and blood all moving about. Anything the animal does starts with 
discharges of nerve cells, programmed to influence blood flow and muscle movement. We can 
conceive of the initial nerve discharges as the accumulation of a large number of small changes 
or events. The normal probability distribution describes random events that originate as a sum 
of a large number of small random events. 

However, Pearson went a little further. We do not measure the discharges of nerve cells. 
Instead, we measure the final outcome, the purposeful movement of some muscle. Pearson 
proposed that this final measurement is a distortion of the initial, normally distributed random 
variable. Its passage through a living animal to our measuring instrument causes the probabilities 
to be distorted. Pearson assumed that this distortion was smooth and consistent. Using calculus 
and that one assumption, he derived a class of probability distributions that he called the “skew 
distributions.” He spent much of his professional life after that collecting large amounts of 
biological data and fitting them to members of his skew distributions. 
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Figure 10.1: Karl Pearson 

 

Figure source: https://en.wikipedia.org/wiki/Karl_Pearson 

Soon after Pearson developed his theory of skew distributions, a group of German physicists 
(Albert Einstein among them) found that they had to describe the positions and relationships 
among sub-atomic particles in terms of probabilities, producing methods of calculation known as 
quantum mechanics. 

In the 1920s, John Maynard Keynes (1883–1946) was working on his Ph.D. thesis. In that thesis, 
he proposed that probability lies at the heart of human activity. People, he claimed, have an 
innate sense of probability that enables them to anticipate events. You cross a street after 
observing very few cars because you conclude that the probability of getting hit by a car is low. 
You do not need to propose specific numbers for these personal probabilities, Keynes noted, you 
only need to have a feeling for the relative probabilities of different outcomes. You also do not 
need to know all probabilities. He gives the example of someone looking for a book bound in 
buckram on a library shelf. In that search, there is no need to know the probabilities that the 
book’s binding is red or green. 

In the 1950s, L. J. Savage (1917–1971) picked up on Keynes’ ideas and a similar set of ideas 
proposed by Bruno de Finetti (1906–1985) and built an entire theory of probability based on this 
idea of personal probability. Savage showed that personal probabilities are just like Bernoulli’s 
probabilities that were based on games—as long as they fulfilled a condition that he called 
“coherence.” If a person believes that the probability of some event A is less than the probability 
of B and that the probability of B is less than the probability of C, then to be coherent, that 
person has to believe that the probability of A is less than the probability of C. 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKarl_Pearson&data=02%7C01%7CCatherine.Connolly%40sas.com%7C7f6b43863df8493df42e08d84f773d8a%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637346720845743039&sdata=IvEvvraaQk%2B0bBh6KLDQawotPQrHzFtQYN03Ut6pjIE%3D&reserved=0
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10.2 Thomas Bayes and “Inverse Probability” 
The Reverend Thomas Bayes (1702–1761) was a dissenting minister of the Anglican Church, 
which means he did not subscribe to the full body of doctrine espoused by the Church. (Recall 
that it was an Anglican bishop who, a hundred years earlier, had proclaimed that William 
Harvey’s proof of the circulation of the blood was wrong because it went against established 
doctrine and because Nature abhors experimentation.) 

Figure 10.2: Thomas Bayes 

 

Figure source: https://en.wikipedia.org/wiki/Thomas_Bayes 

We know of Bayes in the 21st century, not because of his doctrinal beliefs, but because of a 
mathematical discovery, which he thought made no sense whatsoever. He was one of the 
correspondents of the Royal Society in London. The correspondents were natural scientists from 
all over Europe who sent letters to the Royal Society to be read at their meetings, which 
described their investigations into chemistry, physics, biology, natural science, or any other 
aspect of what was then known as “natural philosophy.” Most of Bayes’ communications have 
been superseded by later work, but one communication (which he never sent to the Royal 
Society) has immortalized his name. 

To understand Bayes’ Theorem, we need to refer to this question of the meaning of probability. 
As noted earlier in this chapter, the Bernoullis proposed that probability could be measured as a 
number between zero and one, and they examined probabilities in terms of games of chance. In 
the 20th century, John Maynard Keynes and L. J. Savage proposed that probability was something 
that an individual uses to organize life—the concept of personal probability. 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FThomas_Bayes&data=02%7C01%7CCatherine.Connolly%40sas.com%7C7f6b43863df8493df42e08d84f773d8a%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637346720845753032&sdata=zBQTwNv%2By%2Baloq0%2FJD4ywgZZ36p%2BQtyk0HsJ82mUlx8%3D&reserved=0
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However, probabilities get invoked in situations that do not involve games of chance and that 
are not “gut feelings” of individuals. Quantum physics uses probability calculations to examine 
the inner nature of atoms and subatomic particles. Statistical design of experiment uses 
probability calculations to separate the effects of treatments and blocks. The meteorologist on 
television tells us the probability of rain tomorrow. 

In the 1930s, the Russian mathematician Andrey Kolomogorov (1904–1987) proved that 
probability was a measure on a space of “events.” It is a measure, just like area, that can be 
computed and compared. To prove a theorem about probability, one only needed to draw a 
rectangle to represent all possible events associated with the problem at hand. Regions of that 
rectangle represent classes of sub-events. For instance, in Figure 10.3, the region labeled “C” 
covers all the ways in which some event, C, can occur. The probability of C is the area of the 
region C, divided by the area of the entire rectangle. Anticipating Kolomogorov’s proof, John 
Venn (1834–1923) had produced such diagrams (now called “Venn diagrams”). Venn was a 
British philosopher interested in the development of symbolic logic. 

Figure 10.3: Venn Diagram for Events C and D 

 

Figure 10.3 shows a Venn diagram for the following situation: We have a quiet wooded area. The 
event C is that someone will walk through those woods sometime in the next 48 hours. There 
are many ways in which this can happen. The person might walk in from different entrances and 
be any of a large number of people living nearby. For this reason, the event C is not a single 
point, but a region of the set of all possibilities. The event D is that the Toreador Song from the 
opera Carmen will resound through the woods. Just as with event C, there are a number of ways 
in which this could happen. It could be whistled or sung aloud by someone walking through the 
woods, or it could have originated from outside the woods, perhaps from a car radio on a nearby 
street. Some of these possible events are associated with someone walking through the woods, 
and those possible events are in the overlap between the regions C and D. Events associated 
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with the sound of the Toreador Song that originate outside the woods are in the part of region D 
that does not overlap region C.  

