
Paper SAS462-2017

Evaluating Predictive Accuracy of Survival Models with PROC PHREG

Changbin Guo, Ying So, and Woosung Jang, SAS Institute Inc.

Abstract

Model validation is an important step in the model building process because it provides opportunities to assess the 
reliability of models before their deployment. Predictive accuracy measures the ability of the models to predict future 
risks, and significant developments have been made in recent years in the evaluation of survival models. SAS/STAT® 

14.2 includes updates to the PHREG procedure with a variety of techniques to calculate overall concordance statistics 
and time-dependent receiver operator characteristic (ROC) curves for right-censored data. This paper describes 
how to use these criteria to validate and compare fitted survival models and presents examples to illustrate these 
applications.

Introduction 

There has been growing interest in predictive modeling for various applications. A critical task in the model building 
process is accessing the model’s predictive capability systematically. Two important aspects of a prediction model 
are calibration and discrimination. Calibration refers to the ability of the model to correctly rank the individuals in the 
sample by risk. Discrimination characterizes the model’s ability to correctly classify subjects for their actual outcomes. 
There are a variety of methodologies to assess the discriminative performance of a prediction model.

The concordance statistic (or C-statistic) is the most commonly used discrimination measure in the context of logistic 
regression with binary outcomes. The concept underlying concordance is that a subject who experiences a particular 
outcome has a higher predicted probability of that outcome than a subject who does not experience the outcome. The 
C-statistic can be calculated as the proportion of pairs of subjects whose observed and predicted outcomes agree 
(are concordant) among all possible pairs in which one subject experiences the outcome of interest and the other 
subject does not. The higher the C-statistic, the better the model can discriminate between subjects who experience 
the outcome of interest and subjects who do not. In the context of survival analysis, various C-statistics have been 
formulated to deal with right-censored data (Harrell 1986; Uno et al. 2011).

Besides the C-statistic, receiver operator characteristic (ROC) curves and AUC (area under the ROC curve) statistics 
are also commonly used to assess the discrimination ability of the model with binary outcomes. For survival models 
with time-to-event outcomes, ROC curves are computed at specific time points. Various definitions and estimators 
of time-dependent ROC curves and AUC functions have been proposed in the survival setting. Blanche, Latouche, 
and Viallon (2013) provide a comprehensive survey of the available methods. Time-dependent ROC curves and 
AUC functions characterize how well the fitted model can distinguish between subjects who experience an event 
and subjects who do not. Whereas C-statistics provide overall measures of predictive accuracy, time-dependent 
ROC curves and AUC functions summarize the predictive accuracy at specific t imes. In practice, it is common to use 
several time points within the support of the observed event times.

The LOGISTIC procedure in SAS/STAT software fits logistic regression models for binary outcomes and offers a 
variety of functionality for performing analyses by using C-statistic and ROC curves.

The PHREG procedure in SAS/STAT 14.2 provides a number of state-of-the-art techniques to calculate overall 
concordance statistics and time-dependent ROC curves and AUC statistics for right-censored data. This new 
functionality becomes available with the introduction of the CONCORDANCE and ROCOPTIONS options in the PROC 
PHREG statement as well as the new ROC statement. This paper reviews the existing features in PROC LOGISTIC 
for C-statistic and ROC curves, presents the new features in PROC PHREG, and illustrates their applications in 
examples. Key differences between PROC PHREG and PROC LOGISTIC are also examined.
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ROC Analysis in PROC LOGISTIC: A Review

Assume that the binary response, E, of an individual or an experimental unit can take one of two possible values,
denoted for convenience by 0 and 1. Suppose Z is a vector of explanatory variables and � D Pr.E D 1 j Z/ is the
response probability to be modeled. The logistic model has the form

logit.�/ � log
� �

1 � �

�
D ˛ C ˇ0Z

where ˛ is the intercept parameter and ˇ D .ˇ1; : : : ; ˇs/
0 is the vector of s slope parameters.

The LOGISTIC procedure fits the model by the method of maximum likelihood.

Receiver Operating Characteristic (ROC) Curves

Receiver operating characteristic (ROC) curves display the discrimination potential of fitted logistic models by
evaluating the trade-offs between true positive rate (sensitivity) and false positive rate (1 – specificity). If you have
a cutoff value, you can classify the subjects as being positive or negative according to their predicted probabilities.
Hence a 2 � 2 classification table can be constructed to show the relationship between the predicted outcomes and
the actual outcomes. Sensitivity is the fraction of positive subjects who are predicted as positive, and specificity is the
fraction of negative subjects who are correctly predicted as negative.

