

The correct bibliographic citation for this manual is as follows: Tedrow, Katie. Natural Language Processing with SAS®: Special
Collection. Cary, NC: SAS Institute Inc.

Natural Language Processing with SAS®: Special Collection

Copyright © 2020, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-952363-18-4 (Paperback)
ISBN 978-1-952363-16-0 (Web PDF)

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher,
SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the
time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or
encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

August 2020

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software
distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Table of Contents

Foreword

How to Build a Text Analytics Model in SAS® Viya® with Python
By Nate Gilmore, Vinay Ashokkumar, and Russell Albright

Harvesting Unstructured Data to Reduce Anti-Money Laundering (AML) Compliance Risk
By Austin Cook and Beth Herron

Hearing Every Voice: SAS® Text Analytics for Federal Regulations Public Commentary
By Emily McRae, Tom Sabo, and Manuel Figallo

Multilingual Sentiment Analysis: An RNN-Based Framework for Limited Data
By Ethem Can and Aysu Ezen-Can

NLP with BERT: Sentiment Analysis Using SAS® Deep Learning and DLPy
By Doug Cairns and Xiangxiang Meng

Sound Insights: A Pipeline for Information Extraction from Audio Files
By Dr. Biljana Belamarić Wilsey and Xiaozhuo Cheng

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2017 SAS Institute Inc. All rights reserved. M1673525 US.0817

Discover more free SAS e-books!
support.sas.com/freesasebooks

sas.com/books
for additional books and resources.

Free SAS® e-Books:
Special Collection

In this series, we have carefully curated a collection of papers that introduces
and provides context to the various areas of analytics. Topics covered

illustrate the power of SAS solutions that are available as tools for
data analysis, highlighting a variety of commonly used techniques.

Foreword
Did you know that unstructured text is the largest human-generated data source? Each day worldwide, we send
on average more than 500 million Tweets, about 5.5 billion SMS text messages, and over 281 billion emails.

Tons of unstructured data is collected within organizations every day, too – from customer call logs, emails, social
media, surveys, product feedback, documents and reports, and so on. Often buried within that unstructured data
are rich insights that can help drive better business decisions, inform product strategy, and improve customer
experiences.

This is where Natural Language Processing (NLP) comes in. NLP is an umbrella term used to describe a branch of
artificial intelligence that helps computers understand, interpret, and emulate written or spoken human language.
NLP draws from many disciplines including human-generated linguistic rules, machine learning, and deep learning
to fill the gap between human communication and machine understanding.

NLP can be used to scale the human act of reading, organizing, and quantifying text data. Taking it a step further,
NLP can empower conversational experiences, where a machine actually understands and responds and interacts
with a user through natural language (often referred to as conversational AI). While this may sound futuristic,
applying NLP to solve real business problems is becoming pervasive across industries, and new advancements are
continuing to extend possibilities of what we can do with unstructured data.

Several groundbreaking papers have been written to demonstrate these techniques and practical applications. We
have carefully selected a handful of these from recent SAS Global Forum papers to introduce you to the topics and
let you sample what each has to offer. You will learn about the following:

● how NLP helps analysts combat anti-money laundering and fraud in the financial services industry.

● how NLP can help governments and policy makers in the rulemaking process by analyzing thousands of
comments on proposed rules much faster and more accurately than would be possible manually.

● how to approach multilingual sentiment analysis when limited data is available.

● how to build text analytics models in SAS using open source, such as Python, to analyze product reviews.

● how to create your own BERT sentiment analysis model using SAS.

● how to extract hidden value from audio data using speech to text and machine learning to mine key voice
of customer insights.

For an in-depth, technical understanding of text analytics and how to get started, I recommend reading SAS® Text
Analytics for Business Applications: Concept Rules for Information Extraction by Teresa Jade, Biljana Belamaric-
Wilsey, and Michael Wallis.

The examples found in this e-book are from across industries and offer various business use cases to share a
glimpse into how text analytics can be applied in your organizations. The beauty of NLP is that it has wide
application – wherever there may be unstructured data, NLP can help discover opportunities and insights to drive
decisions.

https://www.sas.com/store/books/categories/usage-and-reference/sas-text-analytics-for-business-applications-concept-rules-for-information-extraction-models/prodBK_70731_en.html
https://www.sas.com/store/books/categories/usage-and-reference/sas-text-analytics-for-business-applications-concept-rules-for-information-extraction-models/prodBK_70731_en.html

vi Natural Language Processing with SAS: Special Collection

How to Build a Text Analytics Model in SAS® Viya® with Python

By Nate Gilmore, Vinay Ashokkumar, and Russell Albright

Python is widely noted as one of the most important languages influencing the development of machine learning
and artificial intelligence. SAS has made seamless integration with Python one of its recent focal points. With the
introduction of the SAS Scripting Wrapper for Analytics Transfer (SWAT) package, Python users can now easily take
advantage of the power of SAS Viya. This paper is designed for Python users who want to learn more about getting
started with SAS Cloud Analytic Services (CAS) actions for text analytics. It walks them through the process of
building a text analytics model from end to end by using a Jupyter Notebook as the Python client to connect to SAS
Viya. Areas that are covered include loading data into CAS, manipulating CAS tables by using Python libraries, text
parsing, converting unstructured text into input variables used in a predictive model, and scoring models. The ease
of use of SWAT to interact with SAS Viya using Python is showcased throughout the text analytics model building
process.

Harvesting Unstructured Data to Reduce Anti-Money Laundering (AML) Compliance Risk

By Austin Cook and Beth Herron

As an anti-money laundering (AML) analyst, you face a never-ending job of staying one step ahead of nefarious
actors (for example, terrorist organizations, drug cartels, and other money launderers). The financial services
industry has called into question whether traditional methods of combating money laundering and terrorism
financing are effective and sustainable. Heightened regulatory expectations, emphasis on 100% coverage,
identification of emerging risks, and rising staffing costs are driving institutions to modernize their systems. One
area gaining traction in the industry is to leverage the vast amounts of unstructured data to gain deeper insights.
From suspicious activity reports (SARs) to case notes and wire messages, most financial institutions have yet to
apply analytics to this data to uncover new patterns and trends that might not surface themselves in traditional
structured data. This paper explores the potential use cases for text analytics in AML and provides examples of
entity and fact extraction and document categorization of unstructured data using SAS® Visual Text Analytics.

Hearing Every Voice: SAS® Text Analytics for Federal Regulations Public Commentary

By Emily McRae, Tom Sabo, and Manuel Figallo

Regulations.gov was launched in 2003 to provide the public with access to federal regulatory content and the
ability to submit comments on federal regulations. Public participation in federal rulemaking is encouraged as it
supports the legitimacy of regulatory decisions, frames public acceptance or resistance to rules under
development, and shapes how the public interest will be served. Manually reading thousands of comments is
time-consuming and labor-intensive. It is also difficult for multiple reviewers to accurately and consistently assess
content, themes, stakeholder identity, and sentiment. Given that individually proposed rules can exceed 10,000
comments, how can federal organizations quantitatively assess the data and incorporate feedback into the
rulemaking process as required by law?

This paper shows how SAS® Text Analytics can be used to develop transparent and accurate text models, and how
SAS® Visual Analytics can quantify, summarize and present the results of that analysis. This will significantly
decrease time to value, leveraging capabilities that computers excel at while freeing up human intuition for the
analysis of these results. Specifically, we will address public commentary submitted in response to new product
regulations by the US Food and Drug Administration. Ultimately, the application of a transparent and consistent
text model to analyze these documents will support federal rule-makers and improve the health and lives of
American citizens.

Foreword vii

Multilingual Sentiment Analysis: An RNN-Based Framework for Limited Data

By Ethem Can and Aysu Ezen-Can

Sentiment analysis is a widely studied natural language processing task, whose goal is to determine users’
opinions, emotions, and evaluations of a product, entity, or service that they review. One of the biggest challenges
for sentiment analysis is that it is highly language-dependent. Word embeddings, sentiment lexicons, and even
annotated data are language-specific. Furthermore, optimizing models for each language is very time-consuming
and labor-intensive, especially for recurrent neural network (RNN) models. From a resource perspective, it is very
challenging to collect data for different languages.

In this paper, we look for an answer to the following research question: Can a sentiment analysis model that is
trained on one language be reused for sentiment analysis in other languages where the data are more limited?
Our goal is to build a single model in the language that has the largest data set available for the task and reuse that
model for languages that have limited resources.

For this purpose, we use reviews in English to train a sentiment analysis model by using recurrent neural networks.
We then translate those reviews into other languages and reuse the model to evaluate the sentiments.
Experimental results show that our robust approach of training a single model on English-language reviews
outperforms the baseline in several different languages.

NLP with BERT: Sentiment Analysis Using SAS® Deep Learning and DLPy

By Doug Cairns and Xiangxiang Meng

A revolution is taking place in natural language processing (NLP) as a result of two ideas.

The first idea is that pretraining a deep neural network as a language model is a good starting point for a range of
NLP tasks. These networks can be augmented (layers can be added or dropped) and then fine-tuned with transfer
learning for specific NLP tasks. The second idea involves a paradigm shift away from traditional recurrent neural
networks (RNNs) and toward deep neural networks based on Transformer building blocks. One architecture that
embodies these ideas is Bidirectional Encoder Representations from Transformers (BERT). BERT and its variants
have been at or near the top of the leaderboard for many traditional NLP tasks, such as the general language
understanding evaluation (GLUE) benchmarks. This paper provides an overview of BERT and shows how you can
create your own BERT model by using SAS® Deep Learning and the SAS DLPy Python package. It illustrates the
effectiveness of BERT by performing sentiment analysis on unstructured product reviews submitted to Amazon.

Sound Insights: A Pipeline for Information Extraction from Audio Files

Dr. Biljana Belamarić Wilsey and Xiaozhuo Cheng

Audio files, like other unstructured data, present special challenges for analytics but also an opportunity to
discover valuable new insights. For example, technical support or call center recordings can be used for quickly
prioritizing product or service improvements based on the voice of the customer. Similarly, audio portions of video
recordings can be mined for common topics and widespread concerns. To uncover the value hidden in audio files,
you can use a pipeline that starts with the speech-to-text capabilities of SAS® Visual Data Mining and Machine
Learning and continues with analysis of unstructured text using SAS® Visual Text Analytics software. This pipeline
can be illustrated with data from the Big Ideas talk series at SAS, which gives employees the opportunity to share
their ideas in short, TED Talk–type presentations that are recorded on video. If you ever wondered what SAS
employees are thinking about when they’re not thinking of ways to make SAS products better, the answers lie in a
pipeline for information extraction from audio files. You can use this versatile pipeline to discover sound insights
from your own audio data.

We hope these selections give you a useful overview of the many tools and techniques that are available to
incorporate analysis of unstructured text into your organization.

viii Natural Language Processing with SAS: Special Collection

__

Katie Tedrow is a Global Product Marketing Manager for AI at SAS. In her
role, she leads product marketing for Natural Language Processing with a
specialization in text analytics, conversational AI, and chatbots, in
addition to Business Intelligence and Visual Analytics. Katie is a strategic
marketer with deep B2B and B2C experience within the professional
services, tech, and financial services industries. Prior to joining SAS, Katie
was a product marketing and digital brand strategy lead at a large
financial services company, where she helped to launch the first natural
language chatbot for a US bank. She holds a bachelor’s degree from North
Carolina State University and an MBA from the University of Maryland.

1

Paper SAS4442-2020

How to Build a Text Analytics Model in SAS® Viya® with Python

Nate Gilmore, Vinay Ashokkumar, and Russell Albright, SAS Institute Inc.

ABSTRACT

Python is widely noted as one of the most important languages influencing the development

of machine learning and artificial intelligence. SAS® has made seamless integration with

Python one of its recent focal points. With the introduction of the SAS® Scripting Wrapper

for Analytics Transfer (SWAT) package, Python users can now easily take advantage of the

power of SAS® Viya®. This paper is designed for Python users who want to learn more about

getting started with SAS® Cloud Analytic Services (CAS) actions for text analytics. It walks

them through the process of building a text analytics model from end to end by using a

Jupyter Notebook as the Python client to connect to SAS Viya. Areas that are covered

include loading data into CAS, manipulating CAS tables by using Python libraries, text

parsing, converting unstructured text into input variables used in a predictive model, and

scoring models. The ease of use of SWAT to interact with SAS Viya using Python is

showcased throughout the text analytics model building process.

INTRODUCTION

One of the ways that SAS provides access to its high-quality text analytics services is

through CAS actions that can be invoked directly from SAS, Python, Lua, or R. These

actions cover a wide array of functionality including text mining, text categorization, concept

identification, and sentiment analysis.

This paper highlights the construction of an end-to-end text analytics model that leverages

CAS actions called from Python. It demonstrates how the unstructured text of Amazon

reviews can be converted into structured input variables and used in a Support Vector

Machine (SVM) model to predict whether users will find an Amazon review helpful. The

client-side platform used is a Jupyter notebook, a very popular interface for Python users.

The version of Python used for this project was Python 3.4.1.

PYTHON AND CAS

In recent history, many users have embraced Python as a first-choice programming

language for the development of software across all domains. The community has embraced

Python’s open source nature and ease of use through many functional libraries to aid in

design and performance. As such, the Python user space continues to grow unfailingly.

SAS Viya has opened its arms to Python users by allowing integration of open source to its

platform and its use of features. SAS has introduced SWAT (Scripting Wrapper for Analytics

Transfer), a Python library that enables users, even those with no SAS background, the

ability to continue coding in Python, while leveraging the performance and resources of CAS

and SAS Viya in their applications. Users are able to create, manipulate, and print data with

CAS actions through the Python interface. Added performance improvements are due to the

data being processed while on the cloud as a part of the SAS Viya architecture and the data

being loaded and worked on in memory. Other popular libraries, like pandas and NumPy,

are supported to allow increased compatibility with the open source tools.

2

Figure 1 below shows the Python libraries that are imported and used in this project. Under

that, the basic syntax for connecting to CAS through SWAT is shown, including using the

user’s credentials. The final lines of code define and load all the action sets used in this

project as a list. The relevant CAS actions under each respective action set will be detailed

in the upcoming sections.

Figure 1. Importing Libraries, Connecting to CAS, and Loading Action Sets

USE CASE – PREDICTING REVIEW HELPFULNESS

The data set analyzed in this paper includes over 67,000 Amazon reviews of fine food

products. The model built in this project will predict whether a review will be rated helpful or

not by Amazon users. For the purposes of this paper, a helpful review is defined as one that

at least 80% of voters found helpful (with a minimum of 5 users having voted on its

helpfulness). The explanatory variables considered include the star rating of the review, the

length of the review, and the text of the reviews. The text analytics portion of the model

building process focuses on converting the unstructured text of the review into document

projections that will be used as input variables to the SVM predictive model along with the

star rating and review length. The Analyzing Results section of this paper details how

including document projections derived from the review text significantly improves the

predictive model’s accuracy compared to using only star rating and review length. Table 1

below describes the most relevant variables in the data set, which will be referenced in the

code snippets of upcoming sections.

Variable Description

ID A unique identifier for each review

Text Text of the product review

Score Star rating for a review (From 1 to 5)

Review_Length Number of words in a review

Helpful Target Variable (1=Helpful, 0=Not Helpful)

Table 1. Description of Relevant Variables

LOADING DATA INTO CAS

The data preprocessing steps necessary to prepare the data for consumption by the model

were performed in Python on the client side prior to loading data into CAS. Those steps

included:

1. Dropping all observations that did not have at least five helpfulness ratings.

2. Creating a predictor variable containing the number of words in a review.

3

3. Creating a unique identifier variable for each review as required by the text actions.

4. Defining a target variable for review helpfulness as indicated in the previous section.

After preprocessing, the first step in preparing the data to be loaded into CAS is to define a

casLib to the location where your data is stored. Figure 2 shows how to use the addCaslib

action to define a caslib named “projectData “ in the location where the input data is stored.

Figure 2. addCaslib Action Code

After setting up the caslib, the loadTable action makes it easy to load your data to CAS.