The area of region C (which we can write P(C) and read it as “P of C”) is the probability that 
someone will walk through the woods. The area of region D (which we can write P(D)) is the 
probability that the Toreador Song will be heard in the woods. The area of the overlap between 
C and D (which we can write P(C and D) is the probability that someone will walk through the 
woods and that the Toreador Song will be heard. 

If we take the area P(C and D) and divide it by the area P(C), we have the probability that the 
Toreador Song will be heard when someone walks through the woods. This is called the 
conditional probability of D, given C. In symbols 

P(D|C) = P(C and D)÷ P(C) 

Some people claim that if the conditional probability, P(C|D), is high, then we can state “D 
causes C.” But this would get us into the entangled philosophical problem of the meaning of 
“cause and effect”—a subject that belongs in another book. 

To Thomas Bayes, conditional probability meant just that—cause and effect. The conditioning 
event, C, (someone will walk through the woods in the next 48 hours) comes before the second 
event D, (the Toreador Song is heard). This made sense to Bayes. It created a measure of the 
probability for D when C came before. 

However, Bayes’ mathematical intuition saw the symmetry that lay in the formula for conditional 
probability: 

P(D|C) = P(D and C)÷ P(C) means that 

P(D|C)P(C) = P(D and C) (multiply both sides of the equation by P(C)). 

But just manipulating the symbols shows that, in addition, 

P(D and C) = P(C|D) P(D), or 

P(C|D) = P(C and D)÷ P(D). 

This made no sense to Bayes. The event C (someone walks through the woods) occurred first. It 
had already happened or not before event D (the Toreador Song is heard). If D is a consequence 
of C, you cannot have a probability of C, given D. The event that occurred second cannot “cause” 
the event that came before it. He put these calculations aside and never sent them to the Royal 
Society. After his death, friends of Bayes discovered these notes and only then were they sent to 
be read before the Royal Society of London. Thus did Thomas Bayes, the dissenting minister, 
become famous—not for his finely reasoned dissents from church doctrine, not for his 
meticulous calculations of minor problems in astronomy, but for his discovery of a formula that 
he felt was pure nonsense. 
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P(C|D) P(D) = P(C and D) = P(D|C) P(C). 

For the rest of the 18th century and for much of the 19th century, Bayes’ Theorem was treated 
with disdain by mathematicians and scientists. They called it “inverse probability.” If it was used 
at all, it was as a mathematical trick to get around some difficult problem. Starting in the early 
1930s, R. A. Fisher found himself in dispute with another mathematical genius of the 20th 
century, Jerzy Neyman (1894–1981). Neyman was busy cleaning up some of Fisher’s work and 
proposing carefully reasoned modifications. In his responses, Fisher sometimes accused Neyman 
of using inverse probability. 

10.3 Bayes’ Theorem in Practical Use 
Since Fisher’s time, Bayes’ Theorem has proved to be an important element in the statistician’s 
bag of “tricks.” Consider the problem of locating a downed aircraft in a mountainous terrain. The 
searchers have the plane’s last known position and its course and speed at the time. The 
searching aircraft can break the regions of potential crash into small areas, each one capable of 
being searched in a single pass. Knowledge of the downed plane’s position, course, and speed at 
last contact provides the searchers with probabilities of the crash for each of these small search 
areas. The obvious thing to do is to search first in the areas of highest probability. Let us suppose 
that the initial sweep over the most probable sites did not discover the crash. They could go on 
to less probable areas. However, they know from the terrain and the type of search plan that the 
probability of finding a crash, if it is in a given area, is less than 100%. In fact, the probabilities of 
finding a crash site, given that it is there, can be calculated from previous searches for similar 
areas. 

Bayes’ Theorem is used to adjust the probabilities that the crash is in a given area, based on 
these prior probabilities that a crash could not be seen in a given area in a single pass. These 
adjusted probabilities are then used to plot a new round of area searches. 

Fredrick Mosteller (1916–2006) and David Wallace (1928–2017) wrote a classic book on the 
identification of authors, based on their use of non-contextual words (1964). In most languages, 
and particularly in English, we link together the words needed to express an idea with words that 
are not involved in the actual context of the subject but are needed to keep the sentences in 
good grammar and understandable. These are words like “or,” “while,” “then,” ”of,” “to,” “and,” 
and “also.” The frequencies of the occurrence of specific non-contextual words are unique to a 
given writer since they are used unconsciously as the writer composes her or his works. 

Examining the use of these non-contextual words across many authors, Mosteller and Wallace 
proposed that we could estimate the rate at which a given author uses each word. For instance, 
one author might average the use of “also” 15 times in every thousand words. Another author 
might use it more frequently, averaging 40 times in every thousand words. The average rate at 
which an author uses “also” is unique to the individual writer, and, if we have enough material 
written by that person, we can get a good estimate of its value. Since we cannot observe this 
underlying average but can only estimate it from the data that we have, we call this number a 
“parameter” (an “almost measurement”) that has to be inferred. 
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But Mosteller and Wallace had some additional information. By examining works of other 
authors written in different centuries and in different countries, they could see that the 
parameter describing the average number of times any individual author uses “also” could be 
thought of as a random variable whose distribution changes from century to century and from 
country to country. For instance, the word “whilst” is used infrequently by modern American 
authors, but it is used very often in the United Kingdom today or in 18th-century America.  

Here is a place where we can use Bayes’ Theorem to turn the different author-specific estimates 
into a probability with higher order parameters. If we knew the prior distribution of the 
frequencies of the use of “also”  among authors who were contemporaries, we can detect which 
author wrote which paper with greater certainty.  

Thus, we have  

1. Probability of observed data as a formula involving parameters. 
2. Prior knowledge that enables us to have a formula for probability of these parameters. 
3. Use of observed data to refine the probability distribution of the parameters. 

Or, to put it more succinctly, 

Prior knowledge  observed data  posterior knowledge. 