The ROC curve plots the sensitivity against one minus the specificity for a series of cutoffs for the fitted probability.
The ROC plot is a unit square plot, and the higher the curve rises above the 45-degree line, the more desirable it is.
The 45-degree line corresponds to an area under the curve (AUC) of 0.5 and represents where the fractions of true
positives and false negatives are equal. PROC LOGISTIC implements a nonparametric test to compare correlated
ROC curves that was proposed by DeLong, DeLong, and Clarke-Pearson (1988). You can construct linear contrasts
to perform comparisons by using the empirical ROC curves of specified models.

The ROC methodology has become a standard tool for assessing predictive accuracy because it provides a compre-
hensive evaluation of a fitted model. In practice, it is sometimes more convenient to use the so-called area under
the ROC curve (AUC), which summarizes the entire curve. AUC is connected to a variety of well-known statistical
measures; the concordance statistic (C-statistic) is the most obvious one, because the two measures are equivalent.
As an estimator of the probability of concordance, the C-statistic estimates the concordant probability in a randomly
selected pair of subjects. Concordance is the phenomenon that if one subject of the pair experiences the positive
outcome and the other does not, the subject with the positive outcome also has a higher predicted probability of the
positive outcome than the subject with the negative outcome. This provides the AUC with a convenient interpretation
in terms of concordance probability.

Example: Using PROC LOGISTIC for ROC Analysis

This example illustrates the features of the C-statistic and ROC curves in PROC LOGISTIC.

The data set Liver consists of data about 418 patients who have primary biliary cirrhosis (PBC), an autoimmune
disease of the liver. Each observation represents a patient. The variable Time represents the follow-up time in years
(the time from registration to liver transplantation, death, or study termination, whichever comes first); the variable
Status is the censoring indicator (1 for death, 0 for censored); and the explanatory variables are Age (age, in years),
Albumin (serum albumin level, in g/dl), Bilirubin (serum bilirubin level, in mg/dl), Edema (presence of edema, or
swelling), and Protime (prothrombin time, in seconds).

data Liver;
input Time Status Age Albumin Bilirubin Edema Protime @@;
label Time="Follow-Up Time in Years";
Time= Time / 365.25;
Outcome = (Time > 5);
datalines;

400 1 58.7652 2.60 14.5 1.0 12.2 4500 0 56.4463 4.14 1.1 0.0 10.6
1012 1 70.0726 3.48 1.4 0.5 12.0 1925 1 54.7406 2.54 1.8 0.5 10.3
1504 0 38.1054 3.53 3.4 0.0 10.9 2503 1 66.2587 3.98 0.8 0.0 11.0
1832 0 55.5346 4.09 1.0 0.0 9.7 2466 1 53.0568 4.00 0.3 0.0 11.0
2400 1 42.5079 3.08 3.2 0.0 11.0 51 1 70.5599 2.74 12.6 1.0 11.5
3762 1 53.7139 4.16 1.4 0.0 12.0 304 1 59.1376 3.52 3.6 0.0 13.6
3577 0 45.6893 3.85 0.7 0.0 10.6 1217 1 56.2218 2.27 0.8 1.0 11.0
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... more lines ...

989 0 35.0000 3.23 0.7 0.0 10.8 681 1 67.0000 2.96 1.2 0.0 10.9
1103 0 39.0000 3.83 0.9 0.0 11.2 1055 0 57.0000 3.42 1.6 0.0 9.9
691 0 58.0000 3.75 0.8 0.0 10.4 976 0 53.0000 3.29 0.7 0.0 10.6

;

The response variable, Outcome, is defined according to whether the subject is still at risk at year 5. The following
statements use the LOGISTIC procedure to fit the logistic regression model that uses Bilirubin, Age, and Edema as
explanatory variables:

ods graphics on;
proc logistic data=Liver plots(only)=roc;

model Outcome=Bilirubin Age Edema;
run;

Figure 1 displays the ROC curve that is produced by the PLOTS= option.

Figure 1 Receiver Operating Characteristic Curve

The AUC (area under the ROC curve) is estimated by the statistic c in the “Association of Predicted Probabilities and
Observed Responses” table shown in Figure 2. In this example, the AUC is 0.7432.

Figure 2 Association Table

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 74.3 Somers' D 0.486

Percent Discordant 25.7 Gamma 0.486

Percent Tied 0.0 Tau-a 0.243

Pairs 43537 c 0.743
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You can use PROC LOGISTIC to compare the ROC curves of different models. Consider three submodels of the
previously fitted logistic model, each of which contains two of the three covariates Bilirubin, Age, and Edema. You
can assess the difference in the ROC curves among these submodels in PROC LOGISTIC. In the following statements,
three ROC statements are specified, one for each submodel:

proc logistic data=Liver plots=roc;
model Outcome=Bilirubin Age Edema / nofit;
roc 'Bilirubin+Age' Bilirubin Age;
roc 'Age+Edema' Age Edema;
roc 'Bilirubin+Edema' Bilirubin Edema;
roccontrast reference('Age+Edema') / estimate e;

run;

The ROCCONTRAST statement implements the nonparametric test of DeLong, DeLong, and Clarke-Pearson (1988)
to compare the three ROC curves, the REFERENCE option specifies that the Age+Edema curve is used as the
reference curve in the contrast, the E option displays the contrast coefficients, and the ESTIMATE option computes
the AUC and tests each comparison.

