ABSTRACT
When you need to make a wide dataset from multiple sources where the data are long instead, this macro approach is for you. This macro has several variations that allow for customization and the addition of dynamic prefixes to the new variable names. The purpose of the macro was to take period-based data and put it into a format to be used for predictive modeling. Over 10 different data sources were used and this macro was easily applied to each. See how macros can make your life easier!

INTRODUCTION
Getting data into the proper format for modeling can be the biggest part of the project. Many models require wide data as opposed to long data. Getting the data reorganized can take time especially if you have a large number of datasets and periods to rearrange.

Another challenge with data preparation for modeling is that you may have variables with the same name but for different time periods. In this case, you need to add something to the variable name to make sure you can differentiate them. The macro in this paper will add a prefix to all of the variables in the dataset automatically. To facilitate the macro, the dataset is split into multiple datasets for each time period of interest to make sure the proper prefix is associated with the new dataset.

PROC TRANSPOSE is another option to make long data wide where you can add a prefix – or even a suffix - to the variable names. However, PROC TRANSPOSE was not chosen for this particular situation because it does not handle multiple variables as easily. Developing a macro to handle each variable and prefix could be done and produce similar results. Basic code for PROC TRANSPOSE will be covered for reference and comparison.

THE DATA
The data used for this project was created to mimic data for four fall semesters of enrollment numbers for a number of colleges across six variables. The data contain all of the colleges and all of the semesters in a long file. The desired output is a dataset that contains all of the colleges with each of the values for the 6 variables for each fall semester as individual variables. This type of structure may be desirable for modeling college values over time or to easily compare or preform operations on values year to year (e.g., the change in females from fall 2014 to 2015 by college). A partial view of the data is shown below in Figure 1 and the full data are in Appendix D. The Excel workbook containing the data is embedded into the paper so you can access it to test the code.

<table>
<thead>
<tr>
<th>College</th>
<th>Semester</th>
<th>Female</th>
<th>Male</th>
<th>First Generation</th>
<th>Both Parents College</th>
<th>No FAFSA</th>
<th>One Parent College</th>
</tr>
</thead>
<tbody>
<tr>
<td>College A</td>
<td>Fall 2014</td>
<td>1838</td>
<td>1328</td>
<td>863</td>
<td>609</td>
<td>1100</td>
<td>594</td>
</tr>
<tr>
<td>College A</td>
<td>Fall 2015</td>
<td>1893</td>
<td>1438</td>
<td>852</td>
<td>631</td>
<td>1249</td>
<td>599</td>
</tr>
<tr>
<td>College A</td>
<td>Fall 2016</td>
<td>2222</td>
<td>1670</td>
<td>966</td>
<td>778</td>
<td>1380</td>
<td>768</td>
</tr>
<tr>
<td>College A</td>
<td>Fall 2017</td>
<td>2402</td>
<td>1739</td>
<td>976</td>
<td>790</td>
<td>1612</td>
<td>763</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2014</td>
<td>135</td>
<td>202</td>
<td>71</td>
<td>136</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2015</td>
<td>141</td>
<td>190</td>
<td>81</td>
<td>134</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2016</td>
<td>148</td>
<td>179</td>
<td>71</td>
<td>142</td>
<td>49</td>
<td>65</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2017</td>
<td>137</td>
<td>174</td>
<td>85</td>
<td>143</td>
<td>42</td>
<td>61</td>
</tr>
</tbody>
</table>

Figure 1. Sample Data
In order for this particular macro to work, the full, long dataset needs to be split up into individual datasets based on the variable you will use as the prefix for the new variable names. One of the four versions of these datasets, for Fall 2014, is shown in Figure 2.