Since his understanding of probability was based on his understanding of “cause and effect,” 
Bayes saw his theorem as implying that an event that comes first “causes” an event that comes 
after with a certain probability, and an event that comes after “causes” an event that came 
“before” (foolish idea) with another probability. If you think of Bayes’ Theorem as providing a 
means of improving on prior knowledge using the data available, then it does make sense. 

10.4 Bayes’ Theorem in the Design of Experiments 
The experimental scientist seldom runs an experiment without having some idea of what the 
result should be. In 1887, Albert Michelson (1852–1931) was the first person to accurately 
measure the speed of light. (In fact, his experimental results produced profound problems for 
physics, which were finally solved by Einstein’s special theory of relativity.) To do so, Michelson 
set up an experiment where a beam of pure white sunlight was sent on paths of mirrors down 
two different lengths. His measurement of speed used the relative lengths of the paths that 
produced rings of interference when the two resultant beams were merged. 

Michelson did not begin these experiments without some prior knowledge of approximately 
what that speed might be. With this prior knowledge, he threw out the results of several runs 
that clearly produced “wrong” answers. Thus did 18th and 19th century science advance because 
good scientists like Michelson used their prior knowledge to select specific sets of data and 
reject others. In the hands of less capable scientists, fields of research like phrenology were 
cluttered with “findings” that resulted from arbitrary selections of data.  
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At this writing, Bayesian methods have become respectable in the statistical literature, and 
computers are busy invoking elaborate mathematical calculations that enable the scientist to 
incorporate prior knowledge into the interpretation of data. The use of Bayesian methods has 
not only influenced the interpretation of data, it has also influenced the design of experiments. 

In 1995, Kathryn Chaloner of the University of Minnesota and Isabella Verdinelli of the University 
of Rome published a review of the then current uses of Bayesian techniques in experimental 
design. Chaloner and Verdinelli looked at a large number of scientific papers where Bayesian 
techniques had been used to modify experimental designs and found a way to put them into a 
single unifying concept. This is the way applied mathematics advances. Different approaches to 
problems are found to be all based on some overall simplifying idea. 

In the case of Bayesian experimental design, Chaloner and Verdinelli looked at all these 
problems from the standpoint of statistical decision theory. In statistical decision theory, the 
scientist considers a given problem as having a number of choices that can be made. The costs 
associated with the possible consequences of each choice are listed, along with the best 
estimate of the probability that a particular consequence will result from that choice. The 
optimal choice is the one with the lowest average cost over all possible consequences. 

Abraham Wald (1902–1950) was the first to propose statistical decision theory as a unifying 
approach for what appeared to be many different ideas. Once put into the framework of 
decision theory, the arguments between Fisher and Neyman became greatly clarified. This is 
what happened with the Chaloner and Verdinelli paper. The basic idea is that the experiment is 
designed so that prior knowledge about the potential outcomes of different choices can dictate a 
design with the minimal average “cost.” Randomization is still there, but it is restricted so that 
number of experimental units that are used in specific blocks or treatments depend on prior 
uncertainty. 

Bayesian experimental designs often require vast amounts of computing to reach the design and 
to analyze the results. Many of the Bayesian algorithms would have been impossible to use in 
the days of the hand-cranked desk calculator. However, we now have the modern computer, 
which does not complain if we command it to do millions of calculations. Inverse probability 
might not have made sense to Thomas Bayes, but it does to the computer. 

10.5 Summary 
The concept of probability was vague and qualitative until the 17th century when Daniel Bernoulli 
suggested that probability could be measured on a scale from 0 to 1.0. The first calculated 
probabilities were based on games of chance. But probability proved useful in many other fields. 
The 18th and 19th centuries saw the development of complicated probability calculations. Karl 
Pearson suggested a family of probability distributions in the late 19th century and derived their 
formulas by assuming that the probability of some biological event can be thought of as 
originating from a normally distributed probability but is distorted in its passage through a 
biological event. He called these “skew distributions.” Many other systems of related probability 
distributions have since been proposed. 
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While dealing with conditional probabilities, Thomas Bayes uncovered a basic symmetry in the 
idea of conditional probability. Since he saw conditional probability as a form of “cause” and 
“effect,” his newly discovered concept appeared to show that an “effect” could produce its 
“cause.” However, Bayes’ Theorem has proven very useful when the experimenter has some 
prior knowledge and wants to incorporate that into his or her design. In general, Bayes’ Theorem 
allows the experimenter to go beyond the experiment with the concept that experiments are a 
means of continuing to develop scientific knowledge, so 

(Prior knowledge)  (observed data)  (posterior knowledge) 
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11.1 Measurement in Experiments 
Statistical models use mathematics, and mathematics is based on numbers. Thus, any statistical 
design of an experiment requires that we measure something or count something 
unambiguously. However, very frequently, the situation that we want to examine in an 
experiment starts with a vague idea, where it is not obvious how to turn it into a number. As we 
saw in Chapter 2, pasteurization, claimed its opponents, destroyed the “good” in milk. How can 
one go about measuring the “good” in milk in order to run an experiment? The important 
problems in life are usually cluttered with such vague but emotionally loaded phrases. What 
makes a “good” citizen? How can we measure the effects of anti-cancer drugs? What method of 
teaching is “best”? 

The questions involved in measuring vague, emotionally laden concepts have to be faced before 
an experiment can be designed. In this chapter, I will examine the problems of measuring vague 
ideas with a look at the measurement of pain. In measuring human pain, we encounter most of 
the problems of measurement in experiments. 

Pain is a major component of medicine. It is pain that often brings the patient to the doctor. 
Everyone experiences pain at different times in her or his life. Everyone knows what it is to have 
pain. But can we compare one person’s pain to the pain experienced by another? Can we 
determine when pain is reduced but not removed? Let us look initially at the tail of a rat. 

11.2 Experimentally Induced Pain 
How does one know when an experimental mouse, rat, or hamster is in pain? Before a new 
medicine designed to relieve pain can be tried out in humans, there have to be successful 
experiments on animals. Pharmacologists have developed several ways to measure pain in mice 
or rats. (In keeping with the general principle that all scientific terms should be well-defined 
without ambiguity, tests like this, which look for a well-defined endpoint and its measurement, 
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are called “assays”.) However, one problem with animal models is that the animal’s discomfort, 
as measured in a specific assay, might not be predictive of human pain. 