Figure 3 displays the ROC curves of the three submodels and their AUC statistics.

Figure 3 ROC Curves for the Three Models

Figure 4 displays the area under the ROC curve along with its standard error and a confidence interval for each model
in the comparison. None of the three confidence intervals contain 0.50, indicating that the model-based prediction is
significantly different from random guessing, which is represented by the diagonal line in the ROC plots in Figure 3.

Figure 4 ROC Association Table

ROC Association Statistics

Mann-Whitney

ROC Model Area
Standard

Error
95% Wald

Confidence Limits Somers' D Gamma Tau-a

Bilirubin+Age 0.7381 0.0245 0.6900 0.7862 0.4762 0.4762 0.2379

Age+Edema 0.5990 0.0276 0.5449 0.6532 0.1980 0.1983 0.0989

Bilirubin+Edema 0.7459 0.0238 0.6992 0.7926 0.4918 0.5026 0.2457
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Figure 5 shows that the contrast used ’Age+Edema’ as the reference level. This table is produced by specifying the E
option in the ROCCONTRAST statement.

Figure 5 ROC Contrast Coefficients

ROC Contrast Coefficients

ROC Model Row1 Row2

Bilirubin+Age 1 0

Age+Edema -1 -1

Bilirubin+Edema 0 1

Figure 6 shows that the 2-degrees-of-freedom test that ’Age+Edema’ is different from at least one other test is
significant at the 0.05 level.

Figure 6 ROC Test Results (2 Degrees of Freedom)

ROC Contrast Test Results

Contrast DF Chi-Square Pr > ChiSq

Reference = Age+Edema 2 22.7198 <.0001

Concordance Statistics for Survival Models

In SAS/STAT 14.2, PROC PHREG provides two versions of concordance statistics—Harrell’s C-statistic and Uno’s
C-statistic—for dealing with right-censored data. These new statistics can be considered generalizations of the
C-statistic for binary outcomes as implemented in PROC LOGISTIC. This section discusses how these new statistics
are formulated and how to request them in PROC PHREG. Their differences from the conventional C-statistic and
some computational issues concerning their usage are also discussed.

Two Definitions

The conventional C-statistic is defined for binary outcomes and cannot be directly applied to time-to-event data. By
contrast, Harrell’s and Uno’s versions of the C-statistic are defined specifically for right-censored data. A fundamental
difference between Harrell’s method and Uno’s method is how survival times are ordered in the presence of censoring.
Harrell’s method offers a straightforward approach by discarding the pairs that have become incomparable because of
censoring. This approach, although it is simple, has the shortcoming that the estimates depend on the censoring
variable. Uno’s method (Uno et al. 2011) is a new formulation that models the censoring distribution and uses it to
weight the uncensored observations in the estimation, making the estimates censoring-independent. For a detailed
description of these methods, see the section “Estimating Concordance Statistics” in the Appendix.

Syntax in PROC PHREG

The new CONCORDANCE option in the PROC PHREG statement is designed to perform analyses related to overall
concordance. The default method is Harrell’s C-statistic, which you can request by specifying the CONCORDANCE or
CONCORDANCE=HARRELL option in the PROC PHREG statement. To compute the standard error, you can specify
the CONCORDANCE=HARRELL(SE) option.

To request Uno’s C-statistic, specify the CONCORDANCE=UNO option in the PROC PHREG statement. To compute
the standard error, specify the CONCORDANCE=UNO(SE) option. The standard error estimator is based on a
perturbation-resampling method proposed by Uno et al. (2011). You can control the perturbation process by specifying
the options in Table 1.

Table 1 Options for Perturbation

Option Name Function Default Value

ITER= Specify number of perturbations 100
SEED= Specify seed for random number generator Random
DIFF Compare C-statistics NA
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Differences from Conventional C-Statistic

The conventional C-statistic, as implemented in the LOGISTIC procedure, is for binary outcomes. From this perspective,
the C-statistics that are constructed for right-censored data can be considered its generalizations. However, it is worth
mentioning that the conventional C-statistic has the alternative expression as the area under the ROC curve, although
this property is no longer shared by its survival counterparts. Besides the two types of C-statistics that PROC PHREG
provides, there are other definitions of C-statistics for survival outcomes in the literature. Essentially, these C-statistics
differ in how they account for censoring.

