- SAS Kunden und Referenzen
- SPG Dry Cooling
SPG Dry Cooling achieved this using • SAS® Asset Performance Analytics
SPG Dry Cooling uses advanced analytics from SAS to analyze the performance of its air-cooled condensers, enabling power plants to run more efficiently, improve maintenance planning and better forecast energy production
An air-cooled condenser is an essential part of a thermal power plant. It condenses the steam at the end of a turbine and returns the condensate to the boiler, completing the steam cycle. The performance of this installation determines the energy production.
Headquartered in Brussels, Belgium, SPG Dry Cooling is a major manufacturer of air-cooled condensers, with installations at power plants around the world. Usually huge volumes of water are required to condense steam, but that is not the case with dry cooling. This method is particularly favored in areas that have a low water supply and high water costs or are subject to environmental restrictions.
To predict and optimize the performance of its condensers and the associated steam cycle, SPG Dry Cooling turned to SAS advanced analytics.
Analytics enables us to give our customers advice on optimization and the asset health of their components, allowing them to run their power plants more efficiently. This means we are no longer seen as a mere supplier of equipment but as a long-term partner.Frédéric Anthone Aftermarket Manager SPG Dry Cooling
Condensing steam
An air-cooled condenser is part of a steam cycle. First, water is turned into steam inside a boiler. This steam powers the turbine that generates electricity. The steam then flows from the turbine exhaust into the air-cooled condenser where condensation occurs – ventilators blow cooler air on the steam heat exchanger. Finally, the condensate returns to the boiler in a closed loop. As the steam at the end of the turbine is at a low pressure, the air-cooled condenser works at a pressure close to a vacuum, and non-condensable gases are removed continuously.
The performance of the air-cooled condenser determines the amount of energy produced, but the installation is subject to several factors, such as ambient temperature and wind. When it is cold outside, steam condenses much better, and the energy production will increase. Strong lateral winds, however, act as an obstacle for the ventilators and affect the overall capacity.
For the end users of SPG Dry Cooling’s products, it would be advantageous to forecast the performance of the installation in all circumstances. Fortunately, lots of parameter data captured by IoT sensors is available for analysis. And that’s where SAS enters the picture.
Predicting performance and optimizing operations
SPG Dry Cooling requested SAS’ assistance to build a digital twin of the installation. “Scalability is an important reason why we wanted an experienced partner,” says Frédéric Anthone, Aftermarket Manager at SPG Dry Cooling. “The advanced analytics capabilities of SAS are beyond dispute. The solution can be implemented on all types of dry cooling installations, which will lead to huge amounts of data and result in more precise predictions.”
“We have a much better knowledge of our installations,” adds Christophe Deleplanque, Vice President of Innovation at SPG Dry Cooling. “We used to rely on our experience and theoretical data, but there are too many parameters to take into account. Advanced analytics allows for more detailed analyses of our equipment, which enables us to optimize the scale and the operations for our customers.”
In an ideal scenario, more than 4,000 air-cooled condensers worldwide could be connected and share data for analysis. The predictive power of this solution has multiple benefits, giving power plants different ways to enhance their operations, meet demand and ultimately satisfy their customers.
According to Anthone, advanced analytics is helping SPG Dry Cooling achieve three key goals:
- Increase the efficiency of power plants.
- Help power plants avoid unplanned outages and achieve better maintenance planning.
- Enable forecasting of power plant capacity.
Predicting when a system needs maintenance is extremely beneficial for power plants. Cleaning an air-cooled condenser requires a significant amount of water and is very costly in areas with a low water supply. But the energy output also increases after the cleaning process. As analytical models offer better insights about performance, operators can explore the limits of the air-cooled condenser installations and postpone maintenance until needed. Optimized maintenance leads to increased reliability and cost savings.
Additionally, power plant operators can better gauge the output of their installation 24 hours in advance. Not only do power suppliers have a much better idea of the amount of electricity they can bring to the market, this capability also gives them the possibility to optimize the net plant heat rate.
“Analytics enables us to give our customers advice on optimization and the asset health of their components, allowing them to run their power plants more efficiently,” Anthone says. “This means we are no longer seen as a mere supplier of equipment but as a long-term partner.”
SPG Dry Cooling – Facts & Figures
Belgium
headquarters
20+
offices around the world
160,000 MWe
installed bases
Enhanced communication and future opportunities
SPG Dry Cooling also benefits from these forecasts. As the manufacturer usually develops condensers for the constructors of power plants – not directly for the operators – feedback about the lifetime performance of installations has been scarce. Now engineers at SPG Dry Cooling receive valuable information to improve future air-cooled condenser designs.
The company takes pride in its innovative equipment and services, numerous patents and product developments. With analytics as an integral component of its operations, SPG Dry Cooling looks forward to new opportunities for advancement.
“The analytics solution provided by SAS opens the door to a wide range of possibilities, including building on our large assets fleet to continuously optimize our air-cooled condenser solutions, even in the most extreme operational conditions,” Deleplanque says.
“The big challenge was the communication between thermal engineers and data scientists,” Deleplanque continues. “For the latter, the source of data doesn’t really make a difference. Data may come from banks, pharmaceutical companies or, in our case, air-cooled condensers. However, we wanted to offer our customers real added value. So we needed something that goes beyond pattern recognition. SAS has the right people to understand these processes. On top of that, we haven’t reached the limits of advanced analytics – there is still much more potential in our SAS solution.”
*******************
Die in diesem Artikel dargestellten Ergebnisse sind auf die hier beschriebenen besonderen Situationen, Geschäftsmodelle, Dateneingaben und Computerumgebungen zugeschnitten. Die Erfahrung jedes SAS-Kunden ist aufgrund geschäftlicher und technischer Variablen einzigartig, und alle Aussagen sind als untypisch anzusehen. Die tatsächlichen Einsparungen, Ergebnisse und Leistungsmerkmale hängen von den individuellen Kundenkonfigurationen und -bedingungen ab. SAS übernimmt keine Garantie oder Zusicherung, dass jeder Kunde ähnliche Ergebnisse erzielt. Die einzigen Garantien für SAS-Produkte und -Dienstleistungen sind diejenigen, die in den ausdrücklichen Garantieerklärungen in der schriftlichen Vereinbarung für solche Produkte und Dienstleistungen aufgeführt sind. Nichts von dem hier Veröffentlichten ist als zusätzliche Garantie auszulegen. Kunden haben ihre Erfolgsgeschichten mit SAS im Rahmen eines vertraglich vereinbarten Austauschs oder einer Zusammenfassung zum Projekterfolg im Anschluss an einen erfolgreichen Abschluss einer Implementierung von SAS-Software kommuniziert. Marken- und Produktnamen sind Markenzeichen der jeweiligen Unternehmen.