#SASGF

Paper SAS 5167-2020

Step-by-Step SQL Procedure
Charu Shankar, SAS Institute Inc.

ABSTRACT

PROC SQL is a powerful query language that can sort, summarize, subset, join, and print
results all in one step. Users who are continuously improving their analytical processing will
benefit from this hands-on workshop. In this paper, participants learn the following
elements to master PROC SQL:

1. Understand the syntax order in which to submit queries to PROC SQL
2. Summarize data using Boolean operations

3. Manage metadata using dictionary tables

4. Join tables using join conditions like inner join and reflexive join

5. Internalize the logical order in which PROC SQL processes queries

INTRODUCTION

PROC SQL is the language of databases. After teaching at SAS for more than 10 years

to thousands of learners, this instructor has collected many best practices from helping
customers with real-world business problems. This paper illustrates practices such as how
to make coding life easy with mnemonics to recall the order of statements in SQL, and how
to leverage simple yet elegant techniques such as Boolean logic in SQL. Data used in this

paper can be downloaded from this Github Repository: https://github.com/CharuSAS/SQL.

UNDERSTAND THE SYNTAX ORDER IN WHICH TO SUBMIT
QUERIES TO PROC SQL

Every computer language has syntax order that is uniquely its own. Trying to remember the
syntax is sometimes not easy for beginners and even those fluent in multiple languages,
human or computer. For some help in memory recall, try my mnemonic to remember the
syntax order of SQL.

SO SELECT object-item <, ...object-item>

FEW FROM from-list

WORKERS <WHERE sql-expression>

GO <GROUP BY object-item <, ... object-item >>
HOME <HAVING sql-expression>

ON TIME <ORDER BY order-by-item <DESC>

<, ...order-by-item>>;

Figure 1: PROC SQL Mnemonic

https://github.com/CharuSAS/SQL

Here is a PROC SQL query in its entirety. SELECT and FROM are mandatory statementsin
any SQL query. Anything in triangular brackets is optional.

PROC SQL;
SELECT object-item <, ...object-item>
FROM from-list
<WHERE sql-expression>
<GROUP BY object-item <, ... object-item >>
<HAVING sql-expression>
<ORDER BY order-by-item <DESC>
<, ...order-by-item>>;

Figure 2: PROC SQL Syntax Order

A SELECT statement is used to query one or more tables.

The FROM clause specifies the tables that are required for the query .
The WHERE clause specifies data that meets certain conditions.

The GROUP BY clause groups data for processing.

The HAVING clause specifies groups that meet certain conditions.
The ORDER BY clause specifies an order for the data.

SUMMARIZE DATA USING BOOLEAN OPERATIONS

Hands down, summarizing data using the Boolean gate in PROC SQL has to be my all-time
favorite technique. When I fellin love with its elegance, I captioned my blog captioned “No.
1 Best programming technique for 2012." It was easily my # 1 best technique for life, but I
thought I would keep myself open to new learning! Read on to learn more about this magic.

Summarizing Data

The Boolean is simply the digital computing world’s way of converting everything to Os and
1s. Ayesis aone,and a no is a zero.

Grouping Data

Let’s begin with a simple business scenario to understand grouping first. We have been
asked to produce a report that determines the average salary by gender.

How many rows does this query create?

title " Is this average salary by gender-;
proc sql number;
select Employee Gender, avg(Salary) as Average
from SGF2020.employee_ information
where Employee Term Date is missing;
quit;
Display 1: Code for Average Salary by Gender
The result is not quite as expected. Instead of receiving 2 rows of data, the output contains

308 rows. This is the number of rows in the SGF2020.employee_information table. Also,
the average is not an average for each gender, rather the average for the entire table.

Viewing the Output
PROC SQL Output Is this average salary by gender

Employee
Row Gender Average
1M 40476.92
2 M 40476.92
M 40476.92
4 F 40476.92
S F 40476.92
6 M 40476 92
1F 40476 92
8F 4047662
8 F 40476.92
10 M 4047692
"M 40470.92
12 F 40478.92

gsas

Figure 3: Unexpected Output for Average Salary by Gender

The GROUP BY Clause

You can use the GROUP BY clause to do the following:
+ classify the data into groups based on the values of one or more columns
+ calculate statistics for each unique value of the grouping columns

title "Average Salary by Gender'™;

proc sql;
select Employee_Gender as Gender, avg(Salary) as Average

from SGF2020.employee_information
where Employee Term_Date is missing
group by Employee_Gender;
quit;
Display 2: Correct Code for Average Salary by Gender

The results are more satisfactory this time, with two rows of data.