<table>
<thead>
<tr>
<th>Obs</th>
<th>college</th>
<th>Semester</th>
<th>Female</th>
<th>Male</th>
<th>First_Generation</th>
<th>Both_Parents_College</th>
<th>No_FAFSA</th>
<th>One_Parent_College</th>
<th>profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>College A</td>
<td>Fall 2014</td>
<td>1833</td>
<td>1328</td>
<td>683</td>
<td>609</td>
<td>1100</td>
<td>594</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>College B</td>
<td>Fall 2014</td>
<td>135</td>
<td>202</td>
<td>71</td>
<td>136</td>
<td>64</td>
<td>66</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>College C</td>
<td>Fall 2014</td>
<td>3181</td>
<td>2156</td>
<td>1823</td>
<td>1203</td>
<td>1088</td>
<td>1223</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>College D</td>
<td>Fall 2014</td>
<td>1852</td>
<td>781</td>
<td>852</td>
<td>581</td>
<td>552</td>
<td>646</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>College E</td>
<td>Fall 2014</td>
<td>1197</td>
<td>418</td>
<td>650</td>
<td>303</td>
<td>236</td>
<td>386</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>College F</td>
<td>Fall 2014</td>
<td>664</td>
<td>787</td>
<td>479</td>
<td>454</td>
<td>327</td>
<td>351</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>College G</td>
<td>Fall 2014</td>
<td>1421</td>
<td>1737</td>
<td>948</td>
<td>621</td>
<td>871</td>
<td>718</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>College H</td>
<td>Fall 2014</td>
<td>204</td>
<td>497</td>
<td>293</td>
<td>290</td>
<td>301</td>
<td>267</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>College I</td>
<td>Fall 2014</td>
<td>1857</td>
<td>244</td>
<td>818</td>
<td>453</td>
<td>259</td>
<td>581</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>College J</td>
<td>Fall 2014</td>
<td>202</td>
<td>163</td>
<td>75</td>
<td>51</td>
<td>182</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>College K</td>
<td>Fall 2014</td>
<td>91</td>
<td>11</td>
<td>11</td>
<td>40</td>
<td>27</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>College L</td>
<td>Fall 2014</td>
<td>83</td>
<td>37</td>
<td>23</td>
<td>23</td>
<td>59</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>College M</td>
<td>Fall 2014</td>
<td>90</td>
<td>52</td>
<td>39</td>
<td>46</td>
<td>30</td>
<td>27</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 2. AY1 Dataset

The code to generate the individual datasets is quite simple. In this example it is done manually, but it could also be automated by a macro. The code that generated AY1 in Figure 2 is below:

```sas
data ay1 ay2 ay3 ay4;
set mypaper.sampledata;
if semester = 'Fall 2014' then do;
  prefit = 1;
  output ay1;
end;
else if semester = 'Fall 2015' then do;
  prefit = 2;
  output ay2;
end;
else if semester = 'Fall 2016' then do;
  prefit = 3;
  output ay3;
end;
else do;
  prefit = 4;
  output ay4;
end;
run;
```

It is important to note that all of the output datasets need to have the same name prefix and include a sequential value at the end matching the prefit value. The variable prefit is used in the variable prefix generated by the macro to indicate the order of the variables in the final dataset. Also, the number of semesters - in this case 4 – will be passed to the macro to denote the number of iterations it will run.

THE MACRO

In order to best understand the macro, it will be helpful to see how it is invoked first. Knowing what parameters are used makes following the code easier. Three positional values are passed to the macro and are used within in. The first value is the name of the input datasets without the sequential value at
the end (e.g. just the prefix). In this example it is “AY.” The next value in the macro is the number of iterations or the maximum prefix value. The third value is the prefix part of the name of the output datasets that the sequential value will be added to. The reason for keeping the names of the datasets similar is to take advantage of the colon to reference multiple datasets with the same beginning characters. Using “AY:” in a DATA STEP will use AY1, AY2, AY3, and AY4 in this example.

The statement to invoke the macro is:

```sas
%vars(ay,4,aynew);
```

The macro will process all of the variables in the dataset by adding a prefix to them. You do not need to know how many variables are in the dataset or even their names. This is an advantage to PROC TRANSPOSE.

```sas
%macro vars(dsn,num,out);
%do j = 1 %to #;
%let dsid=%sysfunc(open(&dsn&j));
%let n=%sysfunc(attrn(&dsid,nvars));
%let pref = semester&j._;
  data &out&j;
    set &dsn&j(rename=(
      %do i = 1 %to &n;
        %let var=%sysfunc(varname(&dsid,&i));
        &var=&pref&var
      %end;));
    %let rc=%sysfunc(close(&dsid));
    where &pref.prefit = &j;
    drop &pref.prefit &pref.semester ;
    rename &pref.college = college;
  run;

  proc sort data = &out&j;
    by college;
  run;
%end;
%mend vars;
```