Speedy Computation

The definitions of C-statistics are based on the notion of paired observations, and so are their interpretations. You
can conveniently calculate these C-statistics by looking at all the pairs of subjects in a data set and counting them
accordingly. It is worth noting that this simple approach does not scale well, because its computational complexity
is on the order of n2, meaning that the computational burden grows at a quadratic rate as a function of the number
of observations. As a result, the computing time might become unbearably long in some situations. To improve the
computational efficiency, PROC PHREG adopts an alternative algorithm based on binary search trees. In this new
scheme, the same task can be completed in one pass of the sorted data so that it becomes unnecessary to look at all
the pairs. The new algorithm reduces the order of complexity to n log.n/, and experiments with simulated data have
demonstrated that the computation time can be reduced from several hours to a few minutes.

Time-Dependent ROC Curves

This section introduces the concept of time-dependent ROC curves for right-censored data and the syntax for their
computation as implemented in PROC PHREG.

Concept and Methods

Let T denote the event-time variable, and let Y denote the continuous variable to be assessed. For example, assume
that Y is the linear predictor. At time t, a binary outcome can be defined as

Dt D I.T � t /

Suppose c denotes a specific value within the support of Y. The sensitivity (SE) and specificity (SP) can be defined as

SEt .c/ D Pr.Y > cjDt D 1/

SPt .c/ D Pr.Y � cjDt D 0/

The ROC curve at time t is defined to be

ROCt .u/ D SEt
�
1 � SP�1t .u/

�
This definition is often referred to in the literature as the “cumulative/dynamic” ROC curve. “Cumulative” means that all
events that occur before time t are considered to be “cases.” Information about other types of time-dependent ROC
curves is available in the literature—for example, in Heagerty and Zheng (2005).

The AUC statistic at time t is the area under the ROC curve at time t :

AUCt D
Z

ROCt .u/du

PROC PHREG supports four different techniques for estimating time-dependent ROC curves, as summarized in
Table 2.

Table 2 Methods of Estimating Time-Dependent ROC Curves in PROC PHREG

Option Name Method Reference

IPCW Inverse probability of censoring weighting Uno et al. (2007)
KM Conditional Kaplan-Meier Heagerty, Lumley, and Pepe (2000)
NNE Nearest neighbors Heagerty, Lumley, and Pepe (2000)
RECURSIVE Recursive method Chambless and Diao (2006)
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For a detailed description of these methods, see the section “Estimating Time-Dependent ROC Curves” in the
Appendix.

The four methods of estimating the time-dependent ROC curves are constructed in different ways. Both the NNE
method and the KM method are constructed by estimating the joint distribution between Y and T (Heagerty, Lumley,
and Pepe 2000). The NNE method is set as the default because it produces smooth estimates. In addition to the
noninformative censoring that the other methods assume, the IPCW method also assumes that censoring occurs
independently of all the covariates. From a computational perspective, the recursive method should be the most
efficient, because its calculation is performed on the sorted data and requires only one pass. This feature could be
particularly appealing when the data are too big and the time points to be evaluated are numerous. In addition, the
recursive approach is implemented based on binary search trees, and its computational complexity is on the order of
n log.n/.

Syntax in PROC PHREG

As in PROC LOGISTIC, in the PHREG procedure you use the PLOTS=ROC option to produce time-dependent
ROC curves, and you use the ROC statement to specify the models for which concordance and ROC analyses are
performed. The ROCOPTIONS option in the PROC PHREG statement, which has been completely redesigned from
the ROCOPTIONS option in PROC LOGISTIC, offers various control mechanisms for computing and rendering the
ROC curves. Table 3 lists the available suboptions of the ROCOPTIONS option in PROC PHREG and their functions.

Table 3 Suboptions of the ROCOPTIONS Option

Option Function

AT= Specifies the list of time points for ROC curves
AUC Displays the area under the ROC curve
AUCDIFF Displays AUC differences for each pair of identified models
IAUC Displays the integrated area under the curve
METHOD=method < (options) > Specifies the method of calculating ROC curves and AUC statistics
OUTAUC=SAS-data-set Names the output data set for the AUC plot
OUTROC=SAS-data-set Names the output data set for the ROC plots

Example: New Features in PROC PHREG

This example uses the Liver data from the earlier example to illustrate various uses of concordance statistics and
time-dependent ROC curves and AUC statistics in PROC PHREG.

The following statements use the PHREG procedure to fit the Cox regression model that uses Bilirubin, Age, and
Edema as explanatory variables:

ods graphics on;
proc phreg data=Liver concordance plots=roc rocoptions(at=2 to 10 by 2);

model Time*Status(0)=Bilirubin Age Edema;
run;

The CONCORDANCE option in the PROC PHREG statement displays Harrell’s C-statistic. The PLOTS=ROC option
plots the time-dependent ROC curves at time points 2, 4, 6, 8, and 10 years, which are specified in the AT= suboption
in the ROCOPTIONS option.