Viewing the Output

PROC SQL Output

Average Salary by Gender

Employee
Gender Average

F 37002.88
M 43334.26

§sas

Figure 4: Correct Output for Average Salary by Gender

Let’s move on to the next level of complexity. We have been taskedto produce a report
showing the count of employeesin departments that have at least 25 people. Display the

results in descending order by count.
A first step would be to count the number of employees for each department.

title "Employee count by department”;
proc sql;
select Department, count(*) as Count
from SGF2020.employee_information
group by Department;
quit;
Display 3: Code for Employee Counts by Department

Viewing the Output
PROC SQL Output

Employee count by department

Department Count
| Accounts 17

Stock & Shipping %

| strategy 2 SSaS

Figure 5: Employee Counts by Department

In the next step, we control the result to include only the departments that have at least 25
people, with the departments in decreasing order. To do this, we use the HAVING clause,
which subsets groups based on the expression value.

title "Employee counts by department in departments with at least 25
employees”;
proc sql;

select Department, count(*) as Count

from SGF2020.employee_information
group by Department
having Count ge 25
order by Count desc;

quit;
Display 4: Code for Employee Counts by Department with at Least 25 Employees

Viewing the Output
PROC SQL Output

Employee counts by department in departments with at least 25 employees

Department Count |
Sales 201 |
Administration u
Stock & Shipping 28

gsas

Figure 6: Employee Counts by Department with at Least 25 Employees

Have you ever been challenged with a business scenario where you had to subset data to
return both the haves and the have nots?

Business Scenario 3

Create a report that lists the following for each department:
- total number of managers

- total number of non-manager employees

- manager-to-employee (M/E) ratio

Below is a rough sketch of the desired report.

M/E
Department Managers Employees Ratio
Accounts 1 5 20%
Administration 2 20 10%

gsas

Figure 7: Business Scenario for Total Number of Managers and Employees

How will you go about extracting both the managers and the employees and stick them all
on the same line?

First, we use the FIND function to find all managers.

FIND Function

The FIND function returns the starting position of the firstoccurrence

of a substring within a string (character value).

Find the starting position of the substring Manager in the character variable
Job_Title.

|find(.Job_TitIe,"manager","i") |

Job_Title 1 [1 2
[1]2]3]4[s]6]7]8]9]0[1]2[3]4[5]6[7[8[9[0]1]2]3]4]5
[Ald[m[i [n[i [s[t[r[a]t]i [o[n] [m[a[n[a]g[e[r] | |

The value returned by the FIND function is 16.

FIND(string, substring<,modifier(s)><,startpos>)

Gsas

Figure 8: FIND Function

Here is the classic Boolean put to good use to determine whether an employee is a
manager. If Job_Title contains Manager, the value is 1. If it doesn’t contain Manager, the
value is O.

title "Manager or not-;
proc sql;
select Department, Job Title,
(find(Job_Title,"manager',"1"")>0) "Manager"
from SGF2020.employee_information;
quit;
Display 5: Code to Write a Boolean Expression

Now simply calculate the statistics by wrapping the Boolean expressions with the SUM
function.

title “"Manager-to-Employee Ratios™;
proc sql;
select Department,
sum((Find(Job_Title,"manager™,"i"")>0))as Managers,
sum((Find(Job_Title,"manager',"i'")=0))as Employees,
calculated Managers/calculated Employees
"M/E Ratio™ format=percent8.1
from SGF2020.employee_information
group by Department;
quit;
Display 6: Code to Summarize Data Using the Boolean

Viewing the Output

PROC SQL Output

Manager-to-Employee Ratios

=
=
m

Department Managers Employees Ratio

Accounts 3 14
Accounts Management 1 8
Administration
Concession Management
Engineering
Executives

Group Financials
Group HR Management
Is

n

w0
aaaam
poNwD =
FINEE

Logistics Management
Marketing

Purchasing

Sales

Sales Management
Secretary of the Board
Stock & Shipping
Strategy

QU0 OWOAOINWOO ==
:Q

oB8oBo883da8o0o

PEILRIRRIRRR

b
n
oB&o

Figure 9: Output Using Boolean Operations

This was just one way to use the Boolean. The expressions can be as complex as necessary.

MANAGE METADATA USING DICTIONARY TABLES

There is no magic pill that will forgive us for not knowing our data. “"Know thy data” must be
the most fundamental principle that cannot be ignored. In fact, | am going to go out on a
limb here and say that this is the only rule that data workers must know. Everything else is
SAS!