Figure 3 shows how to load the preprocessed Amazon Fine Food Reviews data set, stored as

a .sashdat, into CAS. The data is stored as a CAS table named “amazonFull”.

Figure 3. Loading Amazon Reviews into CAS with the loadTable Action

SPLITTING DATA INTO TRAINING AND VALIDATION SETS

Now that the model’s input data has been loaded into CAS, the next step is to split the data

into training and validation sets. For this project, 70% of reviews were included in the

training set while 30% were reserved for validation. Reviews were assigned to either the

training or validation data set via simple random sample using the srs CAS action as shown

in Figure 4.

Figure 4. Using the SRS Action to Create 70% Training/30% Validation

The srs action assigns a partition index, _PartInd_, which takes a value of 1 for reviews

assigned to the training set and 0 for reviews assigned to the validation set. The execDirect

action from the fedSQL action set is used to create separate CAS tables for the training and

validation sets as shown in Figure 5.

4

Figure 5. Using the execDirect Action to Split Training and Validation into Separate

CAS Tables

DATA EXPLORATION

The next step in the model building process is to explore your training data. Initial data

exploration shows that 63.7% of the training data set is comprised of helpful reviews while

the remaining 36.3% of reviews are unhelpful. Further exploration shows that 50% of the

reviews were rated 5 stars, 24% are rated 1 star, and the remaining 26% are split rather

evenly between 2, 3, and 4 stars. One noteworthy finding is that while 86.2% of 5-star

reviews are considered helpful, only 27.5% of 1-star reviews are considered helpful. This

exploration process gives you an idea that the star rating will likely be a very useful variable

in determining the likelihood that a review is helpful. Users are more likely to consider

reviews with higher star ratings as helpful than those that have lower star ratings. Figure 6

shows the code to perform a cross-tabulation using the pandas library along with the

resulting stacked bar chart that demonstrates how the proportion of reviews that are

considered helpful varies for each level of review rating.

Figure 6. Relationship between Review Rating and Review Helpfulness

5

MODEL TRAINING

This section shows the various steps in building a predictive model that includes text. The

code not only includes a standard predictive model, in this case we use an SVM, but also the

actions needed to transform your unstructured data to a numeric representation.

Figure 7 shows the general overview of the code needed to create the models for scoring.

There are two major components, one for text and the other for the predictive model. Both

sections produce their own analytic store model. In the following subsections, these model

training components are covered more specifically.

Figure 7. Model Training Overview

PARSING THE TEXT

The tpParse action parses each row of the input table and creates an output offset table that

lists every term found in every document. It is the first step in transforming your text to a

numerical representation. There are many options to control how the tokenization works

and to enable you to use various natural language features such as the part-of-speech tags

or the stemmed form of a term. In the code shown in Figure 8, you can see common

settings used in the tpParse action. You should explore which settings work best for your

particular input data and subsequent model.

Figure 8. The tpParse Action Code

6

In addition to the output offset table, you should also request the parseConfig output. This

table stores the settings that you use so that they can be reused at score time. Below, you

will see that the parseConfig table is added to and then used to build a scoring model.

CORRECTING MISSPELLINGS

When your input text data is particularly noisy, such as informal chat messages or other

unedited content, the tpSpell action can be useful for automatically correcting misspellings.

This action takes the offset table from the tpParse action, analyzes it for spelling corrections

that need to be made, and, on output, updates the offset table with these corrections. The

tpSpell action finds candidate misspellings by looking across the entire collection for rare

terms that are very similar in spelling to more common terms. The code for calling the

tpSpell action is shown in Figure 9.

Figure 9. The tpSpell Action Code

In Figure 10, you can see the fetch action that retrieves and displays a subset of the output

table from the tpSpell action. This output table replaces the offset table of tpParse,

correcting the parent values of misspelled terms. In the table shown in Figure 10, the

misspelled term “allert” has been corrected to having a parent of “alert”.

Figure 10. The Fetch Action Code Producing the Output from tpSpell

GENERATING A TERM-BY-DOCUMENT MATRIX

Once the text has been tokenized into the offset table, you use the tpAccumulate action to

filter and reassign some of the terms, and to create a term-by-document weighted

frequency table.

Filtering and reassigning the terms is done with the following options on the tpAccumlulate

action:

• synonyms: Maps a set of terms to a canonical form of those terms and reduces the

number of terms in your analysis.

• stopList: Eliminates specific terms from your analysis. A default stopList is provided

in the reference library.

• reduce: Throws out infrequently occurring terms as these tend to be just noise in

the collection.

7

In Figure 11 below, you can see how to create a custom synonym list to use as input to the

tpAccumulate action using Python’s StringIO function and SWAT’s data message handler.

Figure 11. An Example of Creating a Synonym List

Figure 12 shows the call to the tpAccumulate action. For your particular problem, you

should consider experimenting with the different termWeight settings, the reduce= setting,

and modify the terms on your stop and synonym lists to be useful for your data. Often the

Mutual Information weighting, in conjunction with a target input is helpful, but in this case

the setting seemed to cause overfitting, so it was not used.

Figure 12. The tpAccumulate Action Code

There are two primary outputs of the tpAccumulate action. The first is the terms table,

which is a summary table containing the unique terms in the collection and the frequencies

at which they occur. The second is the parent table, which is a compressed representation

of the term-by-document weighted frequency table.

GENERATING DOCUMENT PROJECTIONS

In a term-by-document weighted frequency matrix, each document is represented with a

vector whose length is equal to the number of distinct terms in the collection. While this is a

numerical representation, it is too long and sparse to be useful, so your transformation of

your input text to a numerical representation will be complete when the term-by-document

frequency matrix is projected onto a smaller dimensional space. The tmSVD action in the

textMining action set enables you to form this projection.

8

The action can do much more, such as discover topics in your data, but for your predictive

model, you are primarily interested in the docPro table containing the k real-valued _Col1_-

Colk variables, where k is the number of dimensions you choose. These document

projections variables, in conjunction with any other variables on your training data that you

think might be useful, can be used as input when you train your predictive model.

The tmSVD action call shown in Figure 13 has several output tables. In addition to the

docpPro table, the output scoreConfig table is the same parseConfig table you created with

tpParse, together with additional information that tmSVD model needs at score time. The

topics and termtopics output tables are not specifically required for the predictive model,

but they are required for making the analytic store in the next subsection, so they are also

requested. The option norm=”doc” is specified to override the optimal topic calculation and

instead focus on getting the best predictive ability. When you set the norm option in this

way, you make sure that the document projections are normalized to unit length.

Figure 13: The tmSvd Action Code

CREATING A TEXT MINING ANALYTIC STORE

The analytic store scoring mechanism has become a standard across SAS. The approach

encapsulates needed information and data into a binary object, which is used for model

deployment. In the tmAstore action, you create an analytic store by combining the content

of several tables that were generated from the previous actions into a single analytic store

table object. This table will be applied at score time with the score action from the analytic

store action set.

Figure 14 contains the code to create the output analytic store table for the text analytics

portion of your predictive model. In the following section you will see how to create a

second analytic store for the SVM portion of your model.

Figure 14. The tmAstore Action Code

BUILDING PREDICTIVE SUPPORT VECTOR MACHINES MODEL

The step above describes the final step of the text analytics training stages. The following

stages defined from here are the predictive training stages. In this section, details on the

analytical actions used for building the machine learning model will be described. As stated

9

in the introduction, the model chosen is SVM (Support Vector Machine). An SVM is a type of

classifier that can learn from labeled training data and identify features that distinguish

between different classes. For this project, the two classes that the SVM will classify are

between reviews considered helpful and reviews considered unhelpful. To aid in the

classification using an SVM, there are certain mathematical functions that are supported

called kernels. Kernels are used to transform the data into a form that can make the data

easier to classify. The purpose of these functions is to improve the separability in the data.

Separability, in terms of SVM classification, is a property where two or more sets of data

points can be easily divided into different classes. The functions transform the points so that

a linear separator can be found that will make fewer errors.

Figure 15 below demonstrates the use of the svmTrain action, which uses linear and non-

linear kernels to compute support vector machine (SVM) learning classifiers for the binary

pattern recognition problem. The “degree” parameter specifies the degree of the polynomial

kernel used. The “input” parameters specify the explanatory variables used for analysis. The

document projections generated from the previous steps, as well as the review rating and

review length are selected as these variables. The target variable, “helpful” is specified in

the “target” parameter. When the action is run, the training results can be saved to a CAS

table containing an analytic store and specified with the savestate option.

Figure 15. The svmTrain Action Code

MODEL SCORING

In this section you will see how to apply an analytic store scoring model. This standardized

approach makes model deployment an easy step in many different contexts. Analytic stores

are designed so that multiple different analytic stores can be applied one after another. In

this case, you will first use the analytic store created from the text analytics component and

then you will use the analytic store that encapsulates the SVM model. Figure 16 illustrates

the model scoring process.

Figure 16. The Model Scoring Process

10

GENERATING SCORED DOCUMENT PROJECTIONS

You apply the text analytics scoring on the validation data with the score action. Your two

inputs are the data you want to score and the text analytic store table. If there are

additional variables that you want to use, then add them with the copyVars statement and

they will be passed along together with the _Col1_-_Colk_ variables that you created at

train time. The score action call is shown in Figure 17 and the output table created with the

out option will then serve as input to the SVM scoring.

Figure 17. Analytic Store Scoring Code for Text Model

SCORING THE SUPPORT VECTOR MACHINES PREDICTIVE MODEL

To score the SVM model, the output from the text scoring step and the SVM analytic store

are submitted as input into the score action. The score action code for scoring the SVM

model is shown in Figure 18. Your predictions will be included in the resulting output table.

Figure 18. Analytic Store Scoring Code for SVM Model

ASSESSING RESULTS

To assess the results of your scored SVM model, you can use the assess action from the

percentile action set. This action generates an output table with Receiver Operating

Characteristic (ROC) information. Included in this output is the C statistic, which represents

the area under the ROC curve, a common metric for assessing model performance. Figure

19 shows the code to generate the ROC information for your scored model.

Figure 19. Assess Action Code to Generate ROC Table

From the ROC output table, you will find that the area under the ROC curve for your model

is 0.86 and that the overall misclassification at a p=0.50 cutoff is 18.7%. More specifically,

the model successfully identified 11,079 of the 13,140 helpful reviews (84.3%) and 5,371 of

the 7,100 unhelpful reviews (75.6%) in the validation data.

To further assess the model and to demonstrate the value that document projections were

able to add, you can compare the predictive results with and without using the document

11

projections as a predictor. The misclassification results of three candidate models can be

compared to determine which has the most predictive value:

• SVM Model using document projections, star rating, and review length

• SVM Model using only document projections (no star rating or review length)

• SVM Model using only star rating and review length

For the sake of space, the code to generate all three models and compare their

misclassification rates is not included in this paper. Table 2 is a Jupyter Notebook output

table created to compare the misclassification rates of the three models at a cutoff of

p=0.50. This table shows that the model including all variables did the best job at

classifying reviews as helpful.

Table 2. Comparing Misclassification Rates

For a visual comparison between models, the Matplotlib library can be used to generate an

ROC curve for each model. Figure 20 shows how to generate the curves.

Figure 20. Code to Generate ROC Curves

The resulting ROC curves are shown in Figure 21.

12

Figure 21. ROC Curves on Validation Data

The area under the curve improves significantly from 0.78 to 0.86 when document

projections are included in the model. This demonstrates the value added through the text

analytics model building process where unstructured text was converted into numeric input

variables for use in the SVM model.

CONCLUSION

The SWAT library makes it easy for Python users to access and interact with the SAS Viya

platform. Python users are able to write code in a familiar environment while gaining access

to SAS text analytics and machine learning CAS actions. These actions were used

throughout the course of this paper to highlight an approach for building an end-to-end text

analytics model in SAS Viya using Python.

The value of incorporating unstructured text as input into a machine learning model was

demonstrated. Amazon reviews were transformed into a numerical representation via the

document projections output from the tmSvd action. Those document projections were

combined with the star rating and review length as input into an SVM model to predict

whether users will rate a review as being helpful. The results on the validation data proved

the value of incorporating the document projections as they improved the misclassification

rate and area under the curve significantly. The area under the curve from this model built

with a traditional text mining approach plus an SVM can serve as a baseline for comparison

against other techniques such as deep learning, an approach SAS makes accessible to

Python users through the SAS Deep Learning Python (DLPy) package.

REFERENCES

Albright, R. 2004. SAS Institute white paper. “Taming Text with the SVD.”

ftp.sas.com/techsup/download/EMiner/TamingTextwiththeSVD.pdf.

Foreman, Carrie. 2019. “SWAT’s it all about? SAS® Viya® for Python Users.” Proceedings of

the SAS Global Forum 2019 Conference. Cary, NC: SAS Institute Inc.

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2019/3610-2019.pdf

ftp://ftp.sas.com/techsup/download/EMiner/TamingTextwiththeSVD.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3610-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3610-2019.pdf

13

Indelicato, Joe. 2019. “Open Visualization with SAS® Viya® and Python.” Proceedings of

the SAS Global Forum 2019 Conference. Cary, NC: SAS Institute Inc.

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2019/3455-2019.pdf

SAS Institute Inc. 2020. “What’s New in SAS Visual Text Analytics 8.5” SAS® Visual Text

Analytics 8.5: Programming Guide. Cary, NC: SAS Institute Inc.

https://go.documentation.sas.com/?docsetId=casvtapg&docsetTarget=p0vouc3o8s7gq0n1p1b68jydb8i

d.htm&docsetVersion=8.5&locale=en

SAS Institute. 2020. “Support Vector Machine Action Set: svmTrain Action.” SAS® Visual

Data Mining and Machine Learning 8.5: Programming Guide. Cary, NC: SAS Institute Inc.

https://documentation.sas.com/?docsetId=casactml&docsetVersion=8.5&docsetTarget=cas-

svm-svmtrain.htm&locale=en

SAS Institute. 2020. “Percentile Action Set: assess Action.” SAS® Visual Analytics 8.5:

Programming Guide. Cary, NC: SAS Institute Inc.

https://documentation.sas.com/?docsetId=casanpg&docsetTarget=cas-percentile-

assess.htm&docsetVersion=8.5&locale=en

SAS Institute Inc. 2016. SWAT Documentation.

https://developer.sas.com/apis/swat/python/v1.1.0/install.html

SAS Institute Inc. 2020. SAS Deep Learning Python (DLPy).

https://github.com/sassoftware/python-dlpy

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Nate Gilmore

Nate.Gilmore@sas.com

Vinay Ashokkumar

Vinay.Ashokkumar@sas.com

Russell Albright

Russell.Albright@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3455-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3455-2019.pdf
https://go.documentation.sas.com/?docsetId=casvtapg&docsetTarget=p0vouc3o8s7gq0n1p1b68jydb8id.htm&docsetVersion=8.5&locale=en
https://go.documentation.sas.com/?docsetId=casvtapg&docsetTarget=p0vouc3o8s7gq0n1p1b68jydb8id.htm&docsetVersion=8.5&locale=en
https://documentation.sas.com/?docsetId=casactml&docsetVersion=8.5&docsetTarget=cas-svm-svmtrain.htm&locale=en
https://documentation.sas.com/?docsetId=casactml&docsetVersion=8.5&docsetTarget=cas-svm-svmtrain.htm&locale=en
https://documentation.sas.com/?docsetId=casanpg&docsetTarget=cas-percentile-assess.htm&docsetVersion=8.5&locale=en
https://documentation.sas.com/?docsetId=casanpg&docsetTarget=cas-percentile-assess.htm&docsetVersion=8.5&locale=en
https://developer.sas.com/apis/swat/python/v1.1.0/install.html
https://github.com/sassoftware/python-dlpy
mailto:Nate.Gilmore@sas.com
mailto:Vinay.Ashokkumar@sas.com
mailto:Russell.Albright@sas.com

1

Paper SAS2225-2018

Harvesting Unstructured Data to Reduce Anti-Money Laundering (AML)
Compliance Risk

Austin Cook and Beth Herron, SAS Institute Inc.

