

1

Paper SAS 5167-2020

Step-by-Step SQL Procedure

Charu Shankar, SAS Institute Inc.

ABSTRACT

PROC SQL is a powerful query language that can sort, summarize, subset, join, and print
results all in one step. Users who are continuously improving their analytical processing will

benefit from this hands-on workshop. In this paper, participants learn the following

elements to master PROC SQL:

1. Understand the syntax order in which to submit queries to PROC SQL

2. Summarize data using Boolean operations

3. Manage metadata using dictionary tables

4. Join tables using join conditions like inner join and ref lexive join

5. Internalize the logical order in which PROC SQL processes queries

INTRODUCTION

PROC SQL is the language of databases. After teaching at SAS for more than 10 years
to thousands of learners, this instructor has collected many best practices from helping
customers with real-world business problems. This paper illustrates practices such as how
to make coding life easy with mnemonics to recall the order of statements in SQL, and how
to leverage simple yet elegant techniques such as Boolean logic in SQL. Data used in this

paper can be downloaded from this Github Repository: https://github.com/CharuSAS/SQL.

UNDERSTAND THE SYNTAX ORDER IN WHICH TO SUBMIT

QUERIES TO PROC SQL

Every computer language has syntax order that is uniquely its own. Trying to remember the
syntax is sometimes not easy for beginners and even those f luent in multiple languages,
human or computer. For some help in memory recall, try my mnemonic to remember the
syntax order of SQL.

Figure 1: PROC SQL Mnemonic

SELECT object-item <, ...object-item>

 FROM from-list
 <WHERE sql-expression>
 <GROUP BY object-item <, … object-item >>
 <HAVING sql-expression>

 <ORDER BY order-by-item <DESC>
 <, …order-by-item>>;

SO
FEW
WORKERS
GO
HOME
ON TIME

https://github.com/CharuSAS/SQL

2

Here is a PROC SQL query in its entirety. SELECT and FROM are mandatory statements in

any SQL query. Anything in triangular brackets is optional.

Figure 2: PROC SQL Syntax Order

A SELECT statement is used to query one or more tables.

The FROM clause specif ies the tables that are required for the query.

The WHERE clause specif ies data that meets certain conditions.

The GROUP BY clause groups data for processing.

The HAVING clause specifies groups that meet certain conditions.

The ORDER BY clause specif ies an order for the data.

SUMMARIZE DATA USING BOOLEAN OPERATIONS

Hands down, summarizing data using the Boolean gate in PROC SQL has to be my all-time
favorite technique. When I fell in love with its elegance, I captioned my blog captioned “No.
1 Best programming technique for 2012.” It was easily my #1 best technique for life, but I

thought I would keep myself open to new learning! Read on to learn more about this magic.

Summarizing Data

The Boolean is simply the digital computing world’s way of converting everything to 0s and
1s. A yes is a one, and a no is a zero.

Grouping Data

Let’s begin with a simple business scenario to understand grouping f irst. We have been

asked to produce a report that determines the average salary by gender.

How many rows does this query create?

title ' Is this average salary by gender';

proc sql number;

 select Employee_Gender, avg(Salary) as Average

 from SGF2020.employee_information

 where Employee_Term_Date is missing;

quit;

Display 1: Code for Average Salary by Gender

The result is not quite as expected. Instead of receiving 2 rows of data, the output contains
308 rows. This is the number of rows in the SGF2020.employee_information table. Also,
the average is not an average for each gender, rather the average for the entire table.

PROC SQL;
 SELECT object-item <, ...object-item>

 FROM from-list
 <WHERE sql-expression>

 <GROUP BY object-item <, … object-item >>

 <HAVING sql-expression>

 <ORDER BY order-by-item <DESC>

 <, …order-by-item>>;
QUIT;

3

C o p yrigh t © SAS In sti tu te In c. Al l righ ts re se rve d .

4

Viewing the Output

PROC SQL Output

Figure 3: Unexpected Output for Average Salary by Gender

The GROUP BY Clause

You can use the GROUP BY clause to do the following:

• classify the data into groups based on the values of one or more columns

• calculate statistics for each unique value of the grouping columns

title "Average Salary by Gender";

proc sql;

 select Employee_Gender as Gender, avg(Salary) as Average

 from SGF2020.employee_information

 where Employee_Term_Date is missing

 group by Employee_Gender;

quit;

Display 2: Correct Code for Average Salary by Gender

The results are more satisfactory this time, with two rows of data.