To help navigate through the inherited — and sometimes messy — data, my go-to suggestion
is DICTIONARY tables. With the amount of heavy-duty metadata scouring that data workers
perform, this is one tip you must see. | love DICTIONARY tables and cannot imagine life
without them. When you see this confession revealed, I'm positive you will also feel the
same way.

DICTIONARY tables are Read-Only metadata views that contain session metadata, such as
information about SAS libraries, data sets, and external files in use or available in the
current SAS session.

DICTIONARY tables are

* created at SAS session initialization
+ updated automatically by SAS

* limited to Read-Only access.

You can query DICTIONARY tables with PROC SQL.
There can be more than 30 DICTIONARY tables. We will focus on two of the tables.

« DICTIONARY.TABLES - detailed information about tables
« DICTIONARY.COLUMNS - detailed information about all columns in all tables

To get to know the columns and what they stand for, query the DICTIONARY table first
using the following code.

proc sql;
describe table dictionary.tables;
quit;
Display 7: Code to Describe DICTIONARY Tables

Log
NOTE: SQL table DICTIONARY.TABLES was created like:
create table DICTIONARY.TABLES

(libname char(8) label="Library Name-®,

memname char(32) label="Member Name®,

crdate num format=DATETIME informat=DATETIME label="Date Created”,
modate num Fformat=DATETIME informat=DATETIME label="Date Modified",
nobs num label="Number of Physical Observations”,

obslen num label="0Observation Length®,

nvar num label="Number of Variables®, ...);

Display 8: Log to Describe DICTIONARY Tables

Let’s begin to understand the dictionary tables by querying all tables with an ID column.

title "Tables Containing an ID Column~;
proc sql;

select memname "Table Names®", name

from dictionary.columns
where libname="SASHELP*" and
upcase(name) contains "ID";

quit;
Display 9: Code to Query All Tables Containing an ID Column

Viewing the Output
Tables Containing an ID Column

| Table Names Column Name
ADSMSG MSGID

| armse MSGID

| asscmar D

| surrows

f CLNMSG MSGID
COLUMN TABLEID

[coLumn o

| emocrapHics 1

DFTDICT [+]

| oymartr SOURCED All ID column names are stored in uniform
| oynarTR] uppercase, so the UPCASE function is not
| Ersmren] needed the next time that a query such as

this is executed.

6sas

Figure 10: PROC SQL Output Tables Containing an ID Column

However, you might have observed that this is something that PROC CONTENTS can do. It's
not something that impresses us as a niche value that DICTIONARY tables can add. Also,
these past techniques work when you know the names of columns. What happens if you
don’t know your data, and you want SAS to retrieve all same-named columns in a library.
The real power of DICTIONARY tables reveals itself when we eliminate any manual work.

title "Common columns iIn SASHELP" ;
proc sql;
select name, type, length, memname
from dictionary.columns
where libname='SASHELP’
group by name

having count(name) > 1;
quit;
Display 10: Code to Find Common Column Names Dynamically

Viewing the Output

Common columns in SASHELP

Calumn Name Calumn Type Cobumn Length Membser Name

ACTUAL L 8 PROSALE

ACTUAL fram 8 PROSAL2

ACTUAL = 8 PROSALS Joins are easier because the

AR e 8 AR structure of each table does not
AR o 8| ARLINE have to be examined before
ALNEEIY. o 0, ZIFeone determining common columns.
ALIAS_CITY char 300 ZIPMIL i

i gy o i s Let SAS bring common columns
ALIAS CITYN char 300 ZIPMIL dynamically by looking up
AMOUNT mam 8 ROCKPIT DICTIONARY tables.

AMOUNT mum 8 NVSTZ

AMOUNT am B NVSTS

AMOUNT m 8 RENT

AMOUNT fum 8 NVST4

§sas

Figure 11: Common Column Names of Tables in the Sashelp Library

JOIN TABLES USING JOIN CONDITIONS LIKE INNER JOIN AND
REFLEXIVE JOIN
SQL uses joins to combine tables horizontally. Requesting a join involves matching data

from one row in one table with a corresponding row in a second table. Matching is typically
performed on one or more columns in the two tables.

Types of Joins

PROC SQL supports two types of joins: Inner joins return only matching rows.