ABSTRACT

As an anti-money laundering (AML) analyst, you face a never-ending job of staying one step ahead of
nefarious actors (for example, terrorist organizations, drug cartels, and other money launderers). The
financial services industry has called into question whether traditional methods of combating money
laundering and terrorism financing are effective and sustainable. Heightened regulatory expectations,
emphasis on 100% coverage, identification of emerging risks, and rising staffing costs are driving
institutions to modernize their systems. One area gaining traction in the industry is to leverage the vast
amounts of unstructured data to gain deeper insights. From suspicious activity reports (SARs) to case
notes and wire messages, most financial institutions have yet to apply analytics to this data to uncover
new patterns and trends that might not surface themselves in traditional structured data. This paper
explores the potential use cases for text analytics in AML and provides examples of entity and fact
extraction and document categorization of unstructured data using SAS® Visual Text Analytics.

INTRODUCTION

Financial Institutions dedicate substantial resources in support of government’s efforts to curb money
laundering and terrorism financing. Money laundering is the process of making funds that were gained
through illegal channels appear legitimate, typically through a process of placement, layering, and
integration. Terrorism financing is often more challenging to identify, as the funding can be raised
through legitimate means, but later used to fund an act of terror or support a terrorist organization.
Detecting these patterns can often feel like a game of “whack-a-mole;” by the time a new control is
implemented to identify a known risk, the criminals have already changed their behavior to elude your
efforts. The stakes are high, as the amount of money laundered per year is estimated to be 2 to 5% of
global GDP. That’s 2 trillion in USD according to the United Nations Office on Drugs and Crime (UNODC).
In today’s big-data environment, using modern technology to quickly identify financial crimes is critical.

A lot has changed globally since the early AML regimes of the 1970s. A growing regulatory landscape
has led to higher penalties for program deficiencies. Banking has fundamentally changed with the
creation of digital channels, faster payments, and new financial instruments. Data storage has become
cheaper, opening the opportunity to process big data rapidly. Financial institutions have mostly adapted to
these changes through enhancements to their rule-based detection programs and, as a result, have seen
their headcount and costs soar. There’s an appetite to overhaul the system to reduce false positive rates,
increase the detection of money laundering, and automate many of the tedious tasks required in the
investigations process. With the help of SAS® Visual Text Analytics, we can leverage artificial intelligence
techniques to scale the human act of reading, organizing, and quantifying free-form text in meaningful
ways, uncovering a rich source of underused risk data.

UNSTRUCTURED DATA SOURCES

While structured data such as transaction, account, and demographic information has been used in
combating money laundering for years, financial institutions are just now beginning to see the value in
harvesting unstructured data sources. These data sources are both vast and rich with valuable
information that provides new data points, creates linkages, and identifies trends. Here is a list of the
more notable sources of unstructured data that can be used for AML:

• Wire Data - Wire transfers between financial institutions contain much more valuable information than
just the amount of money being sent. Along with origination, intermediary, and beneficiary data, wires

https://www.unodc.org/unodc/en/money-laundering/globalization.html

2

often include free-form text including payment instructions and other messaging.

• Transaction Review Memos - The branch employees and client managers are the first line of
defense when it comes to protecting the bank from money laundering. Typically, these individuals
report valuable insight to the AML group through a transaction review memo. The details included in
these memos are at the branch attendee’s discretion, but often they have supporting detail on why
the transaction was deemed suspicious that might not be apparent in the transaction alone.

• Case Data - Anti-money laundering case data contains information enriched by the investigator
during the life of the investigation. Cases generally contain several free-form text fields including
notes, comments, and email correspondence as well as a narrative report explaining the final
disposition. If suspicious activity is identified, a suspicious activity report (SAR) will be filed.

• Suspicious Activity Report Data - SARs are documents that financial institutions must file with their
in-country government agency following the identification of potential unusual behavior related to
money laundering or fraud. These documents are typically free-form text and generally contain
several pieces of information about the person, company, and entity or entities of interest; the general
findings from the investigator as to what the suspicious activity was; as well as any supporting
evidence for the suspicious activity.

• Negative News - Beyond unstructured data your financial institution generates, there is a vast
amount of publicly generated data from news and media organizations. Public news data can be used
to identify supporting information about your customers including relationships to businesses or risky
behaviors and criminal activity.

• Email/Phone/Chat - In addition to transactional data, risk factors might be identified in the non-
transactional data stored by the bank in the form of email, phone, or chat conversations between the
customer and employee.

• Law Enforcement Requests - Financial institutions have an obligation to identify subjects of law
enforcement requests and file SARs where appropriate. Grand jury subpoenas, national security
letters, and other requests are received in electronic format and contain text regarding persons of
interest and requests for information.

• Trade Documents - The global trade system remains primarily a paper-based system. The trade
documents (letters of credit, bills of lading, commercial invoices, other shipping documents) contain
critical risk information in free-form text such as boycott language, dual use goods, inconsistent unit
pricing, and other trade-based, money-laundering vulnerabilities.

USE CASES IN AML

Mining your unstructured data can be valuable in uncovering new insights to help combat money
laundering in your financial institutions. Processing techniques such as theme detection, categorization,
and entity or fact extraction are all ways to provide structure to free-form text. Once text is structured,
there are several use cases to apply this data to ensure compliance:

• Negative News Monitoring - As an industry standard, financial institutions typically look for negative
news related to high-risk customers and customers who have an open AML case. With the wide
array of digital news made available daily, the identification of credible news can be challenging.
Negative news not relevant to compliance can bias an investigator’s decision process, while missed
news can leave an institution open to reputational risk. Coupled with bank policy and risk tolerance,
an automated process to identify negative news and successfully link this information to customers
provides both cost and time savings through automation.

• Network Analytics - Perhaps one of the best pieces of information for investigating AML is to
understand relationships among your customers, as well as non-customers. Most institutions have
structured data for known relationships among their customers, but often there are gaps with
unknown relationships and those relationships with non-customers. Relationships and networks often
surface through normal investigative procedures and are documented in case notes and SAR data.
Storing this valuable information and displaying it for future use along with geographic tagging

3

provides deeper insights to the investigations process.

• SAR Attribution Detection - The detection of money laundering is an exercise in correctly identifying
rare events in vast amounts of data. As the AML compliance industry starts to explore the application
of artificial intelligence and machine learning to replace Boolean rules, the need for reliably labeled
data (target variables) for training becomes even more important. Often, SARs are filed based on
external information, but are attributed to the success of one or more rule-based scenarios. Text
mining can help determine the correlation. This is critical to not only tune existing models, but also to
allow banks to predict newly identified patterns in the future.

• Trade Finance Document Categorization - Deciphering trade documents is a tedious, manual
process. We’ve been testing cognitive computing capabilities that are used for character recognition
and natural language processing for document categorization. In a pilot with a tier 1 bank, our
models read trade finance documents with ~99% accuracy and reduced the time to manually process
the documents from several weeks to 26 seconds in an automated process.

EXAMPLE FRAMEWORK USING SAS® VISUAL TEXT ANALYTICS

This paper explores the process of processing unstructured data to support any of the use cases listed
above. To demonstrate the potential applications, we will follow the framework below, primarily using SAS
Visual Text Analytics as the enabling technology.

• Data Acquisition – Data is acquired for the example use case utilizing web scraping tools and is
imported into SAS Visual Text Analytics.

• Concept Extraction – Predefined and customized concepts are generated to extract key facts from
the unstructured data.

• Text Parsing – The individual records are parsed to enumerate the terms contained in the
documents and apply filtering with start and stop lists.

• Topic Generation – Individual records are grouped into a collection of related themes containing
similar subject matter automatically based on a bottom-up approach using the underlying terms.

• Categorization – Documents are classified into predetermined categories based on a top-down
approach of the areas of interest using linguistic rules.

• Post-Processing – Output from SAS Visual Text Analytics is processed and prepared for use in
modeling or investigative tools.

DATA ACQUISITION

While SAR information is not publicly available, we wanted to conduct our analysis on text data with
similar content and format. The Internal Revenue Service (IRS) publishes summaries of significant money
laundering cases each fiscal year, dating back to 2015. This data is rich with information, including
people, organizations, risk typologies, locations, and other interesting data related to financial crimes.
Below is an example of an IRS case from our data set:

“Former Owners of Money Transmitter Business Sentenced for Conspiring to Structure Financial
Transactions
On October 25, 2016, in Scranton, Pennsylvania, German Ossa-Rocha was sentenced to 27 months in
prison and two years of supervised release. On October 26, 2016, Mirela Desouza was sentenced to 18
months in prison and two years of supervised release. Ossa-Rocha and Desouza were the former owners
of Tropical Express, a money transmitter service business located in Stroudsburg. Beginning in
approximately January of 2008 and continuing through December 2011, Ossa-Rocha and Desouza
structured financial transactions that represented the proceeds of drug trafficking in a manner intended to
avoid reporting and recording requirements. The amount of funds involved in the structuring was
approximately $340,000. The funds were transmitted by Ossa-Rocha and Desouza via wire transfers to
the Dominican Republic.” (IRS)

https://www.irs.gov/compliance/criminal-investigation/examples-of-money-laundering-investigations-for-fiscal-year-2017

4

Web scraping tools were used to extract the various money laundering examples and write to a CSV file
with four columns: observation number, year, title, and text narrative. The CSV file was then imported into
SAS Visual Text Analytics for analysis.

CONCEPT EXTRACTION

After initializing a project and loading the data, the first step in the process was focused on concept and
fact extraction. With our data being rich in entities and facts, we wanted to extract these from the text for
potential use in further analysis and research by investigators. In our model pipeline, this was done by
dragging a Concept node and placing it on top of the Data node. SAS Visual Text Analytics comes with
predefined concepts out of the box, as well as the ability to write your own custom concepts using LITI
(language interpretation and text interpretation) syntax. For our analysis, we enabled the predefined
concepts and wrote several custom concepts that are highlighted below.

The predefined concepts are common points of interest in which the rules come out of the box to
immediately apply to your data, saving you time and helping you gain instant insights. Here are the
predefined concepts of interest for our analysis:

• nlpDate – Identifies and extracts all dates and date ranges in your data in several formats (for
example, May 2003, 05/15/2007, between 2007 and 2009, and so on).

• nlpMeasure – Identifies and extracts measures of time and quantities (for example, 30 years, 500
kilograms, and so on).

• nlpMoney – Identifies and extracts all references to currencies (for example, $272,000, more than $3
million, and so on).

• nlpOrganizations – Identifies and extracts all organization names (for example, U.S. Treasury,
Department of Agriculture, and so on).

• nlpPerson – Identifies and extracts all names (for example, Joyce Allen, Robert L. Keys, and so on).

• nlpPlace – Identifies and extracts all places (for example, Asheville, North Carolina, Newport Beach,
California, and so on).

Error! Reference source not found. below shows a set of matched concepts for the predefined concept
nlpMoney.

Figure 1. Matched Concepts for Predefined Concept nlpMoney

While the predefined concepts are valuable in and of themselves, they are also useful for referencing in
your custom concepts. An example of this can be seen with our custom concept Fine_Amount. The
predefined concept nlpMoney will extract out all references to money, but suppose we want to exclusively
extract out the fines associated with each record for further analysis. Instead of filtering through all
references to money, we can define a custom concept to pull out only currencies associated with a fine.

5

Figure 2 below shows the LITI syntax to generate this rule:

Figure 2. Custom Concept Fine_Amount LITI Syntax

The Fine_Amount custom concept uses the C_CONCEPT rule, which enables you to return matches that
occur only in the context that we desire. In our case, we want to return the currency found by the
nlpMoney predefined concept, but only in the context of a fine as in “ordered to pay” or “ordered to forfeit”.

A set of custom concepts was built on top of the predefined concepts to extract additional useful facts that
could be helpful for indexing and searching, as well as additional analysis. Table 1 below summarizes the
custom concepts that were developed, the type of concept used, and an example of the output.

Custom Concept Concept Type Example Output

Drug_Names CLASSIFIER Marijuana

Prison_Sentence C_CONCEPT 60 months

Drug_Amount CONCEPT_RULE 15 kilograms

Investment_Fraud_Amount CONCEPT_RULE $200 million

Investment_Fraud_Victims CONCEPT_RULE 70 victims

Case_Charges CLASSIFIER Identity theft

Sentence_Location CONCEPT_RULE Providence, Rhode Island

Table 1. Custom Concept Definitions

TEXT PARSING

The next step in our analysis was to parse the text and create our term document matrix. In our model
studio pipeline, this is done by dragging the Text Parsing node and placing it on top of the Concept node.
SAS Visual Text Analytics allows you to customize how terms are parsed by configuring the minimum
number of documents the term must be found in to be included for analysis, as well as using custom start,
stop, and synonym lists. For the purposes of our example, we used the Text Parsing node to further
explore some terms of interest for additional context and understanding. Figure 3 is an example of a term
map used for exploration purposes.

6

Figure 3. Term Map for “wire fraud”

TEXT TOPICS

Continuing with our analysis, we wanted to understand any relevant themes found in the data with the
underlying terms that were parsed. For this, we dragged a Topic node and placed it on top of the Text
Parsing node. SAS Visual Text Analytics allows you to automatically generate topics or choose the
number of topics to generate, as well as set several other configurations including the term and document
density. With a few iterations, we found the most informative results by setting the number of topics
generated at 20, as well as term and document density of 2 and 1, respectively. Here is the output of the
text topics.

7

Figure 4. Text Topics and Associated Document Count

Upon inspecting the topics, we were interested in two themes that were promoted to categories for
ongoing analysis. The topics that were automatically generated provided a new lens on the data that we
would like to track further and categorize new documents moving forward.

Topic Terms Topic Theme Percent of Documents

+buyer, +mortgage, straw,

+straw buyer, +application

Real Estate Investment Fraud 9.4%

silk road, silk, road, +user,

+website

Dark Web Drug Trade 7.0%

Table 2. Text Topics Promoted to Categories

TEXT CATEGORIES

Previously, we discussed text topics and the bottom-up approach of using the underlying terms to
generate topics of interest. Our next step in our analysis was to take a top-down approach and define
categories of interest using linguistic rules available in SAS Visual Text Analytics. In our model pipeline,
this is done by dragging a Category node and placing it on top of the Topic node.

Categorizing your documents can be valuable for several reasons, such as creating tags for searching or
for assigning similar documents for workflow purposes. Previously, we identified two categories of interest
that we converted from the topics that were generated using the Topic node. In addition to these, we
created a custom hierarchy of categorization that will help with future analysis. The table below shows the
hierarchy of categories we were interested in.

Level 1 Level 2 Percentage of Matches

Drug Activity Pharma Drugs 3%

8

Illegal Drugs 15%

High Risk Customer Groups Casino 3%

Real Estate 23%

Shell Company 3%

Financial Crime Charges Bank Fraud 14%

Bulk Cash Smuggling 4%

Check Fraud 1%

Identity Theft 6%

Investment Fraud 8%

Mail Fraud 16%

Structuring 3%

Tax Fraud 5%

Wire Fraud 28%

Table 3. Custom Category Matches

Each category uses Boolean and proximity operators, arguments, and modifiers to effectively provide
matches to only desired documents. Through the authors’ domain expertise and the capabilities of SAS
Visual Text Analytics, we were able to provide relevant matches on several categories of interest. An
example of this concept is outlined below using the text category for the custom category “Identify Theft”:

Figure 5. Text Category for “Identity Theft” with Matched Output

The “Identity Theft” rule can be broken up into two main components using the OR operator. The first
component is simply looking for a direct match for the two sequential terms “identity theft”, which provides
several simple matches in the output found in the bottom of Figure 5. The second component uses the

9

SENT operator and will trigger a match if two sub-components exist in the same sentence somewhere
within the document. The first sub-component is looking for some form of the word “identity” or a close
combination of “personal” and “information”. The second sub-component is looking for the action of theft
including terms such as “split”, “dual”, “stole”, “fabricate”, or “obtain”. The fourth and fifth matches in
Figure 5 highlight the types of matches this will create in the form of “stolen identities” and “obtained
identities” in the fourth and fifth match, respectively.