Figure 4: Correct Output for Average Salary by Gender

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

6

Viewing the Output

PROC SQL Output

Average Salary by Gender

Employee
Gender Average
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
F 37002.88
M 43334.26

4

Let’s move on to the next level of complexity. We have been tasked to produce a report
showing the count of employees in departments that have at least 25 people. Display the

results in descending order by count.

A f irst step would be to count the number of employees for each department.

title 'Employee count by department';

proc sql;

 select Department, count(*) as Count

 from SGF2020.employee_information

 group by Department;

quit;

Display 3: Code for Employee Counts by Department

Figure 5: Employee Counts by Department

In the next step, we control the result to include only the departments that have at least 25
people, with the departments in decreasing order. To do this, we use the HAVING clause,
which subsets groups based on the expression value.

title 'Employee counts by department in departments with at least 25

employees';

proc sql;

 select Department, count(*) as Count

 from SGF2020.employee_information

 group by Department

 having Count ge 25

 order by Count desc;

quit;

Display 4: Code for Employee Counts by Department with at Least 25 Employees

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

10

Viewing the Output
PROC SQL Output

5

Figure 6: Employee Counts by Department with at Least 25 Employees

Have you ever been challenged with a business scenario where you had to subset data to
return both the haves and the have nots?

Figure 7: Business Scenario for Total Number of Managers and Employees

How will you go about extracting both the managers and the employees and stick them all

on the same line?

First, we use the FIND function to f ind all managers.

Figure 8: FIND Function

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

13

Viewing the Output
PROC SQL Output

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

14

Business Scenario 3

Create a report that lists the following for each department:

• total number of managers

• total number of non-manager employees

• manager-to-employee (M/E) ratio

Below is a rough sketch of the desired report.

Department Managers Employees
M/E

Ratio

Accounts 1 5 20%

Administration 2 20 10%

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

17

FIND Function

The FIND function returns the starting position of the firstoccurrence
of a substring within a string (character value).

Find the starting position of the substring Manager in the character variable
Job_Title.

The value returned by the FIND function is 16.

Job_Title 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
A d m i n i s t r a t i o n M a n a g e r

FIND(string, substring<,modifier(s)><,startpos>)

find(Job_Title,"manager","i")

6

Here is the classic Boolean put to good use to determine whether an employee is a
manager. If Job_Title contains Manager, the value is 1. If it doesn’t contain Manager, the

value is 0.

title 'Manager or not';

proc sql;

 select Department, Job_Title,

 (find(Job_Title,"manager","i")>0) "Manager"

 from SGF2020.employee_information;

quit;

Display 5: Code to Write a Boolean Expression

Now simply calculate the statistics by wrapping the Boolean expressions with the SUM
function.

title "Manager-to-Employee Ratios";

proc sql;

 select Department,

 sum((find(Job_Title,"manager","i")>0))as Managers,

 sum((find(Job_Title,"manager","i")=0))as Employees,

 calculated Managers/calculated Employees

 "M/E Ratio" format=percent8.1

 from SGF2020.employee_information

 group by Department;

quit;

Display 6: Code to Summarize Data Using the Boolean

Figure 9: Output Using Boolean Operations

This was just one way to use the Boolean. The expressions can be as complex as necessary.

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

21

Viewing the Output

PROC SQL Output
Manager-to-Employee Ratios

M/E
Department Managers Employees Ratio
ƒƒ
Accounts 3 14 21.4%
Accounts Management 1 8 12.5%
Administration 5 29 17.2%
Concession Management 1 10 10.0%
Engineering 1 8 12.5%
Executives 0 4 0.0%
Group Financials 0 3 0.0%
Group HR Management 3 15 20.0%
IS 2 23 8.7%
Logistics Management 6 8 75.0%
Marketing 6 14 42.9%
Purchasing 3 15 20.0%
Sales 0 201 0.0%
Sales Management 5 6 83.3%
Secretary of the Board 0 2 0.0%
Stock & Shipping 5 21 23.8%
Strategy 0 2 0.0%

7

MANAGE METADATA USING DICTIONARY TABLES

There is no magic pill that will forgive us for not knowing our data. ”Know thy data” must be

the most fundamental principle that cannot be ignored. In fact, I am going to go out on a
limb here and say that this is the only rule that data workers must know. Everything else is
SAS!