D

Quter joins return all matching rows, plus nonmatching rows from one

or both tables.
Left

Full Right

§sas

Figure 12: Inner and Outer Joins

Cartesian Product

A query that lists multiple tables in the FROM clause without a WHERE clause producesall
possible combinations of rows from all tables. This resultis called a Cartesian product.

title 'Combining data from multiple tables’;
proc sql;
select *
from SGF2020.customers, SGF2020.transactions;
quit;
Display 11: Code to Combine Data from Multiple Tables

Nonmatching Data in the Cartesian Product
customers transactions
ID | Name 1D | Action Amount
101 | Smith 102 | Purchase $100
104 | Jones 103 | Retumn $52
102 | Blank 105 | Return 5212
Result Set
ID MName ID Aclion Amoun
“" 101 Smith 102 Purchase 100
101 Smith 103 Relurn 852
101 Smith 105 Relurn M2
10 lonas 1003 $£100
191 The Cartesian product sﬁ; 9 rows
! is rarely the desired ""2
101 result of a query. 53?2
Gsas
Figure 13: Cartesian Product
Inner Join
Business Scenario 2 - Inner Join Report
Management has requested a report showing all valid order information.
customers transactions
o | | o | | | { o | | | [|
= <«
ID Name Action Amount
102 Blank Purchase $100
gsas

Figure 14: Inner Join Report

title “"Inner Join-;
proc sql;
select *
from SGF2020.customers, SGF2020.transactions
where customers. D=
transactions. ID;

quit;
Display 12: Code to craftinner join
While specifying same-named columns from more than one table, qualify the column name.

10

Completed Code

To display the ID column only once in the results, qualify the ID column in the

SELECT clause. customers transactions
ID | Name ID | Action A t
101 [Smith 102 | Purchase $100
104 | Jones 103 | Retumn 552
102 | Blank 105 | Retun 5212

Title 'Qualifying column name in the SELECT';
proc sql;
select customers.ID, Name, Action, Amount
from SGF2020.customers, SGF2020.transactions
where customers.ID=transactions.ID;

quit;

PROC 5QL Output ID Name Action Amount

102 Blank Purchase $100 $104e03 §sas

Figure 15: Qualifying the ID Column in the SELECT Clause

Reflexive Joins
A reflexive join (also known as a self-join) is the joining of a table to itself.

The chief sales officer wants to have a report with the name of all sales employees and the
name of each employee’s direct manager.

Business Data
To return the employee name and the manager name, you
need to read the addresses table twice.
1. Return the employee’s ID and name.

addresses
EMP_ID | EMP_NAME

=) 100 John L Y W

101 Sue EMP_ID | EMP_Name | MGR_ID | MGR_Name
organizati 100 | John
EMP_ID [MGR_ID
100 101
101 57

sas

Figure 16: Return the Employee’s ID and Name

Business Data
To return the employee name and the manager name, you
need to read the addresses table twice.
1. Return the employee’s ID and name.
2. Determine the ID of the employee’s manager.

addresses
EMP_ID | EMP_NAME

100 | John L Y W

101] Sue EMP_ID | EMP_Name |MGR_ID | MGR_Name
organizati 100 | John 101
EMP_ID | MGR_ID
= 100 101
101 57

Gsas

Figure 17: Determine the 1D of the Employee’s Manager

11

Business Data
To return the employee name and the manager name, you need
to read the addresses table twice.

1. Return the employee’s ID and name.
2. Determine the ID of the employee’s manager.

3. Return the manager’'s name.
addresses

EMP_ID | EMP_NAME
, 100 | John Y ¥ Y &
| = 101]Sue EMP_ID | EMP_Name |MGR_ID | MGR_Name
organizati 100 | John 101 | Sue
EMP_ID | MGR_ID
100 101
101 57

§sas

Figure 18: Return the Manager’'s Name

In order to read from the same table twice, it must be listed in the FROM clause twice. Here,
a different table alias is required to distinguish the differentuses.

proc sql;
select e.Employee_ID "Employee ID",
e.Employee Name "Employee Name',
m.Employee 1D "Manager I1D",
m.Employee_Name ‘‘Manager Name™,
e.Country
from SGF2020.employee addresses as e,
SGF2020.employee_addresses as m,
SGF2020.employee_organization as o
where e.Employee_ I1D=0.Employee_ID and
o.Manager_ID=m_.Employee 1D and
Department contains "Sales”
order by Country,4,1;
quit;
Display 13: Code for Self-Join Using Different Table Aliases for The Same Table