POST-PROCESSING

Once your project is set up in SAS Visual Text Analytics, you can produce score code and apply this to
new data for ongoing tracking and monitoring. There are several types of post-processing that can
happen depending on your use case and what the type of output you are working with. The most common
types of post-processing can be found below:

• Categorical Flags – Typically, the presence or match for a category is used as a binary indicator for
each document and can be used in filtering or searching, or as inputs to machine learning algorithms.

• Network Analysis – Extracted concepts such as locations, people, and organizations can be post-
processed to show linkages and used as input to network diagrams for analysis.

• Numerical Analysis – Extracted concepts such as duration, fine amounts, or other numerical fields
extracted from the documents can be post-processed to derive summarizations and averages of
areas of interest.

CONCLUSION

There is a lot of excitement in the financial crime and compliance industry around the application of
artificial intelligence and automation techniques. We see many opportunities available today to apply
these methods to improve the effectiveness of detection programs and automate the manual tasks being
performed by investigators. Text analytics is one area that has enormous potential, given that compliance
departments have vast amounts of untapped, unstructured data sources. These sources contain rich
information including who, where, what, when, and how that can be used as an input to many financial
crimes use cases such as Negative News Monitoring, Trade Finance Monitoring, and SAR/STR Quality
Assurance. With SAS Visual Text Analytics, banks can extract and derive meaning from text and organize
it in a way that helps them perform these complex tasks that were previously accessible only through
manual human review.

REFERENCES

UNODC (United Nations Office on Drugs and Crime). n.d. “Money-Laundering and Globalization.”
Accessed February 20, 2018. Available https://www.unodc.org/unodc/en/money-
laundering/globalization.html.

IRS (Internal Revenue Service). 2017. “Examples of Money Laundering Investigations - Fiscal Year
2017.” Accessed February 20, 2018. Available https://www.irs.gov/compliance/criminal-
investigation/examples-of-money-laundering-investigations-for-fiscal-year-2017.

ACKNOWLEDGMENTS

The authors would like to thank David Stewart for his guidance and thought leadership regarding AML
compliance. In addition, we would like to thank Adam Pilz for his guidance and thought leadership
regarding text analytics.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Austin Cook
100 SAS Campus Drive
Cary, NC 27513

https://www.unodc.org/unodc/en/money-laundering/globalization.html
https://www.unodc.org/unodc/en/money-laundering/globalization.html
https://www.irs.gov/compliance/criminal-investigation/examples-of-money-laundering-investigations-for-fiscal-year-2017
https://www.irs.gov/compliance/criminal-investigation/examples-of-money-laundering-investigations-for-fiscal-year-2017

10

SAS Institute Inc.
Austin.Cook@sas.com
http://www.sas.com

Beth Herron
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
Beth.Herron@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Austin.Cook@sas.com
mailto:Beth.Herron@sas.com

Paper SAS3213-2019

Hearing Every Voice: SAS® Text Analytics for Federal Regulations Public
Commentary

Emily McRae, Tom Sabo, Manuel Figallo, SAS Institute Inc

ABSTRACT

Regulations.gov was launched in 2003 to provide the public with access to federal

regulatory content and the ability to submit comments on federal regulations. Public

participation in federal rulemaking is encouraged as it supports the legitimacy of regulatory

decisions, frames public acceptance or resistance to rules under development, and shapes

how the public interest will be served. Manually reading thousands of comments is time-

consuming and labor-intensive. It is also difficult for multiple reviewers to accurately and

consistently assess content, themes, stakeholder identity, and sentiment. Given that

individually proposed rules can exceed 10,000 comments, how can federal organizations

quantitatively assess the data and incorporate feedback into the rulemaking process as

required by law?

This paper shows how SAS® Text Analytics can be used to develop transparent and

accurate text models, and how SAS® Visual Analytics can quantify, summarize and present

the results of that analysis. This will significantly decrease time to value, leveraging

capabilities that computers excel at while freeing up human intuition for the analysis of

these results. Specifically, we will address public commentary submitted in response to new

product regulations by the US Food and Drug Administration. Ultimately, the application of a

transparent and consistent text model to analyze these documents will support federal rule-

makers and improve the health and lives of American citizens.

INTRODUCTION

Electronic cigarettes, or "e-cigarettes/e-cigs" are small electronic devices, which are used to

simulate some of the properties of smoking. They work by heating a liquid to expel an

aerosol or vapor, which the user then inhales. The heated liquid and resulting vapor in an e-

cig typically contains nicotine, and the devices are very often marketed as a smoking

cessation aid. Proponents of e-cig devices claim that they are healthier than traditional

cigarettes, as they don't produce tar or noxious gases. However, it is important to note that

a) nicotine is still a highly addictive substance, b) e-cigs might contain contaminants or

other unintended toxins and c) the long-term health effects of e-cig usage are unclear. 1

Of particular concern is the growing usage of e-cigarettes in children and other non-

smokers. The National Youth Tobacco Survey (NYTS) is conducted annually by the FDA and

CDC to track rates of tobacco use in children (middle and high school students). The most

recent data indicates that usage is trending upward as the proportion of high-school users

who reported using e-cigarettes on 20 days or more in the last 30-day period, increased

from 20% to 27.7% between 2017-2018. Overall, approximately 3.6 million children

reported using e-cigarettes in 2018. 2

If children and teenagers are not using e-cigarettes to quit smoking, what is driving this

trend? One suggestion is the inclusion of flavors in e-cigarette liquid, which replace the

traditional tobacco taste of cigarettes. Common flavors include mint/menthol, strawberry,

chocolate, cinnamon, gummy-bear, and cotton-candy, among many others.3 For context,

conventional cigarette manufacturers are prohibited from adding flavors (other than

menthol) to their products, a move the FDA implemented specifically to reduce youth

tobacco usage.4

To further understand the disparate drivers of e-cigarette usage and to balance their

potential benefit as smoking cessation tools versus their potential risk to under-age users,

the FDA submitted a notice of proposed rulemaking to regulations.gov (Regulation of

Flavors in Tobacco Products, Docket ID: FDA-2017-N-6565) and opened a public comment

period. The notice specifically asks for ' comments, data, research results, or other

information about, … how flavors attract youth to initiate tobacco product use and about

whether and how certain flavors may help adult cigarette smokers reduce cigarette use and

switch to potentially less harmful products.'5

This notice attracted over 525,000 comments, of which ~23,000 were made publicly

available. Using this data, this paper will showcase a repeatable solution framework for the

analysis of regulations.gov comments, in addition to familiarizing readers with the

capabilities of SAS® Visual Text Analytics and SAS® Visual Analytics.

SOLUTION DEVELOPMENT

SAS® Visual Text Analytics provides a comprehensive suite of text mining capabilities,

including Natural Language Processing (NLP), contextual extraction of concepts,

categorization by machine learning and sentiment analysis. This paper will show how these

capabilities can be used specifically for the analysis of regulations.gov data. Furthermore,

aspects of this analysis can be used across different federal agencies and regulations, and

so form the backbone of a repeatable solution.

SAS® Visual Text
Analytics capability

Regulations.gov analysis Repeatable?

Concepts Extract identity of referenced organizations Y

Categories Identify and quantify the document themes and form
letters

N

Sentiment Positive, Negative, or Neutral sentiment Y

Table 1. SAS® Visual Text Analytics capabilities mapped to solution components

REGULATIONS.GOV API DATA EXTRACTION
Regulations.gov provides a public API for the extraction of documents (public comments)

and dockets (the high-level organization folders, which contain the proposed regulations and

any other background documents).6 This paper uses code (courtesy of Manuel Figallo) to

pull documents associated with Docket FDA-2017-N-6565.7 The resulting data contains a

unique ID for each comment, the comment text and other associated metadata, such as the

posted date and title.

To prepare the data for analysis, we ran the following code:

/* Reformat Date variable and drop extraneous variables */

data work.reformat;

format Date Date9.;

set work._1_;

Date = input(postedDate, yymmdd10.);

drop agencyAcronym commentDueDate commentStartDate docketId docketTitle

postedDate;

run;

In addition, we ran sentence tokenizer code to break each individual comment into its

constituent sentences and generate a sentence ID (sid).8 This allows for more nuanced

categorization of comments, as each comment could potentially reference multiple themes.

The resulting tokenized data set is now ready for analysis in SAS® Visual Text Analytics.

Figure 1. Example regulations.gov analysis data set, following sentence tokenization

CONCEPTS FOR CONTEXTUAL EXTRACTION
Given that we know the subject of e-cigarette usage is fairly controversial, we decided to

identify the different interest groups or identities associated with each comment. For

example, is the comment poster an e-cigarette user? A doctor or other health care

professional? Do they represent or quote from a special interest group or professional

organization? How often are specific e-cigarette manufacturers mentioned?

These questions can be answered by using the concepts node in SAS® Visual Text

Analytics, which uses contextual extraction rules to identify and extract specific entities

(defined as people, places of things of interest, used here interchangeably with ‘concepts’).

These contextual extraction rules use SAS proprietary LITI (Language Interpretation for

Textual Information) syntax and use elements such as stemmed terms, parts-of-speech,

and Boolean operators to define a specific context for a matched entity. This approach

delivers high-precision results, especially in 'noisy' data.

IDENTIFY PROFESSIONAL ORGANIZATIONS
We initially noticed that many of these comments referred to research or positions stated by

various professional organizations or lobby groups. When choosing to identify these

organization entities, we first developed a series of simple rules, which define common

organizational names. For example, the 'Academy of Such-and-Such' or the 'So-and-So

Society', each one of these terms can be treated as a generic organizational 'flag.'

Figure 2. Concept LITI rules define initial organization entity 'flags'

4

However, as you can see from the matched blue text in Figure 3 below, this approach

returns noisy results, as many of these terms can have other meanings.

Figure 3. Matched text for concept 'ORG_ID' including irrelevant 'noise'

It is necessary to further restrict matches on these organizational terms to a particular

context. In this case, we chose to build on these initial definitions and specified that they

must reference capitalized terms (denoted by the _cap token) and occur in a particular

structure, as below.

Figure 4. Concept LITI definitions are refined to include structure and context

Now the matched blue text indicated that we are predominantly matching the organizational

entities we are interested in.

Figure 5. Matched text for concept 'NGO_ID' showing improved accuracy

5

While we can generate accurate matches against organization entities, can we also improve

the recall by adding in more definitions? And can we identify more organizational flags

without reading through all the text?

SAS® Visual Text Analytics generates a 'similarity score', which is a measure of how likely it

is for terms or phrases to occur in the same context. We used this feature to identify other

organization flag terms. For example, using the 'Textual Elements' panel in the Concepts

node, we searched for one of our flag terms – 'institute.'

Figure 6. Frequency and Parts-of-Speech for filtered term 'Institute'

Note the 'Role' column indicated that this term is present as both a Proper Noun (PN) and a

Verb (V). We selected the PN role and clicked on the 'Similarity Score' icon (highlighted in

red box). This approach identifies two additional organization definitions ('academy' and

'initiative') that we can add to our original ORG_ID concept definitions, thereby increasing

the number of positive matches.

Figure 7. Green highlighted fields show terms related to 'institute', following term similarity
scoring

6

DISAMBIGUATE MATCHES
The preceding sections indicated how it is possible to identify and restrict matches for

organization entities to a particular context. But what if we need additional control over

these matches? For example, the flag word 'center' is one of the definitions used to identify

organizations, but also matches references to the Center for Tobacco Products (CTP), which

is the FDA Center responsible for producing this regulations.gov docket. Can we remove the

organizational matches for CTP?

SAS® Visual Text Analytics provides a special LITI rule type called REMOVE_ITEM, which

allows users to disambiguate matches with a common, partial definition, which can mean

more than one thing. We start by explicitly specifying the matches we want to remove in

the 'FDA_ID' concept:

Figure 8. Concept LITI Classifier rules define unwanted matches

Then we use the ‘ALIGNED’ operator in a REMOVE_ITEM rule to return unrestricted matches

on ‘CENTER_ID’ concepts, except where they also return ‘FDA_ID’ concept matches. We

tested the results with some sample text, as seen below.

Figure 9. The LITI REMOVE_ITEM rule provides disambiguation by removing unwanted matches

7

Following the development of our concept rules, we used the Concepts score code produced

by SAS® Visual Text Analytics to extract mentions of e-cigarette manufacturers and

professional organizations. This newly structured data was then used as input for report-

building in SAS® Visual Analytics. The combination of SAS® Visual Text Analytics and

SAS® Visual Analytics allows users to quickly visualize and interact with the results of text

analysis. In particular, this approach makes the results of text modeling by a select few

analysts available to a much broader audience of stakeholders.

Figure 10. Juul is by far the most referenced e-cigarette manufacturer. The Royal College of
Physicians and the American Cancer Society top the list of referenced professional organizations.

CATEGORIZATION FOR THEME IDENTIFICATION

One of the main challenges associated with text analysis is simply that of data volume. The

point at which it becomes very intensive to manually read through text is reached after a

comparatively small number of documents. Think of a spreadsheet with a few hundred

observations of structured data (dates, prices, quantities, and so on), which can be quickly

interpreted with a representative graphic, versus the same number of free-form text

documents, each of which might refer to any topic in any form! In this instance, with over

20,000 comments publicly available, how can we quickly and comprehensively assess the

representative themes?

SAS® Visual Text Analytics addresses this issue by using a 2-step machine learning

approach to categorize documents by the main ideas or themes across any volume of text

data. Initially, the Topics node generates a series of lists, each of which contain related

terms. These terms commonly occur together in a subset of the model document corpus.

Therefore, it can be used to describe these documents, as well as differentiate them from

the rest of the documents in the model corpus. In the second step, the Categories node

combines the selected terms from the Topics model with Boolean operators to generate

linguistic rules, which can be used to assess document inclusion for a category/theme.

SMOKING CESSATION
SAS® Visual Text Analytics categories automatically generated by the above machine-

learning approach are initially labeled with a list of relevant terms. However, after reviewing

the documents in each category, we chose to rename them in a more interpretable manner.

It was very quickly apparent that the majority of opinions expressed in this data relate to

8

the ways in which e-cigarettes, or specifically e-cig flavors impact people's desire or ability

to quit smoking.

Category Example
TOBACCO_USAGE I was a 2 pack a day smoker for over 10 years and the day I picked up a

vape is the day I was able to quit cigarettes.
WHY_FLAVORS Most of the people I know quit smoking (who quit smoking rather) stopped by

using flavors OTHER than Menthol and Tobacco flavors;
RESUME_SMOKING But lets just say if you took are flavors away from us I would more than likely

go back to smoking
TRY_QUIT I have tried several times to quit smoking tried every method none of them

work until I started vaping
STOP_SMOKING many people have benefited from these flavors and have quit smoking

SAVE_LIVES Vaping can save lives if I can stop smoking cigarettes after 20 years of a
pack and a half a day and now I'm down to 3 mg of nicotine

CHILD_USAGE would you rather have kids vaping or smoking a cig I would rather hear a
kid vaping than smoking to be honest.

Table 2. Categorization of regulatons.gov comments by themes and example matching text

Interestingly, though most opinions seemed to suggest general endorsement of the role e-

cigs play in smoking cessation, the categorical analysis indicates that commenters chose to

frame their arguments in several ways, ranging from documenting their previous smoking

habits, as well as their previous attempts to quit smoking, to suggesting a return to

traditional cigarettes if flavors were banned. Most of the commenters appear to be adult e-

cigarette users and any reference to the abuse of e-cigarette flavors by under-18s appears

to be largely ancillary.

We used the Category and Sentiment score code produced by SAS® Visual Text Analytics to

assign these documents to categories and to generate sentiment scores. This data was then

used as input to a bar-chart in SAS® Visual Analytics. By clicking on the bars in the graphic

below, it is also possible to toggle through the associated documents for each category. The

addition of SAS® Visual Analytics to this approach greatly improves the interpretability of

this data for the purposes of sharing with a wider audience.

Figure 11. The most prevalent themes in these documents express support for e-cigarette
flavorings or discuss their usage as smoking cessation aids.