To help navigate through the inherited – and sometimes messy – data, my go-to suggestion

is DICTIONARY tables. With the amount of heavy-duty metadata scouring that data workers
perform, this is one tip you must see. I love DICTIONARY tables and cannot imagine life
without them. When you see this confession revealed, I’m positive you will also feel the
same way.

DICTIONARY tables are Read-Only metadata views that contain session metadata, such as
information about SAS libraries, data sets, and external f iles in use or available in the
current SAS session.

DICTIONARY tables are

• created at SAS session initialization
• updated automatically by SAS
• limited to Read-Only access.

You can query DICTIONARY tables with PROC SQL.

There can be more than 30 DICTIONARY tables. We will focus on two of the tables.

• DICTIONARY.TABLES - detailed information about tables
• DICTIONARY.COLUMNS - detailed information about all columns in all tables

To get to know the columns and what they stand for, query the DICTIONARY table f irst
using the following code.

proc sql;

 describe table dictionary.tables;

quit;

Display 7: Code to Describe DICTIONARY Tables

Log

NOTE: SQL table DICTIONARY.TABLES was created like:

create table DICTIONARY.TABLES

 (libname char(8) label='Library Name',

 memname char(32) label='Member Name',

 ...

 crdate num format=DATETIME informat=DATETIME label='Date Created',

 modate num format=DATETIME informat=DATETIME label='Date Modified',

 nobs num label='Number of Physical Observations',

 obslen num label='Observation Length',

 nvar num label='Number of Variables', ...);

Display 8: Log to Describe DICTIONARY Tables

8

Let’s begin to understand the dictionary tables by querying all tables with an ID column.

title 'Tables Containing an ID Column';

proc sql;

 select memname 'Table Names', name

 from dictionary.columns

 where libname='SASHELP' and

 upcase(name) contains 'ID';

quit;

Display 9: Code to Query All Tables Containing an ID Column

Figure 10: PROC SQL Output Tables Containing an ID Column

However, you might have observed that this is something that PROC CONTENTS can do. It’s
not something that impresses us as a niche value that DICTIONARY tables can add. Also,
these past techniques work when you know the names of columns. What happens if you
don’t know your data, and you want SAS to retrieve all same-named columns in a library.

The real power of DICTIONARY tables reveals itself when we eliminate any manual work.

title 'Common columns in SASHELP';

proc sql;

select name, type, length, memname

 from dictionary.columns

 where libname='SASHELP’

 group by name

 having count(name) > 1;

quit;

Display 10: Code to Find Common Column Names Dynamically

9

Figure 11: Common Column Names of Tables in the Sashelp Library

JOIN TABLES USING JOIN CONDITIONS LIKE INNER JOIN AND
REFLEXIVE JOIN

SQL uses joins to combine tables horizontally. Requesting a join involves matching data

from one row in one table with a corresponding row in a second table. Matching is typically

performed on one or more columns in the two tables.

Figure 12: Inner and Outer Joins

Cartesian Product

A query that lists multiple tables in the FROM clause without a WHERE clause produces all

possible combinations of rows from all tables. This result is called a Cartesian product.

title 'Combining data from multiple tables’;

proc sql;

 select *

 from SGF2020.customers, SGF2020.transactions;

quit;

Display 11: Code to Combine Data from Multiple Tables

10

Figure 13: Cartesian Product

Inner Join

Figure 14: Inner Join Report

title 'Inner Join';

proc sql;

 select *

 from SGF2020.customers, SGF2020.transactions

 where customers.ID=

 transactions.ID;

quit;

Display 12: Code to craft inner join

While specifying same-named columns from more than one table, qualify the column name.

11

Figure 15: Qualifying the ID Column in the SELECT Clause

Reflexive Joins

A reflexive join (also known as a self-join) is the joining of a table to itself.

The chief sales officer wants to have a report with the name of all sales employees and the

name of each employee’s direct manager.