Viewing the Output
Partial PROC SQL Output

Names of Employees and their Managers

Employes 1D Employee Name ManagerID Manager Name | Country

Gsas

Figure 19: Self-Join Output

12

INTERNALIZE THE PROC SQL LOGICAL QUERY PROCESSING
ORDER

In an earlier section, we discussed PROC SQL’s syntax order. But the logical query
processing order, which is the conceptual interpretation order, is as follows:

5 SELECT

1 FROM

2 WHERE

3 GROUP BY

4 HAVING

6 ORDER BY

Display 14: PROC SQL Logical Query Processing Order

Thinking Like SQL — Logical Query Processing Order

Each phase operates on one or more tables as inputs and returns a virtual table as output.
The output table of one phase is considered the input to the next phase.
Consider the following query as an example.

proc sql;

SELECT country,YEAR(emphiredate)AS yearhired, COUNT(*)AS numemp
FROM SGF2020. logicalqg
WHERE emphiredate >= "1jan2009"d
GROUP BY country, yearhired
HAVING COUNT(*) > 1
ORDER BY country , yearhired DESC;
QUIT;

Display 15: Example Code

1. Evaluate the FROM Clause
In the first phase, the FROM clause is evaluated. # empid & country [emphiredale
Indicate the tables to query and table operators like 121034 US 01JAN2011
Joins if applicable. 121088 US 01JAN20T
The output of this phase is a table result with all rows 121146 US 01APR2010
from the input table. 120188 AU 01DEC2009
121124 US 01DEC2009
That's the case in the following query: the input is the 121032 AU DIMAR2010
SGF2020.country (322 rows), and the output is a table — : Al
754 1
result with all 322 rows (only a subset of the attributes Loadicatlan sl ldl
are shown). 120193 AU 01SEP2009
proc sql; 120184 AU 0IFEB2009
create table sgf2020.logicalqg as 120277 LIS O1MAY 2008
SELECT empid, country,emphiredate
FROM SGF2020.country;
quit; 510501 §sas

Figure 20: Evaluate the FROM Clause

13

2. Filter Rows Based on the WHERE Clause

The second phase filters rows based on the condition in the

WHERE clause returning only rows for which the condition Esployes Hire
evaluates to true. Emplayee ID country Date
121084 US D1JAN2011

In this query, the WHERE filtering phase filters only rows for 121088 US DLIAN2011
employees hired on or after January 1, 2009. 9 rows are 121146 US 01APR2010
returned from this phase and are provided as input to the next 120188 AL 1DEC2009
one. 121124 US 01DEC2009
121032 AU QIMAR2010

. . 193 AU)1SEP2
SELECT empid, country,emphiredate et T

FROM sgf2020.logicalg
WHERE emphiredate >= '1jan2009'd;
quit;

5105e01 Gsas

Figure 21: Filter Rows Based on the WHERE Clause

Typical Mistakes

A typical mistake made by not understanding the logical query processing is
attempting to refer in the WHERE clause to a column alias defined in the
SELECT clause. This isn't allowed because the WHERE clause is evaluated
before the SELECT clause.

As an example, consider the following query.
proc sql;
select country, YEAR (emphiredate) AS yearhired
FROM SGF2020.logicalg

WHERE yearhired >= 2009;
quit;
This query fails with the following error.
ERROR: The following columns were not found in the
contributing tables: yearhired.

5105e01 Gsas

Figure 22: Typical Mistakes

If you understand that the WHERE clause is evaluated before the SELECT clause, you realize
that this attempt is wrong because at this phase, the attribute yearhired doesn’t yet exist.
You can indicate the expression YEAR(employee hire_date) >= 2009 in the WHERE
clause.

3. Group Rows Based on the GROUP BY Clause
This phase defines a group for each distinct combination of values in C hired
the grouped elements from the input table, AG 2009 "
It then associates each input row to its respective group. The query \L fm? 2
groups the rows by country and YEAR(employee_hire_date). i 09y .
us 2010 1
Within the 9 rows in the input table, this step identifies 5 groups. us 2011 2
Here are the groups and the detail rows that are associated with
them (redundant information removed for purposes of illustration).
proc sql;
SELECT country,YEAR(EMPHIREDATE) as yearhired, count(*) as
numemp
FROM sgf2020.logicalg
WHERE emphiredate >= '13an20098'd
GROUP BY countr earhired;
Gkl Yo ¥ ’ $105e01 Gsas