9

FORM LETTER IDENTIFICATION
In addition to the volume and variety of documents submitted to regulations.gov, it is also

apparent that some individuals participate in concerted campaigns centered around a

common point of view. In many cases, these individuals chose to submit form letters, in

which most of the document is identical and can contain only small customizations, if any. It

would be very difficult, if not impossible, to manually identify and quantify these form

letters. However, by using the output from the SAS® Visual Text Analytics Topics node,

which produces topic scores for each document, followed by a clustering analysis, it is

possible to group together documents, which can be very similar or identical.

We ran the Text Topics score code, followed by some additional post-processing code to

produce clusters:

/* PROC Distance generates measures of distance/similarity that can then be

used as input for clustering */

proc distance data=casuser._out_documents out=Dist method=Euclid;

var interval(_Col1_-- _Col17_ / std=Std);

ID documentId;

run;

/* PROC Cluster groups related documents */

proc cluster data=Dist method=Ward outtree=tree;

ID documentId;

run;

/* PROC Tree generates cluster membership */

proc tree data=tree out=clusters nclusters=1400;

ID documentId;

run;

/* Remove clusters of only 1 document */

data work.clusters2;

set work.clusters;

where documentId ^= clusname;

run;

/* Join documentId and clusters to original text */

proc sql;

create table clusters3 as

select C.*, S.sentences

from work.clusters2 C left join public.fda_forms_score S

on C.documentId = S.documentId;

quit;

run;

This process generates a new data set, in which form letters are grouped together under the

same cluster. The following table shows an example form letter, in which the general outline

is the same, but individual points are customized by each poster. This approach allows us to

identify groups of individuals who are commenting as a bloc, while also quantifying their

contribution to regulations.gov.

10

Cluster CL1467

FDA-2017-N-6565-18305 FDA-2017-N-6565-18360
Declaration of [@advFirst][@advLast]

I, [@advFirst][@advLast], declare and state

as follows:

1. I am over the age of 18 years and have

personal knowledge of the facts set forth

below such that I would be competent to

testify as a witness to the same if called.

2. I am submitting this declaration in

response to the FDAs request for public

comments on the above-referenced docket

regarding a proposed rule on the regulation

of flavors in tobacco products, including

electronic nicotine delivery system (ENDS),

or vapor products.

3. I am a resident of [@advCityState] and

am 48 years of age.

4. I started smoking cigarettes when I was

18 years old and smoked them for more

than 25 years .

5. I have been using vapor products for 5

years and 11 months.

6. The categories of flavors of nicotine-

containing e-liquid that I have used include

Menthol/Mint, Fruit, Desserts. Of these, the

flavor category that I use most often is

Fruit.

7. Before I started using flavored e-liquid

products, I typically smoked one pack of

cigarettes per day.

8. E-cigarettes have helped my smoking

cessation more than any other product or

medication on the market to date. Having

tried nicotine patches, gum, as well as

[…. abbreviated for length…]

9. Since I began using flavored e-liquid

products, I have been able to quit smoking

cigarettes….

Declaration of [@advFirst][@advLast]

I, [@advFirst][@advLast], declare and state

as follows:

1. I am over the age of 18 years and have

personal knowledge of the facts set forth

below such that I would be competent to

testify as a witness to the same if called.

2. I am submitting this declaration in

response to the FDAs request for public

comments on the above-referenced docket

regarding a proposed rule on the regulation

of flavors in tobacco products, including

electronic nicotine delivery system (ENDS),

or vapor products.

3. I am a resident of [@advCityState] and

am 53 years of age.

4. I started smoking cigarettes when I was

14 years old and smoked them for more

than 35 years .

5. I have been using vapor products for 3

years and 5 months.

6. The categories of flavors of nicotine-

containing e-liquid that I have used include

Tobacco, Menthol/Mint, Fruit, Desserts,

Other Sweets, Other Flavors. Of these, the

flavor category that I use most often is

Desserts.

7. Before I started using flavored e-liquid

products, I typically smoked one pack of

cigarettes per day.

8. Over my thirty plus years of smoking

(Marlboro Red, Camel Light, Marlboro

Medium/27, Dunhill, and Sobrane)

[…. abbreviated for length…]

9. Since I began using flavored e-liquid

products, I have been able to quit smoking

cigarettes….

Table 3. Example form letters. Text highlighted in green is identical. Remaining text is customized
by individual poster.

CONCLUSION

The objective of this paper was to map SAS® Visual Text Analytics capabilities to the

analysis of regulations.gov data, such that this approach can be replicated by readers for

their own federal agencies or interests. Specifically, we showed how LITI contextual

11

extraction can be used in SAS® Visual Text Analytics Concept rules to identify referenced

organizations, manufacturers or comment poster identities. In addition, we showed how

SAS® Visual Text Analytics Topic and Category modeling can be used to identify document

themes and quantify form letters. This process is summarized in Figure 12, below.

Figure 12. Overview of regulations.gov solution process

Regulations.gov is a very valuable source of text data and a key bridge between members

of the public and the federal agencies, which serve their interests. Federal agencies are

required by law to include the public in their rule-making process. According to section 553

of the Administrative Procedure Act, “the agency shall give interested persons an

opportunity to participate in the rule making through submission of written data, views, or

arguments with or without opportunity for oral presentation.” Traditionally, this has been

accomplished by a manual review of public comment data, and in the case of controversial

regulations, can involve reading thousands of documents to identify themes, sentiment and

form letters.

SAS® Visual Text Analytics offers three key benefits for the analysis of regulations.gov

data:

1. Consistency: human reviewers often struggle with ambiguity or nuanced definitions

when assigning document themes. An algorithmic approach avoids these inconsistencies

by generating a statistical representation of categories from term and document

frequencies

2. Transparency: SAS® Visual Text Analytics models are not black-box, and results can

be easily queried and interpreted. This supports the legitimacy of federal analysis for

these comments and the overall rule-making process

3. Scalability: SAS® Visual Text Analytics models can be scaled to accommodate large

volumes of data and category definitions. This is especially valuable as manual review of

text is time-consuming and labor-intensive

This methodology can be applied to any public comments, as well as a wide variety of other

text sources. The development and use of a text solution for regulations.gov analysis has

the potential to greatly improve the accuracy and efficiency of these review efforts,

particularly by reducing time to value. For example, if a docket receives 10,000 comments,

and each comment takes 5 mins to manually review:

10,000 comments x 5 minutes = 833 hours / 20 FTE weeks

In contrast, the process documented in this paper took approximately a week to develop.

This represents a significant time-saving improvement, with the opportunity for continued

improvement as the reuseable solution is applied to more text.

12

REFERENCES

1 E-cigarettes: Good news, bad news Available at:

https://www.health.harvard.edu/blog/electronic-cigarettes-good-news-bad-news-

2016072510010

2 2018 National Youth Tobacco Survey Available at:

https://www.fda.gov/TobaccoProducts/PublicHealthEducation/ProtectingKidsfromTobacco/uc

m625887.htm

3 Flavored e-cigarette use: Characterizing youth, young adult, and adult users Available at:

https://www.sciencedirect.com/science/article/pii/S2211335516301346

4 Tobacco Control Act, section 907(a)(1)(A) Available at:

https://www.fda.gov/tobaccoproducts/guidancecomplianceregulatoryinformation/ucm26305

3.htm

5 Docket FDA-2017-N-6565 Available at:

https://www.regulations.gov/document?D=FDA-2017-N-6565-0001

6 Regulations.gov Developers Info Available at:

https://regulationsgov.github.io/developers/

7 Regulations.gov API extraction code Available at:

https://github.com/sasgovernment

8 Sabo, T., Pilz, A. 2018 "Using SAS® Text Analytics to Assess International Human

Trafficking Patterns"

ACKNOWLEDGMENTS

I would like to sincerely thank Tom Sabo and Manuel Figallo for their technical expertise and

encouragement during my first SGF. Evelyn Fox and Tom Sabo reviewed my regulations.gov

solution package and offered valuable feedback. I would also like to thank my team,

particularly Lauren Laufe and Matt McTiernan, for their support.

RECOMMENDED READING

• SAS® Visual Text Analytics 8.3: User's Guide

• SAS Text Analytics for Business Applications: Concept Rules for Information Extraction Models:
Jade, Teresa. Wilsey, Biljana Belamaric. Wallis, Michael. Forthcoming 2019

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Emily McRae

SAS Institute

Emily.mcrae@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://www.health.harvard.edu/blog/electronic-cigarettes-good-news-bad-news-2016072510010
https://www.health.harvard.edu/blog/electronic-cigarettes-good-news-bad-news-2016072510010
https://www.fda.gov/TobaccoProducts/PublicHealthEducation/ProtectingKidsfromTobacco/ucm625887.htm
https://www.fda.gov/TobaccoProducts/PublicHealthEducation/ProtectingKidsfromTobacco/ucm625887.htm
https://www.sciencedirect.com/science/article/pii/S2211335516301346
https://www.fda.gov/tobaccoproducts/guidancecomplianceregulatoryinformation/ucm263053.htm
https://www.fda.gov/tobaccoproducts/guidancecomplianceregulatoryinformation/ucm263053.htm
https://www.regulations.gov/document?D=FDA-2017-N-6565-0001
https://regulationsgov.github.io/developers/
https://github.com/sasgovernment

1

#SASGFSAS® GLOBAL FORUM 2020

SAS 4180-2020

Multilingual Sentiment Analysis: An RNN-Based Framework for
Limited Data

Ethem Can and Aysu Ezen-Can, SAS Institute Inc.

ABSTRACT

Sentiment analysis is a widely studied natural language processing task, whose goal is to
determine users’ opinions, emotions, and evaluations of a product, entity, or service that they
review. One of the biggest challenges for sentiment analysis is that it is highly language-
dependent. Word embeddings, sentiment lexicons, and even annotated data are language-
specific. Furthermore, optimizing models for each language is very time-consuming and labor-
intensive, especially for recurrent neural network (RNN) models. From a resource perspective,
it is very challenging to collect data for different languages.

In this paper, we look for an answer to the following research question: Can a sentiment
analysis model that is trained on one language be reused for sentiment analysis in other
languages where the data are more limited? Our goal is to build a single model in the language
that has the largest data set available for the task and reuse that model for languages that
have limited resources.

For this purpose, we use reviews in English to train a sentiment analysis model by using
recurrent neural networks. We then translate those reviews into other languages and reuse
the model to evaluate the sentiments. Experimental results show that our robust approach of
training a single model on English-language reviews outperforms the baseline in several
different languages.

INTRODUCTION

Steady growth in commercial websites and social media venues has led to easier access to
users' reviews. As the amount of data that can be mined for opinion has increased, commercial
companies' interests in sentiment analysis has also increased. Sentiment analysis is an
important part of understanding user behavior and opinions about products, places, or
services.

Sentiment analysis has long been studied by the research community, leading to several
sentiment-related resources such as sentiment dictionaries that can be used as features for
machine learning models (Banea, Mihalcea, and Wiebe 2008; Inui and Yamamoto 2011;
Steinberger et al. 2012; Taboada et al. 2011). These resources help increase the accuracy of
sentiment analysis, but they are highly dependent on language and they require researchers
to build such resources for every language to process.

Feature engineering constitutes a large part of the model-building phase for most sentiment
analysis and emotion detection models (Ortigosa, Martin, and Carro 2014). Determining the
correct set of features is a task that requires thorough investigation. Furthermore, these
features are highly dependent on language and the particular data set, making it even more
challenging to build models for different languages. For example, sentiment and emotion
lexicons, as well as pretrained word embeddings, are not completely transferable to other
languages. Therefore, modeling efforts must be replicated for every language on which you
want to build sentiment classification models. For languages and tasks where the data are
limited, extracting these features, building language models, training word embeddings, and
creating lexicons are big challenges. In addition to the feature engineering effort, the machine

2

learning model’s parameters also need to be tuned separately for each language in order to
obtain optimal results.

In this paper, we take a different approach. We build a reusable sentiment analysis model
that does not use any lexicons. Our goal is to evaluate how well a generic model can be used
to mine opinions in other languages where data are more limited than the language on which
the generic model is trained. To that end, we train a recurrent neural network (RNN) model
to predict polarity of reviews. To evaluate the reusability of the sentiment analysis model, we
test with non-English data sets. We first translate the test set to English and use the
pretrained model to score polarity in the translated text. In this way, our proposed approach
eliminates the need to train language-dependent models for their use of sentiment lexicons
and word embeddings. Our experiments show that a generalizable sentiment analysis model
can be used successfully to perform opinion mining for languages that do not have enough
resources for training specific models.

This study makes the following contributions:

• a robust approach that uses machine translation to reuse a model trained on one
language in other languages

• an RNN-based approach to eliminate feature extraction and resource requirements for
sentiment analysis

• a technique that outperforms baselines for multilingual sentiment analysis task when
data are limited

METHODOLOGY

In order to eliminate the need to find data and build separate models for each language, we
propose a multilingual approach in which a single model is built in the language that has the
highest number of resources are available. In this paper, we focus on English for building a
model because several sentiment analysis data sets are available in English. To make the
English sentiment analysis model as generalizable as possible, we train with a data set that
has reviews from different domains, such as camera reviews and restaurant reviews. To
employ the trained model, test sets are first translated to English via machine translation and
then inference takes place. Figure 1 shows our multilingual sentiment analysis approach.

It is important to note that this approach does not use any resource (such as word
embeddings, lexicons, or a training set) in any of the languages of the test sets.

Figure 1. Multilingual Sentiment Analysis Approach

3

Deep learning approaches have been successful in many applications, ranging from computer
vision to natural language processing (Alom et al. 2018). Recurrent neural networks (RNNs)
including long short-term memory (LSTM) and gated recurrent units (GRUs) are subsets of
deep learning algorithms in which the dependencies between tokens can be used by the
model. These models can also be used with variable-length input vectors, making them
suitable for text input. LSTM and GRU models allow operations of sequences of vectors over
time and have the capability to remember previous information (Alom et al. 2018).

RNNs have been found useful for several natural language processing tasks, including
language modeling, text classification, and machine translation. An RNN can also use
pretrained word embeddings (numeric vector representations of words that are trained on
unlabeled data) without requiring hand-crafted features. Therefore, in this paper, we use an
RNN architecture that takes text and pretrained word embeddings as inputs and generates a
classification result. Word embeddings represent words as numeric vectors and capture
semantic information. They are trained in an unsupervised fashion, making them useful for
our task.

The sentiment analysis model that is trained on English reviews has three bidirectional LSTM
layers, each with 50 neurons. The training phase takes pretrained word embeddings and
reviews in textual format, and then predicts the polarity of the reviews. For this study, an
embedding length of 100 is used (that is, each word is represented by a vector of length 100).
The training phase is depicted in Figure 2.

Figure 2. Training Sentiment Analysis Model That Uses LSTM

EXPERIMENTS

To evaluate the proposed approach for our multilingual sentiment analysis task, we conducted
experiments. This section first presents the corpora that we used in this study and then shows
the experimental results. Throughout our experiments, we used the SAS Deep Learning
toolkit.

CORPORA
We used two corpora in this study, both of which are publicly available. The first corpus
consists of English reviews, and the second corpus contains restaurant reviews in five different
languages (Turkish, Spanish, Russian, Dutch, and Chinese). We focused on polarity detection
in reviews; therefore, all data sets in this study have two class values (positive and negative).

4

For training our LSTM model, we used the data set provided by Kotzias et al. (2015). For
evaluation of the multilingual approach, we used five languages. These data sets are part of
the SemEval-2016 Challenge Task 5 (Pontiki et al. 2016).

EXPERIMENTAL RESULTS
For experimental results, we reported the majority baseline for each language, where the
majority baseline corresponds to a model's accuracy if it always predicts the majority class in
the data set. For example, if 60% of all reviews in the data set are positive and 40% are
negative, the majority baseline would be 60% because a model that always predicts
“positive”' will be 60% accurate and will make mistakes 40% of the time.