One experimental setup that has been successful in identifying drugs that relieve human pain is 
the rat tail-flick assay. A rat is immobilized, and infrared rays are focused on a spot of the 
animal’s tail. The measure of the efficacy of a compound is the time it takes for the rat to flick its 
tail out of the range of the focused heat rays. Another pain assay has the pharmacologist place a 
mouse on a hot plate. The measure of pain is how long it takes for the mouse to jump off. One 
problem with the hot plate assay is that about 3% of the mice jump off immediately. Are these 
mice assay failures to be ignored, or is this a bona fide measure of pain? 

In the 1950s, 60s, and 70s, attempts were made to move experimental pain studies from animals 
to humans. As was done with rats and mice, human volunteers were subjected to pain stimuli, 
and a measure of pain was derived from how long the volunteer could take the pain before 
asking it to end. Experimental pain was induced in several different ways. The most widely used 
procedure was to plunge the volunteer’s hand into ice water, pain measured by the amount of 
time he (almost all the volunteers in these studies were male) could keep his hand in the ice. 
Another was to tighten a thumbscrew onto one of his thumbs, tightening it steadily, and pain 
was measured by the pressure at which the volunteer asked for it to end. 

As of this writing, fewer and fewer experimental pain studies in humans are being run. Many 
critics have raised ethical qualms because the treatment (induced pain) has no medical value and 
written ethical standards (as embodied in the World Health Association’s much modified Helsinki 
Declaration) require that any experimental “treatment” given humans has to be of some 
potential medical benefit. A further reason to drop these studies is that they could not detect a 
difference between known analgesics like aspirin and placebo. The only type of pain-relieving 
drugs they could detect were opioids.  

11.3 Measuring Pain in Patients 
In 1952 and 1953, Henry Beecher (1904–1976) and Louis Lasagna (1923–2003) at Harvard 
Medical School studied the relief of pain in patients undergoing abdominal surgery. At that time, 
the most common surgery in the United States was the removal of the gall bladder. This required 
a surgeon to make a relatively long incision in the stomach of the patients. The recovery from 
this surgery left patients in considerable pain. Beecher and Lasagna randomly alternated 
between placebo and a low dose of morphine in responding to a patient’s pain. They did not 
attempt to measure the pain but used as their endpoint whether the patient stated that the pain 
had been relieved. 

What they discovered was that almost half of the patients found relief from placebo at least 
once in the course of their treatment. Twenty to thirty percent of the patients had relief almost 
every time they were given a placebo. With the aid of Frederick Mosteller, who was chairman of 
the Harvard Statistics Department, they decided to see whether they could identify the type of 
patient who would respond to the placebo. Among other characteristics of patients that they 
looked at, they gave patients the Minnesota Multi-Phasic Inventory test, usually referred to as 
the MMPI. They separated patients who responded to placebo almost all the time and patients 
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who never responded to placebo. They could find no characteristic of patients that predicted 
whether or not the patient would be a placebo responder. However, the patients who never 
responded to placebo were peculiar. Their MMPI scores indicated that they were borderline 
paranoid. They were highly suspicious of medical actions and tended to be loners. 

In the 1960s and 1970s, as non-steroidal anti-inflammatory drugs like ibuprofen became 
available, research began to mature on the measurement of pain. Prominent among these 
researchers were Abraham Sunshine (1929–2007), Raymond Houde (1926–2016), and Stanley 
Wallenstein (1921–1996). Eugene Laska of the Nathan Kline Institute for Psychiatric Medicine at 
New York University has provided much of the statistical backbone to this research. (See Laska et 
al. 1986.)  

Pain was something that ranged from none or mild to severe and seemed to be a candidate for 
setting up some sort of scale, like measuring pain on a scale from 1 to 10. Various ways of 
depicting this scale were tried. The patients might be given a 10 mm line with “no pain” at the 
left end and “unbearable pain” on the right end. The distance from left to right was taken as a 
measure of pain—except that some patients got mixed up and sometimes graded their pain 
from left to right and other times from right to left. Furthermore, patients often belonged in one 
of two classes: One type of patient always remained somewhere in the middle of the line, while 
the other class, the extremists, jumped from one end of the line to the other. 

These researchers tried to overcome the confusion by giving the patients a “pain thermometer,” 
a vertical column of little squares. They tried a “pain speedometer,” a curved line with zero on 
the left end and some number like 100 on the right end. Even with these visual aids, the patients 
still divided into the thin slicers and the extremists. 

Rensis Likert (1903–1981) is known primarily for his development of the psychological aspects of 
management in his book, New Patterns of Management. However, in 1934 he published a paper 
on the conversion of ordered categories into a scale of numbers. The problem Likert examined 
went like this: We can take some subjective feeling (pain?) and produce an ordered set of 
categories that describe that feeling in an increasing way (no pain, very very little pain, slight 
pain, moderate pain, uncomfortable pain, severe pain). Suppose we assign a numerical value to 
each category such as 

● 1 = no pain 

● 2 = very very little pain 

● 3 = slight pain 

● 4 = moderate pain 

● 5= uncomfortable pain 

● 6= severe pain. 

Likert asked, can we use these numbers to calculate changes in condition on the average? 
Likert’s answer ran like this: If we want to look at an average, then the numbers that we use to 
compute the average must measure the same thing in such a way that a change in x units for a 
patient who started with lower levels of pain is equivalent to a change in x units for a patient 
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who started with an upper level of pain. For instance, we have to be able to equate the patient 
who has a two-unit change (slight pain (3) to no pain (1)) at one end of the scale to a patient who 
has a two-unit change (severe pain (6) to moderate pain (4)) at the other end of the scale. 

Scales based on ordered categories that have this property are called “Likert Scales.” Likert 
provided no method for determining if a scale has these properties. Since then, investigators 
who convert an ordered set of feelings into a set of numbers often justify their use of numbers 
by calling that conversion a “Likert Scale” with no effort made to determine whether it has the 
appropriate Likert characteristic. 