Figure 23: Group Rows Based on the GROUP BY Clause

14

Understanding the GROUP BY clause
Country [af emphiredate
group US 2009 has 1 detail row with employee 121124; i ; m A:“’ e Decaone
group US 2010 also has 1 detail row with employee 121146 120193 AU DISEP2009
group US 2011 has 2 detail rows with employees 121034 & 1201 AU OIFEB2009
121088 T
The final result of this query has one row representingeach |ay 2000 121052 DIMAR201D
group (unless filtered out). 120754 AL a1MAY 3010
Country year empid Country emphiredate
Country yearhired numemp us 2000 121124 Us DIDEC2000
AU 2009 3
AU 2010 3 [r:uu., year empid Country emphiredate
Us 2000 121146 Us a1APR2010
us 2009 1
us 010 1 Country year empid Country emphiredate
us 2011 2 s 2001 121004 US O1JAN201L
121088 US OLIAN2011
Gsas

Figure 24: Understanding the GROUP BY Clause

4. Filter Rows Based on the HAVING Clause

The Having clause filters data based on a condition, Country yearhired numemp
but is evaluated after data has been grouped. It is AU i)
evaluated per group and filters groups as a whole. l\t 21:: I‘
The HAVING clause uses the condition COUNT(*) = 1, s 2010 1
to filter only country and hire year groups with more us 2011 2

than one employee.
only the groups

AU(2009),
AU(2010)and
, US(2011] qualify.

proc sql;
SELECT country,YEAR (EMPHIREDATE) as yearhired,
count (*) as numemp

FROM sgf2020.logicalg country yearhired numemp
WHERE emphiredate >= '1jan2009'd AU 2009 3
GROUP BY country, yearhired i i 2
s 2 2
HAVING count(*) > 1; : i
Quit; 5105e01 Gsas

Figure 25: Filter Rows Based on the HAVING Clause

5. Process the SELECT Clause

The 5th phase is responsible for processing the SELECT clause.

Its interesting that this is the point in logical query processing where it gets
evaluated—almost last. Also interesting considering the fact that the SELECT
clause appears first in the query.

proc sql;
SELECT country, YEAR (emphiredate) AS

yearhired,COUNT (*) AS numemp
FROM SGF2020.logicalg
WHERE emphiredate >= "1jan2009"d
GROUP BY country, yearhired
HAVING COUNT(*) > 1

ORDER BY country, yearhired DESC; $105e01 Gsas

QUIT;

Figure 26: Process the SELECT Clause

15

5. Desired Output

country yearhired numemp
AU 2010
AU 2009
Us 2011

[S X]

G§sas

Figure 27: The Desired Output

CONCLUSION

This paper attempted to showcase the best strengths of PROC SQL and lay out these
strengths step-by-step. The author has used her teaching and consulting experiences to
highlight those tips that are very unique to PROC SQL.

ACKNOWLEDGEMENTS

The author is grateful to the many SAS users that have entered her life. Charu is grateful to
the SAS Global Forum User Committee for the opportunity to present this paper. She would
also like to express her gratitude to her manager, Stephen Keelan, without whose support
and permission, this paper would not be possible.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Charu Shankar

SAS Institute Canada, Inc.

Charu.shankar@sas.com
https://blogs.sas.com/content/author/charushankar/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

REFERENCES

SAS 9.4 SQL Procedure User’s Guide
https://go.documentation.sas.com/?docsetld=sqglproc&docsetTarget=titlepage. htm&docsetV
ersion=9.4&locale=en

Logical Query Processing Order

“A database professional’s best friend.” Shankar, Charu
https://blogs.sas.com/content/sastraining/2013/02/04/a-database-professionals-best-
friend-2/

16

https://blogs.sas.com/content/author/charushankar/
https://go.documentation.sas.com/?docsetId=sqlproc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=sqlproc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
https://blogs.sas.com/content/sastraining/2013/02/04/a-database-professionals-best-friend-2/
https://blogs.sas.com/content/sastraining/2013/02/04/a-database-professionals-best-friend-2/

PROC SQL Syntax Order

“Go home on time with these 5 PROC SQL tips.” Shankar, Charu
https://blogs.sas.com/content/sastraining/2012/04/24/90-home-on-time-with-these-5-
proc-sql-tips/

PROC SQL DICTIONARY Tables
“Know Thy Data: Techniques for Data Exploration.” Shankar, Charu
https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB11.pdf

“"Working with Subquery in the SQL Procedure.” Zhang, Lei, and Yi, Danbo
https://www.lexjansen.com/nesug/nesug98/dbas/p005.pdf

Boolean in SQL
“#1 SAS programming tip for 2012.” Shankar, Charu
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/

17

https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB11.pdf
https://www.lexjansen.com/nesug/nesug98/dbas/p005.pdf
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/