Results of Harrell’s C-statistic are shown in Figure 7.

Figure 7 Harrell’s C-Statistic

The PHREG ProcedureThe PHREG Procedure

Harrell's Concordance Statistic

Comparable Pairs

Source Estimate Concordance Discordance
Tied in

Predictor
Tied in

Time

Model 0.7966 34798 8884 2 5
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There are 34,798 concordance pairs, 8,884 discordance pairs, 2 pairs that are tied in the linear predictor, and 5 pairs
that are tied in the follow-up time. This gives a concordance estimate of 0.7966.

Figure 8 shows the time-dependent ROC curves at the selected years.

Figure 8 ROC Plot at Selected Time Points

By default, these curves are computed by the nearest neighbors technique of Heagerty, Lumley, and Pepe (2000)
and are displayed in a panel. It appears that among the five selected years, year 4 has the largest AUC, year 8 has
the lowest AUC, and the other years are in between. If you specify the OVERLAY=INDIVIDUAL global plot option to
display individual plots, each plot also displays the AUC. The following statements make two individual ROC plots, at
year 2 and year 6:

proc phreg data=Liver plots(overlay=individual)=roc rocoptions(at=2 6);
model Time*Status(0)=Bilirubin Age Edema;

run;

The individual plots of time-dependent ROC curves at year 2 and year 6 are shown in Figure 9 and Figure 10,
respectively.

Figure 9 ROC Plots at Year 2
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Figure 10 ROC Plots at Year 6

Time-dependent ROC curves change only at the distinct event times. You can examine the AUC at all distinct event
times by plotting the curve of the AUC. The following statements plot the curve of the AUC of the fitted model and
display the 95% pointwise confidence limits:

proc phreg data=Liver plots=auc rocoptions(method=ipcw(cl seed=1234) iauc);
model Time*Status(0)=Bilirubin Age Edema;

run;

The PLOTS=AUC option in the PROC PHREG statement plots the AUC curve. The ROCOPTIONS option in the
PROC PHREG statement enables you to specify the inverse probability of censoring weighting (IPCW) method to
compute the ROC curves, and the CL suboption requests pointwise confidence limits for the AUC curve. The IAUC
option computes and displays the integrated AUC over time.

Figure 11 displays the AUC curve and the 95% confidence limits for the fitted model.

Figure 11 AUC Plot with 95% Confidence Limits

It appears that the AUC statistic reaches a high of 0.92 at year 0.21 but mostly hovers around 0.8.
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Figure 12 displays the integrated AUC, which averages all available AUC statistics over time.

Figure 12 Integrated AUC

Integrated
Time-Dependent
Area Under the

Curve

Source Estimate

Model 0.8284

Consider three submodels of the previously fitted Cox model, each of which contains two of the three covariates
Bilirubin, Age, and Edema. You can use the method of Uno et al. (2011) to assess the difference of the concordance
probabilities between any two submodels. In the following statements, three ROC statements are specified, one for
each submodel:

proc phreg data=Liver concordance=uno(diff se seed=1234 iter=100);
model Time*Status(0)=Bilirubin Age Edema / nofit;
roc 'Bilirubin+Age' Bilirubin Age;
roc 'Age+Edema' Age Edema;
roc 'Bilirubin+Edema' Bilirubin Edema;

run;

The DIFF suboption of the CONCORDANCE=UNO option in the PROC PHREG statement calculates all pairwise
differences. The SE suboption computes the standard error for each pairwise difference, based on 100 perturbation
samples as specified by the ITER= suboption. The seed of the random generator for the perturbation resampling is set
to 1234. The NOFIT option is specified in the MODEL statement, because there is no need to fit the specified model.

Figure 13 displays the results of the concordance analysis.

Figure 13 Comparing Uno’s Concordance Estimates

The PHREG ProcedureThe PHREG Procedure

Differences in Uno's Concordance Statistic

Source _Source Estimate
Standard

Error Chi-Square Pr > ChiSq

Bilirubin+Age Age+Edema 0.0972 0.0232 17.57 <.0001

Bilirubin+Age Bilirubin+Edema -0.0264 0.0231 1.31 0.2529

Age+Edema Bilirubin+Edema -0.1236 0.0287 18.51 <.0001

It appears that the two submodels that contain Bilirubin have a significantly larger concordance probability than the
submodel without Bilirubin. In other words, the two submodels that contain Bilirubin predict the survival outcomes
more accurately than the model without Bilirubin.