Through the 1970s Sunshine, Houde, and Wallenstein ran a series of studies to identify the best 
way to turn pain into a numerical scale. They dismissed the use of a large number of categories 
because of the two types of patients. They eventually decided that patients and attending 
medical personnel could produce consistent results only if the scale was based on no more than 
4 conditions: 

● 0 = no pain 

● 1 = slight pain 

● 2 = moderate pain 

● 3 = severe pain 

Any attempt to increase the number of categories lead to violations of Likert’s condition. In 
further refinements, they decided that the most consistent results were based on attending 
nurses’ evaluations. They trained nurses, who would put the patient through a sequence of 
movements and who would evaluate the degree of pain from the patients’ responses. They also 
decided that patients who began the study with “severe” pain represented a different type of 
patient. Any analysis had to be blocked (recall Fisher’s blocks + treatments + error) so that 
patients with entering severe pain were in one block and the rest of the patients were in another 
block. 

They increased the sensitivity of the process to differences in treatment effects by judging the 
patient’s pain at several points in time and using the sum of the differences from baseline as the 
measure of efficacy. They called this measure the Sum of Pain Intensity Differences (SPID). 

With this design—four-point scale, calculation of SPIDs, and putting patients with baseline 
severe pain into a separate block—these investigators were able to run experiments that 
established efficacy and dose-response curves for the non-steroidal anti-inflammatory drugs and 
modified opioids that were produced over the next 10–15 years. 

11.4 Lessons Learned from Pain Scales 
What this teaches us is that  

1. You might be able to produce an ordered set of categories for a subjective measure, but 
this does not mean you can convert those categories into a set of numbers. 
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2. It is necessary to determine whether individuals can produce consistent conclusions 
when they deal with those numbers. 

3. Extensive scales (like using numbers from 1 to 10) can produce severe problems of 
interpretation. 

4. It might be necessary to block on categories that are qualitatively different from the 
others. 

Perhaps the most important lesson to learn from the development of pain scales is that it is very 
difficult to convert ordered categories of subjective conditions into numbers that lend 
themselves to statistical calculations. 

11.5 Summary 
Statistical experimental design and the analysis of results require the use of numbers. When 
dealing with subjective assessments, it is necessary that the numbers recorded and analyzed 
fulfill several minimal requirements. Pain is used to illustrate these aspects. The numbers 
derived to measure pain have to have equivalent, meaning for all patients.  

A 10-point pain scale cannot work because some patients stay in the middle of the scale and 
some jump from one end to another. Attempts to put numbers on categories of pain have to 
meet the Likert condition that a change of x points from one end of the scale has to be 
comparable to a change of x points from the other end. Studies done in the 1950s, 60s, and 70s 
showed that almost everyone responds to placebo at some point. Those who do not are 
borderline psychotic. The only consistent pain scale is one that identifies only four categories: 
none, mild, moderate, and severe. Patients with severe pain form a block that is different from 
patients with lower levels of pain.  
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12.1 The MRFIT Study 
By 1969, enough epidemiological data had accumulated to provide the medical community with 
a set of very good predictors of whether a patient would have a heart attack. These factors 
included age, gender, whether the subject’s father had a heart attack, smoking, use of alcohol, 
lack of regular exercise, obesity, and diets high in animal fats. The first three of these predictors 
could not be changed, but it seemed reasonable that adjustments in lifestyle that dealt with 
smoking, alcohol, exercise, obesity, and diet could have a beneficial effect. 

However, as most experimental scientists know, what seems reasonable is not always true. That 
is one reason to run an experiment. Two studies were initiated. One of them dealt with 
American and Canadian patients and was funded by the National Heart, Lung, and Blood 
Institute of the National Institutes of Health. The other was sponsored by the World Health 
Organization and consisted of a group of studies of similar design begun in different European 
countries. 

The basic design of these studies was straightforward. Find a group of men who had a high 
likelihood of having a heart attack. (They used men because gender was an important factor in 
predicting whether a heart attack will occur.) Leave some of them to the usual medical practice 
of the time. Subject the others to intensive education about the preventable factors that appear 
to “cause” heart attacks. Using the statistical design of experiments, they blocked on clinics and 
randomly assigned patients to be in the usual care (UC) group or in the special intervention (SI) 
group. 

With the penchant for giving eye-catching names to medical studies, the American study was 
called the Multiple Risk Factor Intervention Trial or MRFIT and pronounced “Mister Fit.” The 
studies sponsored by the World Health Organization were the WHO MRFIT. Having a catchy 
name was only the beginning of planning for these studies. Clinical studies have protocols, which 
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are detailed descriptions of how the study will be run, including justifications for the study, the 
type of patient who will be entered, the nature of the “treatments” to be compared, how often 
patients will be seen, and how the endpoint will be evaluated. The directors of the clinics that 
will enter patients into the study review the proposed protocol, make suggestions for changes, 
and all clinics sign on to the final version. 

The American MRFIT study was a multi-clinic study with a single data center where case reports 
on individual patients were collected, from where the conduct of the study was controlled, and 
where the final data were to be analyzed. One question that needed to be answered before the 
finalization of the protocol dealt with the selection of patients to be entered into the study. They 
needed to start with patients whose risk factors were high. To do this, they created a scoring 
based on which of the risk factors were present and to what degree. The American study 
screened over 370,000 potential patients and entered 12,866 of them into the trial. The patients 
in this study were followed for seven years. 

A study this size usually lasts longer than the seven years of follow-up. It takes time, often 
measured in years, to recruit the almost 13,000 patients. Because of this, the study runs for 
more than seven calendar years, and when the data are locked and the analysis of data run, 
there will still be some patients who have not completed the full seven-year follow up. 

All the patients in the study were told about lifestyle changes that should reduce the probability 
of having a heart attack. It would have been unethical not to. The UC patients were told of these 
factors and then sent back to their primary care physicians who would monitor them during the 
seven-year span of the study. The SI group were given classes in which proper eating was 
encouraged. If they smoked, they were assigned to smoking cessation programs. They received 
weekly telephone calls from a nurse to encourage them to stay with the proper regimen. 

Both groups of patients had fewer heart attacks during the seven-year period than might have 
been expected from epidemiological studies. By the end of the seven years, deaths from heart 
attacks were 17.9 per 1000 (1.79%) among the SI patients and 19.3 per 1000 (1.93%) among the 
UC patients. This implied a 7.2% decrease in fatal heart attacks for the SI group. Both groups of 
patients had fewer heart attacks during the seven-year period than might have been expected 
from epidemiological studies. By the end of the seven years, deaths from heart attacks were 
17.9 per 1000 (1.79%) among the SI patients and 19.3 per 1000 (1.93%) among the UC patients. 
This implied a mere 7.2% decrease in fatal heart attacks for the SI group.  