Figure 3. Test Set Accuracy Results for Different Languages

Experimental results on the test set are depicted in Figure 3. An RNN outperforms the baseline
in four of the languages (Turkish, Spanish, Dutch, and Chinese). Note that the test set
contains reviews from different domains, thus making it challenging for a single model to
perform well on all of these languages.

To further analyze how well RNN performed for each language, we calculated the accuracies
per class value. This analysis gave us two accuracy values for each language: one for the
positive reviews, and one for the negative reviews. Figure 4 shows the accuracies of both
positive and negative reviews for all five languages. The general trend is that accuracies of
negative reviews are higher than accuracies of positive reviews. This can be explained by the
imbalanced nature of the data set: because negative reviews are more frequently found in
the data, it is easier for the model to learn from those negative reviews and therefore perform
better on that class value.

5

Figure 4. Accuracies of Positive and Negative Reviews

DISCUSSION

One of the crucial elements in using machine translation is to have highly accurate
translations. We analyzed the effect of incorrect translations in our approach. To that end, we
evaluated our model with an English corpus (Pontiki et al. 2016) to see its performance
without any interference from machine translation errors.

Using the English data for testing, the model achieved 79.8% accuracy, where a majority
baseline was 68.37%. In the test data, 84% of negative reviews and 77.84% of positive
reviews were correctly classified.

Considering the improvements that were achieved by the RNN model over the majority
baseline for both English and non-English reviews, we can draw the conclusion that our model
is robust in handling multiple languages. Building separate models for each language requires
both labeled and unlabeled data. Although having lots of labeled data in every language is
the perfect case, it is unrealistic. Therefore, eliminating the resource requirement in this
resource-constrained task is crucial. The fact that machine translation can be used in reusing
models from different languages is promising for reducing the data requirements.

6

CONCLUSION

Building effective machine learning models for text requires data and other resources such as
pretrained word embeddings and reusable lexicons. Unfortunately, most of these resources
are not entirely transferable to different domains, tasks, or languages. Sentiment analysis is
one such task that requires additional effort to transfer knowledge between languages.

In this paper, we studied the research question: Can we build reusable sentiment analysis
models that can be used for making inferences in different languages without requiring
separate models and resources for each language? To that end, we built a recurrent neural
network model in the language that had largest amount of data available. During scoring, we
used corpora from different domains in different languages and translated them to English to
be able to classify sentiments by using the trained model. Experimental results showed that
the proposed multilingual approach outperforms the baseline.

REFERENCES

Alom, M. D., T. M. Taha, C. Yakopcic, S. Westbert, P. Sidike, M. S. Nasrin, B. C. Van Esesn,
et al. 2018. “The History Began from AlexNet: A Comprehensive Survey on Deep Learning
Approaches.” arXiv:1803.01164

Banea, C., R. Mihalcea, and J. Wiebe. 2008. “A Bootstrapping Method for Building Subjectivity
Lexicons for Languages with Scarce Resources.” 2008. Proceedings of the Sixth International
Conference on Language Resources and Evaluation. Vol. 8.

Inui, T., and M. Yamamoto. 2011. “Applying Sentiment-Oriented Sentence Filtering to
Multilingual Review Classification.” Proceedings of the Workshop on Sentiment Analysis Where
AI Meets Psychology (SAAIP). IJCNLP 2011. 51–58.

Kotzias, D., M. Denil, N. de Freitas, and P. Smyth. 2015. “From Group to Individual Labels
Using Deep Features.” Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Ortigosa, A., J. M. Martín, and R. M. Carro. 2014. “Sentiment Analysis in Facebook and Its
Application to e-Learning.” Computers in Human Behavior 31: 527–541.

Pontiki, M., D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar. M. Al-Smadi, M.
Al-Ayoub, et al. 2016. “SemEval-2016 Task 5: Aspect Based Sentiment Analysis.” Proceedings
of the 10th International Workshop on Semantic Evaluation (SemEval 2016).

Steinberger, J., M. Ebrahim, M. Ehrmann, A. Hurriyetoglu, M. Kabadjov, P. Lenkova, R.
Steinberger, et al. 2012. “Creating Sentiment Dictionaries via Triangulation.” Decision
Support Systems 53.4: 689–694.

Taboada, M., J. Brooke, M. Tofiloski, K. Voll, and M. Stede. 2011. “Lexicon-Based Methods

for Sentiment Analysis.” Computational Linguistics 37.2: 267–307.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Ethem Can
SAS
ethem.can@sas.com

Aysu Ezen-Can
SAS
aysu.ezencan@sas.com

7

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

1

Paper SAS4429-2020

NLP with BERT: Sentiment Analysis Using

SAS® Deep Learning and DLPy

Doug Cairns and Xiangxiang Meng, SAS Institute Inc.

ABSTRACT

A revolution is taking place in natural language processing (NLP) as a result of two ideas.

The first idea is that pretraining a deep neural network as a language model is a good

starting point for a range of NLP tasks. These networks can be augmented (layers can be

added or dropped) and then fine-tuned with transfer learning for specific NLP tasks. The

second idea involves a paradigm shift away from traditional recurrent neural networks

(RNNs) and toward deep neural networks based on Transformer building blocks. One

architecture that embodies these ideas is Bidirectional Encoder Representations from

Transformers (BERT). BERT and its variants have been at or near the top of the leaderboard

for many traditional NLP tasks, such as the general language understanding evaluation

(GLUE) benchmarks. This paper provides an overview of BERT and shows how you can

create your own BERT model by using SAS® Deep Learning and the SAS DLPy Python

package. It illustrates the effectiveness of BERT by performing sentiment analysis on

unstructured product reviews submitted to Amazon.

INTRODUCTION

Providing a computer-based analog for the conceptual and syntactic processing that occurs

in the human brain for spoken or written communication has proven extremely challenging.

As a simple example, consider the abstract for this (or any) technical paper. If well written,

it should be a concise summary of what you will learn from reading the paper. As a reader,

you expect to see some or all of the following:

• Technical context and/or problem

• Key contribution(s)

• Salient result(s)

If you were tasked to create a computer-based tool for summarizing papers, how would you

translate your expectations as a reader into an implementable algorithm? This is the type of

problem that the field of natural language processing (NLP) addresses. NLP encompasses a

wide variety of issues in both spoken and written communication. The field is quite active,

because many NLP problems do not have solutions that approach human performance.

Historically, NLP practitioners focused on solutions with problem-specific, handcrafted

features that relied on expert knowledge. There was a shift starting in the early 2000s

(Bengio et al. 2003) to data-driven, neural network–based solutions that learned features

automatically. During this shift, a key idea emerged: training a neural network to function

as a language model is a good foundation for solving a range of NLP problems (Collobert et

al. 2011). This neural network could either provide context-sensitive features to augment a

task-specific solution (Peters et al. 2018) or be fine-tuned to solve a specific NLP problem

(Radford 2018; Devlin et al. 2018). Both approaches were extremely successful and led to

speculation (Ruder 2018) that an NLP “ImageNet” moment was at hand. The sense of the

speculation was that neural network–based NLP solutions were approaching or exceeding

human performance, as they had in the field of image processing. The neural network

advances in image processing were inspired by the ImageNet Large Scale Visual Recognition

Challenge (image-net.org 2012); hence the notion of an “ImageNet” moment.

2

Until recently, most neural network–based NLP approaches focused on recurrent neural

networks (RNNs). Unlike other types of neural networks, RNNs consider data ordering, so an

RNN is well suited for text or audio data, where order matters. For each element in a

sequence, the output of an RNN depends on the current element as well as state

information. The state information is a function of the sequence element(s) previously

observed and is updated for each new element. This enables the RNN to “remember” and

thus learn how sequential data evolve over time. The state calculation also makes an RNN

difficult to efficiently implement, so training can be extremely time-consuming.

In 2017, the dominance of the RNN approach was challenged by the Transformer

architecture (Vaswani et al. 2017). The Transformer is based on an attention mechanism.

You can think of an attention mechanism as an adaptive weighting scheme. The output of

an attention mechanism for sequence element 𝑛 is a weighted sum of all the input sequence

elements. The “adaptive” part refers to the fact that weights are trained for each sequence

position. Attention (Transformer) differs from recurrence (RNN) in that all sequence

elements are considered simultaneously. This approach has both performance and

implementation advantages.

Bidirectional Encoder Representations from Transformers (BERT) combines language model

pretraining and the Transformer architecture to achieve impressive performance on an array

of NLP problems. Subsequent sections present an overview of BERT and a tutorial on how to

build and train a BERT model using SAS Deep Learning actions and DLPy.

BERT OVERVIEW

This overview presents BERT from the perspective of an NLP practitioner—that is, someone

primarily interested in taking a pretrained BERT model and using transfer learning to fine-

tune it for a specific NLP problem. The key considerations for an NLP practitioner are the

input data representation, the model architecture, and keys for successful transfer learning,

all of which are discussed in the following sections.

INPUT REPRESENTATION

Neural networks cannot operate directly on raw text data, so a standard practice in NLP is to

tokenize the text (that is, split the text into meaningful phrase, word, or subword units) and

then replace each token with a corresponding numeric embedding vector. BERT follows this

standard practice but does so in a unique manner. There are three related representations

required by BERT for any text string. The first is the tokenized version of the text. The

second is the position of the token within the text string, which is something BERT inherits

from the Transformer. The third is whether a given token belongs to the first sentence or

the second sentence. This last representation makes sense only if you understand the BERT

training objectives. A BERT model is trained to perform two simultaneous tasks:

• Masked language model. A fraction of tokens is masked (replaced by a special token),

and then those tokens are predicted during training.

• Next sentence prediction (NSP). Two sentences are combined, and a prediction is made

as to whether the second sentence follows the first sentence.

The NSP task requires an indication of token/sentence association; hence the third

representation. Both training objectives require special tokens ([CLS], [SEP], and [MASK])

that indicate classification, separation, and masking, respectively. In practice, this means

that BERT text input is decomposed to three related values for each token. Figure 1 shows

the three values for all tokens in this simple example:

“What is the weather forecast? Rain is expected.”

3

Figure 1: BERT input for example

The example illustrates several important points. First, a classification token ([CLS]) begins

every tokenized string, and separation tokens ([SEP]) conclude every sentence. Second,

some words (such as forecast) can be split as part of the tokenization process. This is

normal and follows the rules of the WordPiece model that BERT employs. Finally, you see

that tokens in the first sentence are associated with segment A, while tokens in the second

sentence are associated with segment B. In the case of a single sentence, all tokens are

associated with segment A.

ARCHITECTURE

A BERT model has three main sections, as shown in Figure 2. The lowest layers make up the

embedding section, which is composed of three separate embedding layers followed by an

addition layer and a normalization layer. The next section is the Transformer encoder

section, which typically consists of N encoder blocks connected sequentially (that is, output

of encoder block 1 connects to input of encoder block 2, . . . , output of encoder block N–1

connects to input of encoder block N). Figure 2 shows N=1 for ease of illustration. The final

section is customized for a specific task and can consist of one or more layers.

Embedding

The embedding section maps the three input values associated with each token in the

tokenized text to a corresponding embedding vector. The embedding vectors are then

summed and normalized (Ba, Kiros, and Hinton 2016). Here, the term maps refers to the

process of using the token, position, or segment value as a key to extract the corresponding

embedding vector from a dictionary or lookup table.

The token embedding layer maps token input values to a WordPiece embedding vector. The

token embedding table/dictionary contains slightly more than 30,000 entries. The position

embedding layer maps the position input values to a position embedding vector. Note that

the position input value can be no greater than 512, so the position embedding

table/dictionary contains 512 entries. The position value restriction also limits the length of

the raw text string. The segment embedding layer maps the segment input value to one of

two segment embedding vectors. All embedding vectors are of dimension D, where D is

typically 768 or greater.

4

Figure 2: Simplified BERT model

Transformer Encoder

The encoder block consists of layers already encountered in the embedding section—

namely, addition and normalization. There are also two composite layers, called feedforward

and multi-head attention. The feedforward layer consists of two back-to-back fully

connected (or dense) layers, where each input neuron is connected to all output neurons.

Multi-head attention, shown in Figure 3, is more complex; there are three features of this

composite layer to highlight.

First, you can see that multi-head attention requires three inputs, shown in the figure as 𝐗𝐐,

𝐗𝐊, and 𝐗𝐕. These are matrices, where each row is a vector of dimension D that corresponds

to a token from a tokenized text string. The first row represents the first token in the string,

the second row represents the second token, and so on. In Transformer terminology, 𝐗𝐐,

𝐗𝐊, and 𝐗𝐕 are the query, key, and value inputs, respectively. Whereas multi-head attention

requires three inputs, Figure 2 shows only a single input to the encoder. This is because the

BERT encoder uses self-attention (that is, 𝐗𝐐 = 𝐗𝐊 = 𝐗𝐕).

Second, notice that there are multiple attention “heads.” An attention head projects the

query, key, and value inputs to independent lower-dimensional subspaces. This is followed

by scaled dot-product attention. BERT builds on the Transformer, and the rationale for

multiple heads is given in a comment in the original Transformer paper (Vaswani et al.

2017): “Multi-head attention allows the model to jointly attend to information from different

representation subspaces at different positions. With a single attention head, averaging

inhibits this.”

5

Figure 3: Multi-head attention

The final feature to highlight is the scaled dot-product attention mechanism. To gain some

insight, consider the defining attention equation

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐𝑖 , 𝐊𝑖, 𝐕𝑖) =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐐𝑖𝐊𝑖

𝑇)

√𝑑
𝐕𝑖

where the softmax operator applies to each row of the matrix product 𝐐𝑖𝐊𝑖
𝑇. The scaling

term 𝑑 is the dimension of the subspace. The subspace dimension is equal to 𝐷 𝐻⁄ , where 𝐻

is the number of attention heads. For a vector 𝐱, the softmax operator returns a vector, the

mth element of that vector, given by

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑚) =
𝑒−𝑥𝑚

∑ 𝑒−𝑥𝑗𝑗

Now consider what the attention equation computes. For the ith attention head, matrices 𝐐𝑖,

𝐊𝑖, and 𝐕𝑖 are 𝑑-dimension subspace projections of matrices 𝐗𝐐, 𝐗𝐊, and 𝐗𝐕:

𝐐𝑖 = 𝐗𝐐𝐖𝐐𝑖

𝐊𝑖 = 𝐗𝐊𝐖𝐊𝑖

𝐕𝑖 = 𝐗𝐕𝐖𝐕𝑖

Focusing on 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐐𝑖𝐊𝑖
𝑇)𝐕𝑖, notice that row m of matrix 𝐐𝑖𝐊𝑖

𝑇 is the cross-correlation of the

query subspace token at position m with all key subspace tokens for a given tokenized

string. After the softmax operation, the row m cross-correlation values become a set of

weights for combining all the value subspace tokens to create a new subspace token m

representation. Here you see the concept of attention at work: the new token m is most

influenced by (pays the most attention to) those value subspace tokens with large weights

6

and is least influenced by (generally ignores) those value subspace tokens with small

weights.

Scaled dot-product attention concludes each attention head, but there is a final step that

allows each head in the encoder to contribute to the new D-dimensional representation for

each token. The encoder applies a fully connected layer to the concatenated output of all

attention heads, mixing the token representations from the value subspaces for each head.

Task-Specific Layer(s)

The custom section of the BERT model is tailored to a task, so a general overview is difficult.

However, because classification-type scenarios arise in many NLP situations, a simple

example is possible. For classification scenarios, the task-specific head is just a fully

connected layer, in which the number of output neurons is equal to the number of classes.

If the classification task is something like sentiment analysis, then the classification decision

uses the output of the fully connected layer associated with the [CLS] token. If the

classification task is token-specific (such as named entity recognition), then the

classification decision uses the output of the fully connected layer associated with the

token(s) in question.

TRANSFER LEARNING

Transfer learning describes the following process:

1. Obtaining an appropriate model with pretrained parameters

2. Removing layer(s) specific to the original model objective

3. Adding layer(s) specific to the new model objective

4. Performing fine-tuning training to optimize model parameters

In general, steps 1 and 4 are the key steps in the process. There are multiple sources for

pretrained BERT models, and any of them might be suitable for your application. One

popular source is the HuggingFace transformers GitHub repository. There you will find many

BERT pretrained models for a variety of scenarios (English-only, multilingual, and so on).