It has been demonstrated elsewhere that the log transform is a much-improved functional form for Bilirubin in a Cox
regression model (Lin, Wei, and Ying 1993). It is expected that the model that contains Bilirubin in the log scale
would have more discriminating power than the model that contains Bilirubin in the original scale. In the following
statements, PROC PHREG is used to fit the model with the log transform for Bilirubin:

proc phreg data=Liver;
model Time*Status(0)=logBilirubin Age Edema;
logBilirubin = log(Bilirubin);
output out=Liver2 xbeta=Y;

run;
proc phreg data=Liver2 plots=roc rocoptions(at=2 to 10 by 2);

model Time*Status(0)=Bilirubin Age Edema / roclabel='Bilirubin';
roc 'logBilirubin' pred=Y;

run;
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Because the OUTPUT statement is used, the linear predictor variable is saved as the variable Y in the output data set
Liver2. With Liver2 as the new input data set, PROC PHREG is called to fit the Cox model that contains Bilirubin in
the original scale. The linear predictor variable Y is specified in the ROC statement as the PRED= option value.

Figure 14 displays the ROC curves of the two competing models.

Figure 14 ROC Plots to Evaluate the Log Transform for Bilirubin

The ROC curve for the model with the log scale for Bilirubin essentially lies above that of its counterpart with the
original scale for all the selected time points. This leads to the conclusion that the log transform for Bilirubin improves
the predictive power of the model.

Syntax Differences between PROC PHREG and PROC LOGISTIC

For the most part, the syntax in the PHREG procedure for producing concordance statistics and time-dependent ROC
curves and AUC statistics is similar to the syntax for ROC analysis in the LOGISTIC procedure. But there are some
major differences.

New CONCORDANCE Option

In PROC LOGISTIC, the C-statistic is uniquely defined and is automatically displayed in the printed output. To
request C-statistics in PROC PHREG, you must specify the CONCORDANCE option in the PROC PHREG statement.
Furthermore, you specify the keyword HARRELL or UNO to request the two different C-statistics.

Redesigned ROCOPTIONS Option

The ROCOPTIONS option in both PROC PHREG and PROC LOGISTIC controls various aspects of computing and
rendering the ROC curves. To accommodate the new reality in the survival setting, the ROCOPTIONS option in
PROC PHREG has been completely redesigned. For comparison purposes, Table 4 lists some key suboptions of the
ROCOPTIONS option in PROC LOGISTIC and their functions.

Table 4 Key Suboptions of ROCOPTIONS Option in PROC LOGISTIC

Option Function

ALPHA=number Sets the significance level for the confidence limits
CROSSVALIDATE | X Uses cross validation to compute the ROC
OUT=SAS-data-set-name Names the output data set for the ROC plots
WEIGHTED Uses frequency � weight to compute the ROC
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Enhanced ROC Statement

The ROC statement is available in both PROC LOGISTIC and PROC PHREG. You can use it to specify a model to be
used in the concordance analysis or ROC analysis. There is no limit to the number of ROC statements that you can
use.

In PROC PHREG, you can use one of the following specifications:

effect-list
specifies a list of effects that have previously been specified in the MODEL statement.

PRED=variable
specifies a variable in the input data set. The variable does not have to be specified in the MODEL statement.

SOURCE=item-store-name
specifies a one- or two-level name of an existing item store.

The PRED= and effect-list options are also supported in PROC LOGISTIC, but the SOURCE= option is not. As an
enhancement, the SOURCE= option enables you to import a model that is produced outside PROC PHREG; for
example, you can fit a parametric survival model by using PROC LIFEREG, save the model in an item store, and
then specify the item-store name in the SOURCE= option in an ROC statement to produce an ROC analysis of the
imported model.

Decommissioned ROCCONTRAST Statement

PROC LOGISTIC provides the ROCCONTRAST statement for comparing different ROC curves. Such a setup is
no longer used in PROC PHREG because the C-statistic is no longer equal to the area under the ROC curve. To
compare Uno’s C-statistic between two prediction models, you can use the DIFF option.

Summary

This paper introduces concordance statistics (C-statistics) and time-dependent ROC curves and AUC statistics for
assessing the predictive accuracy of survival models that are available in the PHREG procedure in SAS/STAT 14.2.
These new methods can be considered generalizations from the conventional methods for binary outcomes that have
been available in PROC LOGISTIC. Because the goal of applying these criteria remains the same in the survival
setting, you can use your experience with PROC LOGISTIC to perform relevant analyses.

To apply the new methods successfully, it is important to understand how they relate to the conventional methods and
to be cautious about the differences. In the conventional setting with binary outcomes, the C-statistic is equivalent
to the area under the ROC curve and thus serves as an overall summary of the curve. This relationship breaks
down in the survival setting because the ROC curves have been generalized to be time-dependent and the area
under the curve becomes time-specific. Also, different versions of the C-statistic, such as Harrell’s C-statistic and
Uno’s C-statistic, exist because the overall concordance probability can be formulated in different ways to deal with
censoring. For time-dependent ROC curves, PROC PHREG currently supports only the cumulative/dynamic type and
provides multiple estimation methods. Table 5 summarizes these new methods.