12.2 What Went “Wrong” with the MRFIT Study? 
For many in the medical community, the results of the MRFIT study did not make sense. The 
patients were engaging in lifestyles that greatly increased their chance of having a heart attack. 
They were male. Their fathers had had heart attacks. They were smokers. They drank alcohol. 
They were overweight. Their ordinary meals were filled with animal fats. Many of them had high 
blood pressure. 

The SI (Special Intervention) group were put into smoking cessation programs. They were given 
weekly calls to encourage them to stay with their regimen. They were given information that 
included weekly menus for appropriate low-fat meals. Could it be that intensive counseling was 
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a waste of effort and money? True, the UC (Usual Care) patients were told about lifestyle 
changes that might prevent heart attacks, but there was no concentrated follow-up. They went 
home and did as they pleased. It is very difficult to cease smoking all by one’s self, and this holds 
for excessive use of alcohol and for changes in diet. 

The medical community tore into the MRFIT study. What went wrong? One criticism was that 
many of the clinics used residents or even medical students to see patients on their clinic visits. 
This provided excellent training, but can you really expect that such inexperienced personnel 
would run the study properly?  

Another criticism was based on the finding that many of the SI patients who died of heart attacks 
had high blood pressure at the start of the study. The standard treatment for high blood 
pressure at the time was to put the patient on relatively high doses of diuretics. Perhaps the 
standard treatment is at fault. Could the high doses of diuretics be causing heart attacks in some 
patients? Or was this finding a random glitch in the data that Frank Anscombe called “will o’ the 
wisps,” apparent relationships that are purely random noise and have no predictive value? 

If the experiment had included hundreds of thousands of subjects, it might have shown a 
significant, but similarly very slight, difference in death rates between the treated and controls. 
W. Edwards Deming (1900–1993), who had been instrumental in bringing Fisher’s ideas to 
industrial quality control, once noted that we usually use the data from an experiment to test 
whether two treatments have the same overall mean effect. But, he wrote, “It is foolish to test 
whether two means are the same. They are never equal, and with a large enough study, it can be 
shown that they are not equal.” The real question, he proposed, is not whether the difference is 
greater than zero but, rather, whether the experiment shows that the difference is sufficiently 
large to make a useful difference in final outcome if the tested treatment were to be adopted. 

12.3 The Hawthorne Effect 
During the 1920s and into the 1930s, General Electric ran a series of studies at their Hawthorne 
plant outside of Chicago. The goal was to find ways of reducing the incidence of accidents and 
increase the plant productivity. They introduced a series of measures designed to prevent 
accidents and watched the workers as they went about their jobs. The accident prevention 
measures remained in place whether the workers were watched or not. Whenever the workers 
were being observed, accident rates went down. When they were no longer being watched, 
accident rates went back up. 

This is the “Hawthorne Effect”—the very act of observing and measuring improves the outcome. 

The National Institutes of Health (NIH) of the United States government have been sponsoring 
clinical studies that examine the effects of different medical measures since the end of the 
Second World War. If the study is designed to prevent some deleterious event (like a heart 
attack), then it usually happens that the mere act of putting a patient into a study to be seen at 
regular intervals causes the incidence of that event to drop—even if the patient is on placebo. 
There is something about the “hands of the physician.” Thus, suppose the study is planned to 
find out if some procedure prevents an event (like a heart attack) that normally occurs in 5% of 
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this population over the seven-year length of the study. Putting the patients into a controlled 
clinical trial results in an incidence of less than 2% among the controls. 

The MRFIT study seems to have been caught up in the Hawthorne effect. 

12.4 Anticipating the Outcome of an Experiment 
A good scientist who is about to start an experiment usually has an idea of what the outcome 
will be. Experiments are sometimes used to refine established measurements or to decide 
between two well-defined possible outcomes. Signals from two orbiting satellites might be used 
to plot variations in gravity around a mountain range. But before the data are examined, 
previous measurements will have provided a general idea of the nature of those variations. 
Results that differ greatly from what is expected will call into question the assumptions made 
about the experiment. 

Did the outcome of the MRFIT study differ greatly from what had been expected? If one looks 
upon the MRFIT study as an attempt to validate something that was believed true (intensive 
counseling can reduce the incidence of death from heart attacks), then it was not a scientific 
experiment but an exercise in politics. All too often, one can find articles in the medical literature 
where the introduction describes why such and such a relationship is important and concludes 
by showing that the relationship holds. While such studies may be useful in advocacy, they can 
hardly be considered as advancing scientific knowledge. 

Can the MRFIT study be used to determine whether intensive counseling would be a useful tool 
to add to the physician’s armamentarium? If there were unlimited money available, then even 
the slightest suspicion that this is true would be enough to engage in this practice. However, 
there is not unlimited money available for the treatment and prevention of disease. The 
question underlying the MRFIT study was whether money spent on intensive counseling would 
be better spent elsewhere. How much of a reduction in deaths from heart attacks can be 
expected from such activity? Many viewed the MRFIT study as a well-done experiment with this 
conclusive finding: intensive counseling has a minimal effect on the incidence of death from 
heart attack. 

12.5 Cost versus Efficacy 
The MRFIT study did not find a decrease in deaths greater than might be expected by random 
noise alone. A reasonable conclusion is that the MRFIT study showed that the money that might 
be spent on hectoring patients with lifestyles that predict heart attacks would be better spent on 
something else. Can this trade-off between outcome and cost be applied to other medical 
procedures?  

Consider a procedure that is engaged in by Emergency Medical Technicians (EMTs) in many 
states when they are transporting a patient suspected of having a heart attack. The patient is 
given six baby aspirin tablets to chew and swallow. There is no pharmacological basis for this 
practice. Aspirin, given at a dose between 75 and 100 mg, reduces the stickiness of blood 
platelets generated by the bone marrow. The first part of blood clot formation occurs when the 
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platelets stick together to form a web in which white blood cells gather. Blood platelets have a 
four-day half-life. That is, the platelets are gradually destroyed and absorbed back into the body 
at a relatively slow rate, so half of the platelets produced on a Monday are still around on Friday. 
In order for aspirin to be effective in preventing heart attacks, it must be taken steadily for 12 
days (three half-lives of platelets). In view of its complete lack of rationale, should this practice 
be continued? Should it be subject to an experimental study to see if it “works”? 