Figure 16: Return the Employee’s ID and Name

Figure 17: Determine the ID of the Employee’s Manager

12

Figure 18: Return the Manager’s Name

In order to read from the same table twice, it must be listed in the FROM clause twice. Here,

a different table alias is required to distinguish the different uses.

proc sql;

 select e.Employee_ID "Employee ID",

 e.Employee_Name "Employee Name",

 m.Employee_ID "Manager ID",

 m.Employee_Name "Manager Name",

 e.Country

 from SGF2020.employee_addresses as e,

 SGF2020.employee_addresses as m,

 SGF2020.employee_organization as o

 where e.Employee_ID=o.Employee_ID and

 o.Manager_ID=m.Employee_ID and

 Department contains 'Sales'

 order by Country,4,1;

quit;

Display 13: Code for Self-Join Using Different Table Aliases for The Same Table

Figure 19: Self-Join Output

13

INTERNALIZE THE PROC SQL LOGICAL QUERY PROCESSING
ORDER

In an earlier section, we discussed PROC SQL’s syntax order. But the logical query

processing order, which is the conceptual interpretation order, is as follows:

5 SELECT

1 FROM

2 WHERE

3 GROUP BY

4 HAVING

6 ORDER BY

Display 14: PROC SQL Logical Query Processing Order

Thinking Like SQL – Logical Query Processing Order

Each phase operates on one or more tables as inputs and returns a virtual table as output.
The output table of one phase is considered the input to the next phase.
Consider the following query as an example.

proc sql;

 SELECT country,YEAR(emphiredate)AS yearhired,COUNT(*)AS numemp

 FROM SGF2020.logicalq

 WHERE emphiredate >= "1jan2009"d

 GROUP BY country, yearhired

 HAVING COUNT(*) > 1

 ORDER BY country , yearhired DESC;

QUIT;

Display 15: Example Code

Figure 20: Evaluate the FROM Clause

14

Figure 21: Filter Rows Based on the WHERE Clause

Figure 22: Typical Mistakes

If you understand that the WHERE clause is evaluated before the SELECT clause, you realize
that this attempt is wrong because at this phase, the attribute yearhired doesn’t yet exist.

You can indicate the expression YEAR(employee_hire_date) >= 2009 in the WHERE

clause.

Figure 23: Group Rows Based on the GROUP BY Clause

15

Figure 24: Understanding the GROUP BY Clause

Figure 25: Filter Rows Based on the HAVING Clause

Figure 26: Process the SELECT Clause

16

Figure 27: The Desired Output

CONCLUSION

This paper attempted to showcase the best strengths of PROC SQL and lay out these
strengths step-by-step. The author has used her teaching and consulting experiences to

highlight those tips that are very unique to PROC SQL.

ACKNOWLEDGEMENTS

The author is grateful to the many SAS users that have entered her life. Charu is grateful to
the SAS Global Forum User Committee for the opportunity to present this paper. She would
also like to express her gratitude to her manager, Stephen Keelan, without whose support

and permission, this paper would not be possible.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Charu Shankar

SAS Institute Canada, Inc.
Charu.shankar@sas.com
https://blogs.sas.com/content/author/charushankar/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

REFERENCES

SAS 9.4 SQL Procedure User’s Guide
https://go.documentation.sas.com/?docsetId=sqlproc&docsetTarget=titlepage.htm&docsetV
ersion=9.4&locale=en

Logical Query Processing Order
“A database professional’s best friend.” Shankar, Charu
https://blogs.sas.com/content/sastraining/2013/02/04/a-database-professionals-best-
friend-2/

https://blogs.sas.com/content/author/charushankar/
https://go.documentation.sas.com/?docsetId=sqlproc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=sqlproc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
https://blogs.sas.com/content/sastraining/2013/02/04/a-database-professionals-best-friend-2/
https://blogs.sas.com/content/sastraining/2013/02/04/a-database-professionals-best-friend-2/

17

PROC SQL Syntax Order
“Go home on time with these 5 PROC SQL tips.” Shankar, Charu

https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-
proc-sql-tips/

PROC SQL DICTIONARY Tables
“Know Thy Data: Techniques for Data Exploration.” Shankar, Charu

https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB11.pdf

“Working with Subquery in the SQL Procedure.” Zhang, Lei, and Yi, Danbo
https://www.lexjansen.com/nesug/nesug98/dbas/p005.pdf

Boolean in SQL

“#1 SAS programming tip for 2012.” Shankar, Charu
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/

https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB11.pdf
https://www.lexjansen.com/nesug/nesug98/dbas/p005.pdf
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/