Table 5 Summary of New Methods for Evaluating Predictive Accuracy

Method Option Standard Error Limitation

C-statistic
HARRELL (Default) Yes Estimate is censoring-dependent
UNO Yes Assumes censoring distribution is estimable

Time-dependent
ROC curve

NNE (Default) No SPAN= option value is needed
KM No Monotonicity might be violated for small sample
RECURSIVE No Underdefined at tied events
IPCW Yes Assumes censoring distribution is estimable
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Appendix

Estimating Concordance Statistics

For the i th individual (1 � i � n) in a sample, let Xi ; �i ; and Zi be the observed time, event indicator (1 for death, 0
for censored), and covariate vector, respectively.

For the i th individual, the Cox proportional hazards model in PROC PHREG assumes the hazard function to be

�i .t/ D �.t IZi / D �0.t/ exp.Z0iˇ/

where �0.t/ is an arbitrary and unspecified baseline hazard function and ˇ is the vector of true regression parameters
that is associated with the explanatory variables. Let Ǒ denote the maximum partial likelihood estimates of ˇ. The
estimated linear predictor for the i th individual is Yi D ˇ0Zi .

� Harrell’s Concordance

Harrell (1986) defines the concordance probability as

CH D Pr.ˇ0Z1 > ˇ0Z2jT1 < T2; T1 < min.D1;D2//

where Z1 and Z2 are the covariate vectors for a pair of subjects, the survival times are denoted as T1 and T2,
and the censoring times are denoted as D1 and D2.

Assuming that there are no ties in the event times and the predictor scores, CH can be estimated as

OCH D

P
i¤j �iI.Xi < Xj /I.

Ǒ 0Zi > Ǒ 0Zj /P
i¤j �iI.Xi < Xj /

When there are ties in the predictor scores, the preceding calculation can be adjusted to be

OCH D

P
i¤j �iI.Xi < Xj /

h
I. Ǒ 0Zi > Ǒ 0Zj /C 0:5I. Ǒ 0Zi D Ǒ 0Zj /

i
P
i¤j �iI.Xi < Xj /

For standard errors of OCH, PROC PHREG uses the estimator derived based on the delta method (Kang et al.
2015).

� Uno’s Concordance

Uno et al. (2011) propose the following method of estimating the concordance probability:

CU D Pr.ˇ0Z1 > ˇ0Z2jT1 < T2/

If � is a specified time point within the support of the censoring variable, Uno et al. (2011) also define a truncated
version of the concordance probability as

CU D Pr.ˇ0Z1 > ˇ0Z2jT1 < T2; T1 < �/

You can specify a � value in the TAU= option in the PROC PHREG statement. If the TAU= option is not specified,
then there is no truncation and the � value is taken as the largest event time.

Let OG.t/ be the Kaplan-Meier estimate of the censoring distribution (assuming no covariates). CU is consistently
estimated by

OCU D

Pn
iD1

Pn
jD1�i

OG.X�i /
�2I.Xi < Xj ; Xi < �/

h
I. Ǒ 0Zi > Ǒ 0Zj /C 0:5 � I. Ǒ 0Zi D Ǒ 0Zj /

i
Pn
iD1

Pn
jD1�i

OG.X�i /
�2I.Xi < Xj ; Xi < �/
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Estimating Time-Dependent ROC Curves

� Inverse Probability of Censoring Weighting Approach

Let OG.t/ be the Kaplan-Meier estimate of the censoring distribution (assuming no covariates). Assuming that
the censoring distribution is independent of the failure time distribution, the sensitivity (SE) and specificity (SP)
under a specific threshold value c can be consistently estimated as

cSEt .c/ D
Pn
iD1�iI.

Ǒ 0Zi > c;Xi � t /= OG.Xi /Pn
iD1�iI.Xi � t /=

OG.Xi /

cSPt .c/ D
Pn
iD1 I.

Ǒ 0Zi � c;Xi > t/Pn
iD1 I.Xi > t/

ROCt .c/ can be estimated by substituting these estimated sensitivities and specificities. The estimated AUCt
is calculated by using the trapezoidal rule to integrate the estimated ROCt .c/ curve.

Uno et al. (2007) propose estimating the standard errors of the AUCt estimator by using the perturbation-
resampling method. Suppose O�2 is the sample variance based on M realizations of the perturbed AUCt . The
100.1 � ˛/% confidence limits for AUCt are 1AUCt ˙ z˛=2 O� , where 1AUCt is the estimated AUCt and z˛=2 is
the upper 100˛=2 percentile of the standard normal distribution.