The answer hinges on cost. Unlike special intervention in the MRFIT study, aspirin is very 
inexpensive, a very small fraction of the cost of other treatments available on the ambulance. 
Unless the patient is allergic to it, there is very little chance that a single dose of 81 mg (or even 6 
baby aspirins, 486 mg) will do any harm. I have gone through this exercise in decision theory 
with students, and most agree that there is no need for a clinical study and that the practice can 
continue. The cost is negligible, and it might save lives.  

I, then, pose to them the following question: “Philosopher’s Stone” (ground up goat gallstones) 
was a favorite “cure” in Medieval medicine. Suppose the EMTs were offered pills of 
Philosopher’s Stone at no cost. Should the patient suspected of having a heart attack be given 
such pills? Should the use of Philosopher’s Stone be subjected to a proper clinical trial? Most of 
the students who thought that aspirin should continue to be given without needing a trial 
objected to Philosopher’s Stone—why? 

A final note: Throughout these last two chapters, I have used the phrase “heart attack,” but this 
phrase has no clear medical definition. In the medical literature, you will find it replaced by the 
term “myocardial infraction (MI),” which is defined as the death of the cells in a region of the 
heart after a blood clot has blocked the flow of blood to that region. For the convenience of 
readers who might not be familiar with the concept of an MI, I have used the lay term “heart 
attack” when I meant an MI. 

12.6 Summary 
The MRFIT study compared the death rates from heart attacks between two groups of men who 
were of high risk to have a heart attack. The usual care (UC) group were told about their lifestyle 
practices (smoking, use of alcohol, obesity, high animal fat diets) that increased the risk of a 
heart attack. The special intervention (SI) group were given intensive follow-up with weekly 
phone calls, smoking cessation programs, and so on. After seven years, there was no significant 
difference in the rates of death from heart attacks between the two groups. Was this a failure of 
the experiment, or did it show that special intervention of this type was not useful? If an 
experiment seems to show that a very reasonable procedure is a failure, does that mean the 
experiment went wrong, or does it mean that this “reasonable” procedure is a waste of money?  

Reference 
Stamler, J. (2008) “The Multiple Risk Factor Intervention Trial (MRFIT)—Importance Then and Now,” J. Amer. Med. Assn., 

300, p 1343. 
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13.1 Ronald Alymer Fisher 
This book has been a tour of a subject that has generated untold numbers of scientific papers 
and books. Courses in graduate schools have been devoted to it. Most importantly, it has 
remade the face of scientific experimentation.  

In 1920, R. A. Fisher arrived at the Rothamsted Experimental Station. He had been hired for one 
year at a salary of 1000 pounds (equivalent to $71,000 in today’s currency) to go over the data 
that had accumulated in more than 50 years of agricultural experimentation. He was later to call 
it “raking over the muck heap.” He rented a cottage and brought his wife, children, and mother-
in-law, left them in the cottage, pulled on his boots, and crossed over a muddy field to see what 
that year might bring. 

A 17th-century bishop had warned us that malevolent Nature is standing by to foul-up any 
attempt at experimentation, and Nature had had a great time creating the muck of 50+ years’ 
“experimentation” at Rothamsted. Talking to the agricultural scientists, tramping around the 
experimental fields, and turning through the pages of numbers that had accumulated, Fisher 
formulated a mathematical structure for experimentation. 

He started with the numbers that emerge from an experiment, the weight of the wheat, the 
ratio of wheat to straw, the number of potatoes. Then, there were the treatments applied to the 
experimental material. Finally, there were the changing aspects of the material being 
experimented on, like the annual rainfall, the “fertility gradient,” and the infestation of weeds. 
He put all of that into a small set of algebraic formulas where he had two types of symbols: the 
things that he could observe and measure or count (denoted in the formulas by Roman letters), 
and the relationships between the different things that he could observe that have to be 
inferred from his observations (denoted in the formulas by Greek letters). 

Putting the problem into algebraic equations tells us a great deal about the experiment before 
we even begin. For instance, there is the problem of confounding. The year-to-year variation in 
the weight of the wheat harvest is affected by both the different fertilizer treatments given in 
different years but also by the difference in rainfall from year to year. The differences in 
treatment effect are confounded with the differences in rainfall. In the Lanarkshire Milk 
Experiment, the increase in a child’s weight from February to June was affected by the different 
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type of milk the child drank but also by the child’s socio-economic status. Taking pity on them, 
the teachers gave the poor children the extra milk, thereby confounding the effect of milk with 
the socioeconomic status of the child’s family. 

Malevolent Mother Nature keeps adding to the mix. Some of the mice who arrive with the same 
genetic background are, in fact, sicker that the others in the box, and putting the sicker mice in 
the cages on the top of the racks confounds their initial condition with position in the room. An 
unexpected infestation of the spores of wheat rust fungi sweeps through a portion of the test 
field. Slight imperfections in the carbon/iron combination of the steel produce differences in the 
quality of the annealing. Some of the patients assigned to ordinary care cut back on their 
destructive lifestyle without being subjected to the intensive coaching given to the “treated” 
group. 

These random glitches, these unexpected differences, were taken care of in Fisher’s modeling in 
two ways: the nature of these random “errors” was described mathematically through the use of 
calculus (with more unknown relationships that have to be estimated from the data and are 
denoted by Greek letters). Then, these random glitches were “tamed” by adding additional 
randomness to the experiment. Experimental treatments are assigned at random to different 
units of the experiment (whether these units are fields of wheat or cages of mice or individual 
patients). 

Not haphazardly but AT RANDOM!! 

13.2 Computing 
All of this requires a great deal of thought and planning, and the data that result have to be 
analyzed following the complications of the algebraic model and its calculus obbligato. Fisher 
had a desk calculator called “the Millionaire” because it had enough places on its platen to hold 
numbers in the millions. It had no electric motor, but it required that Fisher pull a lever 
whenever he had a calculation set up. It could add and subtract, and, if you rigged it the right 
way, it could multiply and divide. 