You should choose the model that best matches your scenario. After selecting a BERT

model, you must then fine-tune it with data specific to your problem. Like the original model

training, the fine-tuning training requires the selection of an optimization algorithm along

with associated training hyperparameters. This can be a time-consuming exercise, but

fortunately, Devlin et al. (2018) provide some helpful suggestions. The Adam optimization

algorithm (Kingma and Ba 2015) is recommended with 𝛽1 = 0.9 and 𝛽2 = 0.999. Also

recommended are the hyperparameter settings shown in Table 1.

Hyperparameter Setting

Dropout 0.1

Batch size 8, 16, 32

Learning rate 2 × 10−5, 3 × 10−5, 5 × 10−5

Number of epochs 2, 3, 4

Table 1: Recommended hyperparameter settings for fine-tuning

https://github.com/huggingface/transformers

7

TUTORIAL: FINE-TUNING A BERT MODEL

You can use SAS Deep Learning and the SAS DLPy Python package to build and fine-tune a

BERT model. To illustrate this process, consider performing sentiment analysis on an

Amazon review data set with a BERT classification model. This tutorial example walks

through the five steps you must perform and concludes with an evaluation of the trained

model.

PREREQUISITES

This example assumes the following:

• The Amazon Fine Food Reviews data set from the Kaggle competition website is

available on the client computer.

• You have a working understanding of Python.

• SAS Scripting Wrapper for Analytics Transfer (SWAT) is available on the client computer

(clone, fork, or install from here).

• SAS DLPy is available on the client computer (clone, fork, or install from here).

• You have a working Python environment on the client computer that includes the

transformers package from the HuggingFace GitHub repository and PyTorch. See the

recommendations here for setting up a suitable Anaconda environment.

• A SAS® Viya® 3.5 server is set up and running.

• An active Viya session is running in the Python environment.

Note that SAS Viya is a client-server architecture, and there are references to both client

and server in the preceding list. For the purposes of this tutorial, consider the Viya client to

be a desktop PC and the Viya server to be a separate computer.

STEP 1: CREATE BERT CLASSIFICATION MODEL

The first step is to create a DLPy model object that encapsulates the BERT classification

model. Start by defining the BERT cache directory, and then instantiate an object of the

BERT_Model class. The BERT_Model object looks in the cache directory for BERT model

definition and parameter information. If this information is absent, it will be downloaded

from the HuggingFace repository:

from dlpy.transformers import BERT_Model

cache_dir = ‘path/to/your/cache-dir’

bert = BERT_Model(viya_conn,

 cache_dir,

 ‘bert-base-uncased’,

 2,

 num_hidden_layers = 12,

 max_seq_len = 256,

 verbose = True)

Note the viya_conn variable. This is the SWAT connection to the active Viya session referred

to earlier.

STEP 2: PREPARE DATA

The second step is to prepare your data for training. Begin by reading the data from the

Amazon Fine Food Reviews data set into a Pandas DataFrame:

https://www.kaggle.com/snap/amazon-fine-food-reviews
https://github.com/sassoftware/python-swat
https://github.com/sassoftware/python-dlpy
https://github.com/huggingface/transformers
https://github.com/sassoftware/python-dlpy/blob/master/examples/transformers/README.md

8

import pandas as pd
reviews = pd.read_csv(‘name-of-your-amazon-review-file’,

 header=0,

 encoding=’utf-8’)

Then assign a numeric value to indicate positive or negative sentiment for each review.

Since the number of stars associated with each review ranges from 1 to 5, filter out the

neutral reviews (3 stars), and then assign a negative label to 1- and 2-star reviews and a

positive label to 4- and 5-star reviews:

t_idx = reviews[“Score”] != 3

inputs = reviews[t_idx][“Text”].to_list()

targets = reviews[t_idx][“Score”].to_list()

for ii,val in enumerate(targets):

 inputs[ii] = inputs[ii].replace(“
”,””)

 if (val == 1) or (val == 2): # negative reviews

 targets[ii] = 1

 elif (val == 4) or (val == 5): # positive reviews

 targets[ii] = 2

Finally, import the data preparation helper function. Invoking the helper function tokenizes

the review data and creates the three input values (token, position, segment) associated

with each token as well as the sentiment target for each review. The helper function also

automatically creates a Viya table or tables containing the prepared data. The following

invocation splits the reviews into a training set that has 80% of the overall data and a

testing set that contains the remaining data:

from dlpy.transfomers.bert_utils import bert_prepare_data

num_tgt_var, train, test = bert_prepare_data(viya_conn,

 bert.get_tokenizer(),

 input_a=inputs,

 target=targets,

 train_fraction=0.8,

 segment_vocab_size=bert.get_segment_size(),

 classification_problem=bert.get_problem_type(),

 verbose=True)

STEP 3: CREATE SAS VIYA BERT MODEL

The third step is to create a SAS Deep Learning model that is the equivalent of the base

BERT model plus a classification (fully connected) layer. The DLPy BERT model object

provides a convenient function that performs this step for you:

bert.compile(num_target_var=num_tgt_var)

Note that this function does more than just create a BERT model. It also reads the trained

parameters from the HuggingFace BERT model and saves them as an HDF5 file on the client

computer. This file has a predefined structure that the SAS Deep Learning actions expect.

9

STEP 4: ATTACH MODEL PARAMETERS

The fourth step is to attach the trained model parameters stored in the HDF5 file to the

BERT model. SAS Deep Learning actions read this HDF5 file, so it must be accessible by the

Viya server. Because the client computer is assumed to be separate from the server

computer, copy or move the HDF5 file to a location where it is visible to the server:

import os

from shutil import copyfile

server_dir = ‘path/to/your/server-directory’

copyfile(os.path.join(cache_dir,’bert-base-uncased.kerasmodel.h5'),

 os.path.join(server_dir,’bert-base-uncased.kerasmodel.h5'))

This example assumes that even though the client and server computers are distinct, they

share a common file system. If that weren’t true, then some other means of moving the file

from the client to the server (such as FTP) would be required. When the file has been

successfully copied or moved, invoke the load_weights() function exposed by the DLPy

BERT model object to attach parameters:

bert.load_weights(server_dir+'/bert-base-uncased.kerasmodel.h5',

 num_target_var=num_tgt_var,

 freeze_base_model=False)

The parameter freeze_base_model controls the training of the BERT model. It is set to False

here; this allows training of all layers of the new BERT model. If you set it to True, then only

the final classification layer could be trained. In that case, all other model parameters would

be fixed.

STEP 5: FINE-TUNE BERT CLASSIFICATION MODEL

The final step is to perform fine-tuning training. Recall the fine-tuning recommendations

provided by Devlin et al. (2018). The Adam optimizer and a default set of hyperparameters

are defined for you when you invoke the load_weights() function in step 4. If the defaults

are acceptable, you can invoke the fit() function exposed by the DLPy BERT model object. If

you want to override one or more of the defaults, you can call the

set_optimizer_parameters() function before invoking fit(), as follows:

bert.set_optimizer_parameters(learning_rate=2e-5)

bert.fit(train,

 data_specs= bert.get_data_spec(num_tgt_var),

 optimizer=bert.get_optimizer(),

 text_parms=bert.get_text_parameters(),

 seed=12345,

 n_threads=32))

When the fit() function finishes executing, your BERT model is fine-tuned for sentiment

analysis.

10

MODEL EVALUATION

You can now evaluate your fine-tuned sentiment analysis model by using the test data set.

The predict() function exposed by the DLPy BERT model object provides a convenient

method for this evaluation:

 res = bert.predict(test,

 text_parms=bert.get_text_parameters())

 print(res[‘ScoreInfo’])

The results of the print function are shown in Figure 4. You can see that after three epochs

of fine-tuning, the model achieves slightly better than 98.0% accuracy on the test data.

Figure 4: Evaluation results

CONCLUSION

The field of natural language processing is undergoing a revolution, thanks to the ideas of

language model pretraining and attention. BERT brings these concepts together to enable a

powerful paradigm based on Transformer building blocks: simple fine-tuning using transfer

learning provides state-of-the-art performance in many NLP tasks. This paper provides an

NLP practitioner with an overview of key aspects of BERT and shows how to fine-tune and

evaluate a BERT sentiment analysis model using SAS Deep Learning and the SAS DLPy

Python package.

REFERENCES

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). “Layer Normalization.” arXiv:1607.06450v1,

1–14.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). “A Neural Probabilistic

Language Model.” Journal of Machine Learning Research 3:1137–1155.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).

“Natural Language Processing (Almost) from Scratch.” Journal of Machine Learning Research

12:2493–2537.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding.” arXiv:1810.04805v1, 1–14.

Image-net.org. (2012). “ImageNet Large Scale Visual Recognition Challenge.” Accessed

December 9, 2019. http://image-net.org/challenges/LSVRC/.

Kingma, D. P., and Ba, J. (2015). “Adam: A Method for Stochastic Optimization.” 3rd

International Conference for Learning Representations. San Diego: ICLR.

http://image-net.org/challenges/LSVRC/

11

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.

(2018). “Deep Contextualized Word Representations.” Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics, 2227–2237.

New Orleans: Association for Computational Linguistics.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). “Improving Language

Understanding with Unsupervised Learning.” OpenAI Technical Report.

Ruder, S. (2018). “NLP’s ImageNet Moment Has Arrived.” Accessed December 9, 2019,

https://ruder.io/nlp-imagenet.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and

Polosukhin, I. (2017). “Attention Is All You Need.” Advances in Neural Information

Processing Systems 30. NIPS 2017, Long Beach, CA.

RECOMMENDED READING

• The Illustrated Transformer (blog)

• BERT for Dummies—Step by Step Tutorial (blog)

• HuggingFace Quickstart (Transformers documentation)

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Doug Cairns

doug.cairns@sas.com

Xiangxiang Meng

xiangxiang.meng@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://ruder.io/nlp-imagenet
http://jalammar.github.io/illustrated-transformer/
https://towardsdatascience.com/bert-for-dummies-step-by-step-tutorial-fb90890ffe03
https://huggingface.co/transformers/quickstart.html

1

Paper SAS4434-2020

Sound Insights: A Pipeline for Information Extraction

from Audio Files

Dr. Biljana Belamarić Wilsey and Xiaozhuo Cheng, SAS Institute Inc.

ABSTRACT

Audio files, like other unstructured data, present special challenges for analytics but also an

opportunity to discover valuable new insights. For example, technical support or call center

recordings can be used for quickly prioritizing product or service improvements based on

the voice of the customer. Similarly, audio portions of video recordings can be mined for

common topics and widespread concerns. To uncover the value hidden in audio files, you

can use a pipeline that starts with the speech-to-text capabilities of SAS® Visual Data Mining

and Machine Learning and continues with analysis of unstructured text using SAS® Visual

Text Analytics software. This pipeline can be illustrated with data from the Big Ideas talk

series at SAS, which gives employees the opportunity to share their ideas in short, TED

Talk–type presentations that are recorded on video. If you ever wondered what SAS

employees are thinking about when they’re not thinking of ways to make SAS products

better, the answers lie in a pipeline for information extraction from audio files. You can use

this versatile pipeline to discover sound insights from your own audio data.

INTRODUCTION

It is a commonly accepted idea that in the modern world of big data, the most frequent type

of data is unstructured: rich media, including video and audio; free-form text, including

medical notes and document collections, and so on. While some challenges, such as density

and scale, are common to both structured and unstructured data, unstructured data

presents additional unique challenges for analysis. One of these challenges arises because

the unstructured data first needs to be converted to structured data (Bagga, 2013) and

there are an almost infinite number of ways to do so, depending on the business question

that is being asked of that data. But for those who are up to the task, unstructured data

hides a wealth of insights.

Focusing specifically on audio data, the business value of insights from audio files is

recognized by most industry analysts, who predict that the global speech and voice

recognition market will reach $26B by 2025 (Marketwatch, 2019) and the speech-to-text

application program interface market will reach $4.1B by 2025 (ReportLinker, 2019). This

impact was foreshadowed by Donna Fluss of vendor-independent consulting firm DMG over

a decade ago when she wrote: “When used properly and accompanied by best practices,

speech analytics typically pays for itself in three to nine months” (Fluss, 2007). Using audio

as a customer engagement channel and analytics tools to derive insights about the “voice of

the customer,” companies can, for example, evaluate the effectiveness of marketing

campaigns, understand the experiences and sentiment of their customers, grow revenue

(Salta, 2018), retain customers to increase market share, and increase efficiency by

focusing on customer-reported differentiators (Kaplan, 2014). But you get no return-on-

investment by just collecting data; the value comes from deriving insights and making them

actionable items (Sage, 2013).

This paper describes how you can extract those insights from audio files, using five

components of the speech-to-text capabilities of SAS Visual Data Mining and Machine

Learning and four nodes of analysis of unstructured text using SAS Visual Text Analytics.

We demonstrate using this pipeline with data from the Big Ideas talk series at SAS, which

2

gives employees the opportunity to share their ideas in short, TED Talk–type presentations

that are recorded on video. However, the pipeline is equally applicable to contact and call

center data, technical support and other conversational data, and even live streaming audio

data (by connecting to SAS Event Stream Processing).

SCENARIO: BIG IDEAS

Since 2017, SAS has hosted a company-internal presentation series entitled Big Ideas. For

each event, a dozen employees are selected as presenters from hundreds of applicants all

over the globe. The audience consists of employees, but the event is also video-recorded,

and those recordings are available on the company’s internal site. The series supports the

spirit of lifelong learning and provides a forum to share ideas, stories, passions, and to think

about the potential to apply or achieve something spectacular. But because of the small

cohort of presenters at each event, the selection process is very competitive.

Because the event is recorded on video but not transcribed, it presented an ideal use case

for applying the speech-to-insights pipeline outlined previously. We focused on answering

the question: “What are SAS employees passionate about outside of their daily jobs?” As

extra motivation, we also wanted to use the findings for our own actionable insights: “What

topics and terms should we include in order to write a winning application for the next Big

Ideas event?”

TRANSFORMING AUDIO DATA INTO INSIGHTS WITH SAS

Because the source format was video, we used the open-source software FFmpeg to extract

audio from the video files. The software converted the video to audio files in stereo WAV

format (44.1 kHz, 16-bit stereo).

FROM AUDIO TO TEXT

The pipeline for transforming audio to text includes the following steps:

Figure 1. Speech-to-text Pipeline

For our project, the pre-processing step included these steps:

• converting the output from FFmpeg to 16 kHz 16-bit mono WAV, which is the standard

supported input format for SAS speech-to-text pre-trained models

• segmentation of one long audio file into many short segments so that they could be

processed in parallel and therefore faster

There are different methods for segmentation of long audio. For this project, we used a

power-based algorithm to find pauses in the speech. Power is the absolute value of audio

signals. Usually, an audio signal is higher in power when people speak than when there is

silence. To segment long audio, we first chose a “low power threshold” that was based on

the audio signal’s power distribution. We considered values below this threshold to be

silence. In addition, we specified a parameter called segment_len, which represented the

maximum length in seconds that any audio segment could last.

The interaction between the low power threshold and segment_len for segmentation can be

illustrated with the following example. We first specify segment_len of 30. In the first 30

seconds of the audio, we find the longest sub-sequence whose power values are all smaller

than the low power threshold. We consider this sub-sequence as a pause in the speech, use

Pre-
Processing

Acoustic
Feature

Extraction

Acoustic
Model

Decoder
(Language

Model)

Post-
Processing

3

its center point as the breakpoint to split the audio, and, starting from this breakpoint,

move to the next 30-second period. We keep segmenting this way until the end of the audio

file.

These segments are used as input for the acoustic feature extraction step, in which we

break the segments down into much smaller units of analysis, known as time frames. For

the current project, the time frames were 25 milliseconds in length. For each extracted time

frame, specific acoustic features are extracted as vectors. The acoustic model then uses

these features to convert sound into characters. For the current project, we chose the 40-

dimension set of mel-frequency cepstral coefficients (MFCCs) features, which is one of the

standards in the field.