� Conditional Kaplan-Meier Approach

Using Bayes’ theorem, you can write the sensitivity and specificity, respectively, as

SEt .c/ D Pr.Y > cjDt D 1/ D
Œ1 � S.t jY > c/�Pr.Y > c/

1 � S.t/

SPt .c/ D Pr.Y � cjDt D 0/ D
S.t jY � c/Pr.Y � c/

S.t/

where S.�/ is the survivor function and S.�jY > c/ is the conditional survivor function for Y > c.

Heagerty, Lumley, and Pepe (2000) use the Kaplan-Meier method to estimate the survivor function S.:/ and the
conditional survivor function S.:jY > c/. The latter was estimated using subjects where the condition Y > c is
met. The sensitivity and specificity are estimated, respectively, as

cSEt .c/ D

h
1 � OSKM.t jY > c/

i
Œ1 � OFY .c/�

1 � OSKM.t/

cSPt .c/ D
OSKM.t jY � c/ OFY .c/

OSKM.t/

where OSKM.�/ is the Kaplan-Meier estimator and OFY .c/ D
P
i I.Yi � c/=n.

� Nearest Neighbors Approach

Following Akritas (1994), the bivariate survival function, S.c; t/ D Pr.Y > c; T > t/, can be estimated as

OSbn
.c; t/ D

1

n

X
i

OSbn
.t jY D Yi /I.Yi > c/

where OSbn
.t jY D Yi / is a smoothed estimate of the conditional survival function. Define the weighted

Kaplan-Meier estimator as

OSbn
.t jY D Yi / D

Y
s2fXi WiD1;:::;n;�iD1g;s�t

"
1 �

P
j Kbn

.Yi ; Yj /I.Xi D s/�iP
j Kbn

.Yi ; Yj /I.Xi D s/

#
where Kbn

.Yi ; Yj / is a kernel function that depends on the parameter bn. Akritas (1994) uses the nearest
neighbor kernel, Kbn

.Yi ; Yj / D I f�bn < OFY .Yi /� OFY .Yj / < bng, where 0 < 2bn < 1; this effectively selects
the nearest 2bn proportion of observations in the neighborhood. The default value for bn is 0.05. You can
specify a different value by using the SPAN= suboption in METHOD=NNE in the ROCOPTIONS option in the
PHREG statement.
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The sensitivity and specificity can then be estimated, respectively, as

cSEt .c/ D
1 � OFY .c/ � OSbn

.c; t/

1 � OSbn
.t/

cSPt .c/ D 1 �
OSbn
.c; t/

OSbn
.t/

where OSbn
.t/ D OSbn

.�1; t /. For more information, see Heagerty, Lumley, and Pepe (2000).

� Recursive Approach

Chambless and Diao (2006) propose estimating time-dependent ROC curves by using a recursive approach
akin to the Kaplan-Meier method. Let t1 < t2 < � � � < tM be the distinct event times in the data. The area under
the curve at time tm; 1 � tm �M , can be derived as

AUCtm D
Pm
kD1 k�.tk/.1 � �.tk//S.tk�1/ �

Pm
kD1 �k�.tk/.1 � S.tk�1//S.tk�1/

S.tm/.1 � S.tm//

where S.�/ is the survivor function, �.�/ is the hazard function, t0 D 0, �0 D 0, and

�k D Pr.ˇ0Zi > ˇ0Zj jXi D tk ; �i D 1;Xj > tk/

k D Pr.ˇ0Zi > ˇ0Zj jXi D tk�1; �i D 1;Xj D tk ; �j D 1/

In a recursive fashion, the sensitivity and specificity at time tm can be shown, respectively, to be

SEtm.c/ D
mX
kD1

�k.c/�.tk/S.tk�1/=Œ1 � S.tm/�

SPtm.c/ D
Pr.ˇ0Zi � c/ �

Pm
kD1Œ1 � �k.c/��.tk/S.tk�1/

S.tm/

where �k.c/ D Pr.ˇ0Zi > cjXi D tk ; �i D 1/.

Define Rk to be the risk set at time tk , and let rk be the number of subjects in Rk . Let Z.k/ be the covariate
vector for the subject whose event time is tk . The unknown parameters �k , k , and �k.c/ can be estimated as

O�k D
1

k � 1

kX
iD1

I. Ǒ 0Z.i/ > Ǒ
0Z.k//

Ok D
1

rk � 1

X
j2Rk

I. Ǒ 0Z.k/ > Ǒ
0Zj /

O�k.c/ D I. Ǒ
0Z.k/ > c/

When there is only one event at each event time, �.tk/ is estimated as O�.tk/ D 1=rk and S.tk/ is estimated by
the Kaplan-Meier method as OS.tk/ D OS.tk�1/Œ1 � O�.tk�1/�. In the case of a tie, the order of the events in the
calculation is the same as the order of their appearance in the input data set.
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