About this paper
Utility forecasters cannot assume that one methodology will provide the best forecast from one year to the next. To improve forecast performance, reduce uncertainties and generate value in the new data-intensive environment, they must be able to decide which models, or combinations of models, are best. And they must be able to determine more indicators of the factors that affect load. This paper uses a case study to illustrate how utility forecasters can take advantage of hourly or sub-hourly data from millions of smart meters by using new types of forecasting methodologies. It investigates how a number of approaches using geographic hierarchy and weather station data can improve the predictive analytics used to determine future electric usage. It also demonstrates why utilities need to use geographic hierarchies, and why their solutions should allow them to retrain models multiple times each year.
Acerca de SAS
SAS es el líder en analítica. A través de software y servicios innovadores, SAS capacita e inspira a los clientes de todo el mundo para que transformen los datos en inteligencia. SAS ofrece THE POWER TO KNOW®.
¿Tiene un Perfil SAS? Para completar este formulario automáticamente Ingreso