The third step in the pipeline is the acoustic model. In speech recognition, acoustic models

map the relationship between acoustic features and linguistic units (labels) that comprise

utterances. Usually, different human (or natural) languages have different label sets. You

can train your own model or use a pre-trained model for this step. SAS provides pre-trained

acoustic models, which are available for download from the SAS Visual Data Mining and

Machine Learning webpage as two versions: one for use with central processing units

(CPUs) and one for graphical processing units (GPUs). For the current project, we used a

pre-trained acoustic model that had these features:

• used MFCC features for training

• was character-based and English-specific, which means that the label set consisted of

the alphabet in upper case, the apostrophe character, and the space character

• relied on recurrent neural networks (RNN) with multiple Long Short-Term Memory

(LSTM) layers as well as fully connected layers

Using the feature vectors extracted in the previous step as input, the acoustic model

computed and produced as output the probability distribution over the labels mentioned

previously for each time frame.

The fourth component of the pipeline is the decoder, which is also known as a language

model. Like the acoustic model, the language model also assigns probabilities. However,

where the acoustic model assigns probabilities for character labels, the language model

assigns probabilities for tokens or words, based on their sequence. For this project, we used

a unidirectional trigram model, which assumes that the probability of the occurrence of a

word depends on the previous two words in that sequence. Like acoustic models, SAS also

provides pre-trained language models for download from the SAS Visual Data Mining and

Machine Learning webpage. In this project, we trained our own language model in order to

augment the vocabulary for the topics that we expected to be covered. Besides the large

corpus of news used to train the general model in English, our training corpus also included

several SAS internal blogs, in order to introduce vocabulary related to SAS. For this project,

the decoder used beam search, which is a heuristic search algorithm that expands all

possible next steps and keeps a fixed number (beam) of active candidates at each time step

in order to find the best guess for the word. The beam size is a parameter the users can

specify themselves. Usually, increasing the beam size improves the accuracy but decreases

the speed of the system. The output from the decoder is a sequence of characters

comprising words that correspond to the short audio segment that was the input into the

acoustic feature extraction.

Because the audio input is segmented in the first step, the output from the language model

is often in units smaller than a sentence. In some use cases of text mining, this approach

might work well. For this project, we were interested in the topics that speakers addressed.

4

In this case, we found that short snippets of transcripts overemphasized frequent words1,

which generated less-useful topics. Therefore, in the post-processing step of the pipeline,

we concatenated these short sequences of words in the same order as the original audio

input to create longer transcripts of text. Each observation represented one Big Ideas

speech. We found that this approach gave us more intuitive groupings of topics in SAS

Visual Text Analytics.

The speech-to-text pipeline described above is supported in three different SAS products:

SAS® Cloud Analytic Services (CAS), SAS® Event Stream Processing (ESP), and deep

learning Python (DLPy). However, there are differences between the capabilities and

parameters available in these three products. Users who prefer actions can convert speech

to text step-by-step using the Audio, Deep Learning, and Language Model action sets. CAS

also enables users to train the acoustic and language models by themselves. For users who

have streaming data events, SAS ESP enables conversion of speech to text in real time.

Finally, users who prefer Python can use DLPy’s end-to-end API that uses the file path of

the WAV files as input and directly returns the transcript text.

FROM TEXT TO ACTIONABLE INSIGHTS

The speech transcripts, which were the output from the previous pipeline, are used as input

into SAS Visual Text Analytics. To answer the research questions, we created a pipeline,

which included the following nodes:

Figure 2. The Custom Pipeline in SAS Visual Text Analytics

We ran the entire pipeline and then started exploring the data by opening the Text Parsing

node to find the most common terms and combinations of terms across all the speeches.

The most common content terms included the terms “take,” “year,” “make,” “work,” and

“people,” each of which occurred in more than 92% of the speeches. We were also

interested in the context in which these terms occurred. We were able to easily find, for

example, that the kinds of things the speakers discussed “taking” included risks and

chances, breaks and time off, lessons, and so on. Looking at the term “make,” speakers

talked about making choices and decisions, making things better, making a difference,

making food such as casseroles and cookies, but also about making mistakes. As another

example, the use of the term “year” was to provide the context of tenure at SAS, indicate

age, and localize a point in time in the past when a particular event happened that the

speakers shared. These contexts make sense when we think about the oratory strategy to

tell personal stories to create a memorable emotional connection with the audience.

We also explored the data using the Topics node, which automatically detected common

topics across the speeches and grouped them together. The pre-populated values (of 1) for

the term and document density seemed to give the best results. As previously mentioned,

we found that the Topics node autogenerated better topics with longer observations (such

as one observation per speech) than with shorter snippets, which were broken up at pauses

that speakers naturally made in intervals of 10 seconds or less.

1 We estimated word frequency based on 11 words from the most frequent topics auto-generated by SAS Visual
Text Analytics from short snippets and full speeches, using the word frequency from the 450-million-word corpus
of Contemporary American English (on the website https://www.wordfrequency.info/free.asp?s=y). The frequency
range of the words in the topics based on snippets was from 19 to 560 and the average was 199. The frequency
range of the words in the topics based on the full speeches was from 157 to 3742 and the average was 941.

Text Parsing Sentiment Topics

https://www.wordfrequency.info/free.asp?s=y

5

About two thirds of the speeches were grouped together automatically, out-of-the-box, into

five topics, as illustrated in Figure 3. SAS Visual Text Analytics uses a term-document

frequency matrix and reduces the dimensions with the singular value decomposition (SVD)

method. Each topic is represented by the five most relevant terms. A plus sign in front of a

term signifies that the software detected related forms, such as singular and plural of a

noun or present and past tense of a verb, and automatically grouped them together. These

related forms can be examined in the Text Parsing node.

Figure 3. Topics in SAS® Visual Text Analytics

The speeches grouped in the first topic included descriptions of road trips with families and

friends as well as recounting of family relationships. One of these speeches, for example,

described a very stressful road trip and concluded that one person’s perception of a stressful

trip can be another family member’s memory of a wonderful time. Another speaker

recounted family trips as she talked about coping with the loss of a family member. Because

our pipeline included the Sentiment node ahead of the Topics node, the results of the node

included a visualization of sentiment per topic. The emotionally difficult events described in

the speeches in this topic contributed to a predominately negative sentiment for the topic,

as seen in the third column in Figure 4.

 Figure 4. Sentiment of Topics in SAS Visual Text Analytics

The speeches grouped together in the second group centered on using machine learning

(ML) and artificial intelligence (AI) for making better decisions. Two of them, for example,

discussed how ML and AI can help solve the problems of human trafficking and shortages of

clean drinking water. As seen in the fourth column of Figure 4, there were more speeches

with positive sentiment on this topic than the previous topic. But there were also an equal

number of speeches with negative sentiment.

6

The third topic centered on education, students, and data. For example, one speech

discussed how we could potentially use data to better support students with disabilities and

another talked about bringing data and analytics to students in classrooms. The sentiment

of this topic was predominately positive, with one speech with neutral sentiment and two

with negative sentiment.

The fourth topic combined ideas of leadership and innovation. Several speeches in this

group focused on a culture of trust and showing vulnerability as part of successful

leadership. Like the previous topic, the sentiment of most of the speeches in this topic was

positive.

The fifth topic brought together speeches about dreams coming true, overcoming obstacles,

persevering, and becoming successful. For example, one speech discussed the unique

human abilities to dream and hope, whereas another provided tips for overcoming

challenges and thriving through change. The sentiment of this group of speeches was

predominately negative, probably because of the struggles inherent to achieving one’s

dreams.

The speeches that were not grouped in any of the topics above included unique speeches

about, for example, “rocking a party” of AI geeks, creativity in work as in jazz, the power of

numbers, the power of words, the value of taking chances, and others. There were more

speeches with positive sentiment in this group than negative.

As we were browsing the speeches in the different topic areas, we realized that many talked

about failures and struggles. Wanting to explore that area deeper, we added an additional

node in the pipeline, the Concepts node (Figure 5).

Figure 5. The final pipeline in SAS Visual Text Analytics

In the Concepts node, we created information extraction rules that captured terms, such as

“problem,” “difficult,” “struggle,” “disappoint”, “hard”, and “hardship.” This part of the

model building was a manual, iterative cycle of writing rules and examining output. We

found that all but one of the speeches used these terms, with the exception being one

speech about the courage to ask “what if” as the first step in encouraging innovation. We

were also curious whether most of the talks also used positive terms such as “solution”,

“solve,” “success” and “encourage.” Therefore, we created a different concept with rules for

extracting these terms. Less than two-thirds of the talks mentioned positive terms such as

these. Therefore, the information extraction rules in the Concepts node showed that the

speakers more commonly used terms describing struggling than succeeding.

7

CONCLUSION

In this paper, we explored how we can get insights from audio files of the Big Ideas talks at

SAS. We used SAS Visual Data Mining and Machine Learning speech-to-text capabilities and

SAS Visual Text Analytics to analyze unstructured data from speeches and derive insights

for potentially applying to be selected for a future installment of the talk series.

Here are the data-driven insights we carry forward into writing our own abstracts for the Big

Ideas series. Looking at frequently used content terms, we realized that the choice of

words, including “take,” “year,” “make,” “work,” and “people,” supported storytelling.

Another insight the pipeline provided was that two-thirds of the talks were related to five

main topic areas. Because these areas were popular in previous talks, chances are greater

that proposing a future talk related to one of these topics might get accepted. In addition,

nearly all talks specifically discussed a problem or a struggle, whether personal, societal, or

global. Therefore, it seems very important that applicants for the talks mention a specific

problem or hardship they are addressing, even more so than the solution.

This versatile speech-to-insights pipeline can be used to discover sound insights from your

own audio data.

REFERENCES

Bagga, Simran. 2013. SAS Institute white paper. “Text Analytics: Unlocking the Value of

Unstructured Data.” https://www.sas.com/en/whitepapers/iia-text-analytics-unlocking-

value-unstructured-data-108443.html.

Fluss, Donna. 2007. “Speech analytics converts call centers to profit centers.” TechTarget.

https://searchcustomerexperience.techtarget.com/news/1259565/Speech-analytics-

converts-call-centers-to-profit-centers. Accessed on February 21, 2020.

Kaplan, Marcia. 2014. “Utilizing ’Voice of the Customer’ for Competitive Advantage.”

Practical Ecommerce. https://www.practicalecommerce.com/Utilizing-Voice-of-the-

Customer-for-Competitive-Advantage. Accessed February 21, 2020.

MarketWatch. 2019. “Speech and Voice Recognition Market Size, Growth, Opportunity, and

Forecast to 2025.” https://www.marketwatch.com/press-release/speech-and-voice-

recognition-market-size-growth-opportunity-and-forecast-to-2025-2019-11-04. Accessed

February 11, 2020.

Practical Cryptography. “Mel Frequency Cepstral Coefficient (MFCC) tutorial.”

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-

cepstral-coefficients-mfccs/. Accessed February 18, 2020.

NetApp. “What is Unstructured Data?” https://www.netapp.com/us/info/what-is-

unstructured-data.aspx. Accessed February 11, 2020.

ReportLinker. 2019. “Speech-to-text API Market by Component, Application, Deployment

Mode, Organization Size, Industry Vertical and Region – Global Forecast to 2024.”

https://www.reportlinker.com/p05826804/Speech-to-text-API-Market-by-Component-

Application-Deployment-Mode-Organization-Size-Industry-Vertical-And-Region-Global-

Forecast-to.html. Accessed February 11, 2020.

Sage, Adele. 2013. “Avoid the “All Listen and No Action” VoC Program Trap.” Forrester.

https://go.forrester.com/blogs/13-04-12-

avoid_the_all_listen_and_no_action_voc_program_trap/. Accessed February 21, 2020.

Salta, Marissa. 2018. “CallTrackingMetrics Named in Forrester’s Overview of AI-Fueled

Speech Analytics Solutions.” CallTrackingMetrics.

https://www.sas.com/en/whitepapers/iia-text-analytics-unlocking-value-unstructured-data-108443.html
https://www.sas.com/en/whitepapers/iia-text-analytics-unlocking-value-unstructured-data-108443.html
https://searchcustomerexperience.techtarget.com/news/1259565/Speech-analytics-converts-call-centers-to-profit-centers
https://searchcustomerexperience.techtarget.com/news/1259565/Speech-analytics-converts-call-centers-to-profit-centers
https://www.practicalecommerce.com/Utilizing-Voice-of-the-Customer-for-Competitive-Advantage
https://www.practicalecommerce.com/Utilizing-Voice-of-the-Customer-for-Competitive-Advantage
https://www.marketwatch.com/press-release/speech-and-voice-recognition-market-size-growth-opportunity-and-forecast-to-2025-2019-11-04
https://www.marketwatch.com/press-release/speech-and-voice-recognition-market-size-growth-opportunity-and-forecast-to-2025-2019-11-04
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
https://www.netapp.com/us/info/what-is-unstructured-data.aspx
https://www.netapp.com/us/info/what-is-unstructured-data.aspx
https://www.reportlinker.com/p05826804/Speech-to-text-API-Market-by-Component-Application-Deployment-Mode-Organization-Size-Industry-Vertical-And-Region-Global-Forecast-to.html
https://www.reportlinker.com/p05826804/Speech-to-text-API-Market-by-Component-Application-Deployment-Mode-Organization-Size-Industry-Vertical-And-Region-Global-Forecast-to.html
https://www.reportlinker.com/p05826804/Speech-to-text-API-Market-by-Component-Application-Deployment-Mode-Organization-Size-Industry-Vertical-And-Region-Global-Forecast-to.html
https://go.forrester.com/blogs/13-04-12-avoid_the_all_listen_and_no_action_voc_program_trap/
https://go.forrester.com/blogs/13-04-12-avoid_the_all_listen_and_no_action_voc_program_trap/

8

https://www.calltrackingmetrics.com/blog/press-releases/calltrackingmetrics-ai-fueled-

speech-analytics-solutions. Accessed February 21, 2020.

“SAS Visual Text Analytics.” https://www.sas.com/en_us/software/visual-text-

analytics.html. Accessed February 11, 2020.

“SAS Visual Data Mining and Machine Learning.”

https://support.sas.com/en/software/visual-data-mining-and-machine-learning-

support.html. Accessed February 11, 2020.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Biljana Belamarić Wilsey

SAS Institute

biljana.belamaricwilsey@sas.com

Xiaozhuo Cheng

SAS Institute

xiaozhuo.cheng@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://www.calltrackingmetrics.com/blog/press-releases/calltrackingmetrics-ai-fueled-speech-analytics-solutions
https://www.calltrackingmetrics.com/blog/press-releases/calltrackingmetrics-ai-fueled-speech-analytics-solutions
https://www.sas.com/en_us/software/visual-text-analytics.html
https://www.sas.com/en_us/software/visual-text-analytics.html
https://support.sas.com/en/software/visual-data-mining-and-machine-learning-support.html
https://support.sas.com/en/software/visual-data-mining-and-machine-learning-support.html

Ready to take your SAS®

®and JMP skills up a notch?

Be among the first to know about new book s,
special events, and exclusive discounts.

support.sas.com/newbooks

Share your expertise. Write a book with SAS.
support.sas.com/publish

sas.com/books
for additional books and resources.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies. © 2017 SAS Institute Inc. All rights reserved. M1588358 US.0217

http://support.sas.com/newbooks
http://support.sas.com/publish
http://www.sas.com/books

	Contents
	Free SAS eBooks
	Foreword
	How to Build a Text Analytics Model in SAS Viya with Python
	Harvesting Unstructured Data to Reduce Anti-Money Laundering (AML) Compliance Risk
	Hearing Every Voice: SAS Text Analytics for Federal Regulations Public Commentary
	Multilingual Sentiment Analysis: An RNN-Based Framework for Limited Data
	NLP with BERT: Sentiment Analysis Using SAS Deep Learning and DLPy
	Sound Insights: A Pipeline for Information Extraction from Audio Files