Fisher showed in a mathematical proof that the act of randomizing experimental units to 
treatments provided an approximation to the extremely complicated mathematics that some 
experimental designs require. When I described these computations, I had to “wave my hands,” 
because the proof requires advanced calculus, complex analysis, and multi-dimensional algebra, 
all of which are the subjects of courses in graduate school. 

Gossett objected to Fisher’s use of asymptotic theory (which assumes that the number of 
observations is very large) because he never saw any experiment that involved more than a few 
hundred units. But if you tried to estimate the values of the Greek letters in the model using just 
the calculus imposed by the random assignment of treatment and without resorting to Fisher’s 
approximations, it would involve tens of thousands of calculations, perhaps even millions. Either 
the gears of his “millionaire” or Fisher’s arm would wear out before coming close to the end. 

Then came the computer. Initially, it was a big machine that knew how to add and subtract, 
which it could do over and over and over… In the last two decades of the 20th century, the 
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computer got smaller and smaller, and sophisticated programs taught it how to multiply, divide, 
read algebraic notation, and do calculus. Now, in the 21st century, even a laptop computer can 
handle the standard statistical packages that do all these calculations for you. The scientist needs 
to know only how to set up the algebraic equations to describe the experiment and which of the 
different calculus-based choices that she needs in order to describe the randomness. 

13.3 The Ubiquitousness of Statistical Designs of Experiment 
Statistical design of experiments came first to agricultural experiments, then it was sociology, 
psychology, physics, chemistry, biology, ecology, and quality control, and (in the 1950s) even 
medicine. There are still places in science where the initial experiments are probes involving 
clever methods of measurement, but, in most fields, it is the well-designed randomized 
experiment that provides the final “proof” of the finding. The terminology often differs from 
field to field. Atomic physicists look for “six sigma” deviations, structure-activity chemists look 
for a high percentage of variance accounted for, and medical scientists describe the “specificity” 
and “sensitivity” of measurements. But all of it starts with statistically based design of 
experiments. 
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Afterword 
As David Salsburg writes, R. A. Fisher created a revolution in experimentation. It has been nearly 
100 years since Fisher introduced his four principles of experiment design—randomization, 
blocking, replication, and the factorial principle. These principles are as necessary today as they 
were 100 years ago. Randomization is a vitally important technique that protects against bias 
due to uncontrolled (but influential) factors that change over the course of an experiment. By 
removing the variance due to a nuisance factor from the estimate of the error variance, blocking 
increases the power for identifying the key controlled factors. Replicated runs in an experiment 
yield an estimate of the error variance that is unbiased even if the fitted model is incorrect. 
Finally, the factorial principle allows for varying multiple factors over the course of any 
experiment instead of being limited to the study of only one factor at a time. 

It is violations of one or more of these principles that are at the bottom of many of the stories in 
Salsburg’s latest book, Cautionary Tales in Experimental Design. This book uses well-researched 
and interesting examples to trace the statistical design of experiments (DOE) from its origins to 
recent applications in science and industry.   

To solve problems and learn from data, the investigating team needs to carefully consider the 
data collection process, think critically about what questions they are trying to answer and 
anticipate what can go wrong. These necessary activities inform the process of coming up with 
an appropriate design. 

In the early days of DOE, tables of experimental plans appeared in textbooks or design catalogs. 
The problem for the engineer or scientist was to find the catalogued design that most closely 
matched the information needs and the resource constraints of the process or system being 
studied. The most useful characteristic of these catalogued (or classical) designs was their 
orthogonality, which allowed investigators to estimate the effects of the factors with various 
averages of the observed responses. Such calculations could be done without computers, which, 
in the early days of DOE did not even exist. The “Achilles Heel” of these classical designs was 
their lack of flexibility. Their number of experimental runs is fixed, and each run must be 
performed exactly as specified. The allowed number of runs in a block is also restricted. For 
example, if the team is trying to block day-to-day variation, the number of runs that can be 
performed in a day may not match the allowed block size. For industrial applications, another 
necessary feature is restricted randomization, which occurs when it is logistically required to 
hold a factor constant for several runs in a row. Classical designs are generally incapable of 
providing a principled method for accomplishing this in a flexible way. 

The reason for all this lack of flexibility in classical designs is the requirement for orthogonality. 
Orthogonal designs may not exist given a set of information requirements and resource 
constraints. As a result, engineers and scientists who are limited to these designs must often 
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change their requirements. If they refuse to do so, they may choose to forgo DOE entirely. This is 
undesirable and no longer necessary. 

Due to the ubiquity of high-speed computers, there is no longer a need to compute factor effects 
by hand. Over the last 30 or so years, computer algorithms have been developed to search the 
multiple dimensional space of the factors to find a design that simultaneously meets the 
information requirements given the resource constraints. The resulting designs are called 
optimal designs. However, it is not their mathematical optimality that matters, it is their 
flexibility to solve design problems as posed rather than change the problem to suit a 
prespecified design. Commenting on these computer-aided methods, Stu Hunter, legendary 
statistician, educator, and co-author of an important DOE textbook, recently stated that “the art 
of experimental design has changed profoundly” and that if he had to teach DOE now, he would 
have to teach it in a profoundly different manner.   

Machine learning and big data now show promise for faster innovation. However, these tools 
are dependent on observational data. Therefore, they can establish correlation but not causation 
between a possible input and desired output. By actively interrogating a system or process, DOE 
can follow up on conclusions from a big data project with a small study that can either establish 
the validity of these conclusions or prove them false. 

While the title of this book is Cautionary Tales in Designed Experiments, the beauty of DOE is 
about learning—from mistakes, from trying new things, from working with others. Given 
reminders of past mistakes, it is possible to learn to avoid the same errors in the future. The 
trailblazers in industry who have achieved rapid innovation, solved complex problems, and 
created significant value have often failed multiple times before a breakthrough.  

It is gratifying to be a part of this exciting new era in DOE, further enabling industrial problem 
solving, faster insights and innovation with less waste.   

Bradley Jones 
Distinguished Research Fellow, SAS 
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