Some of the key lines of code in the macro relate to how it opens the dataset and determines the number of variables. The automatic count and processing of all of the variables in the dataset is what gives this an advantage to other methods. The line "%let n=%sysfunc(attrn(&dsid,nvars));" is where the number of variables the first dataset – AY1 in the example - is assigned the count of variable it contains. The variable n is then used to limit a loop that changes the name of the variables by adding in the determined prefix.

The prefix for the variables is assigned in %let pref = semester&j._: It is important to note the period is needed after the “&j” to end the reference to the macro variable j. Without the period, SAS® will include the underscore in the macro variable name and will not generate the desired result. The underscore is added to the prefix only to make it more easily read. It is not required.

The rename dataset option in the macro is quite long and is this section of the code:

```sas
(rename=(
  %do i = 1 %to &n;
    %let var=%sysfunc(varname(&dsid,&i));
    &var=&pref&var
  %end;))
```
The loop over the number of variables is part of the statements and allows for the renaming of each variable.

The dataset must also be closed since it has been explicitly opened. This is done in this statement: `%let rc=%sysfunc(close(&dsid));`

The remainder of the macro drops, renames, and sorts the new dataset. Some of the variables are only needed for processing and are not necessary in the new dataset. The rename is used for college as that is the ID variable that will be used to merge the new datasets on. If you wanted to skip particular variables in the rename or if you know your ID variable is variable one in all of the datasets, you can adjust the starting value or list of values in the do loop for i.

Hopefully you can see why the datasets were named sequentially as it facilitates the macro. The macro could be modified to read in a list of dataset names to iterate over if you would prefer. Another potential modification to the macro is to generate the prefit values automatically. These steps were not done in the original version of the macro as they were not needed to obtain the desired results.

THE RESULT

Once the macro has run, the resulting dataset looks like the one in Figure 3.

![Figure 3: AYNEW1 Dataset](image1)

Each variable, other than college which is the ID variable, now has a prefix of "semester1_" to indicate the time period of the data.

When all 4 datasets are combined, you will get a dataset that looks like the one in Figure 4.

![Figure 4: COLLEGENEW Dataset](image2)

This is only a partial view of the new dataset which now contains 25 variables whereas the original dataset has 8. Having all of the semester data values in columns will make modeling and comparisons easier.
PROC TRANSPOSE

Considering that there are multiple ways to accomplish most tasks in SAS, PROC TRANSPOSE is presented as an option. The syntax for PROC TRANSPOSE uses the names of the variables and can add a prefix to the transposed variables. PROC TRANSPOSE also generates the variables _NAME_ and _LABEL_ which are many times dropped in the resulting dataset. The transpose from the end of the full sample code in Appendix A generates the following dataset:

<table>
<thead>
<tr>
<th>Obs</th>
<th>college</th>
<th>NAME</th>
<th>LABEL</th>
<th>male_Fall 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>College A</td>
<td>Male</td>
<td>Male</td>
<td>1328</td>
</tr>
<tr>
<td>2</td>
<td>College B</td>
<td>Male</td>
<td>Male</td>
<td>202</td>
</tr>
<tr>
<td>3</td>
<td>College C</td>
<td>Male</td>
<td>Male</td>
<td>2156</td>
</tr>
<tr>
<td>4</td>
<td>College D</td>
<td>Male</td>
<td>Male</td>
<td>781</td>
</tr>
<tr>
<td>5</td>
<td>College E</td>
<td>Male</td>
<td>Male</td>
<td>418</td>
</tr>
<tr>
<td>6</td>
<td>College F</td>
<td>Male</td>
<td>Male</td>
<td>787</td>
</tr>
<tr>
<td>7</td>
<td>College G</td>
<td>Male</td>
<td>Male</td>
<td>1737</td>
</tr>
<tr>
<td>8</td>
<td>College H</td>
<td>Male</td>
<td>Male</td>
<td>947</td>
</tr>
<tr>
<td>9</td>
<td>College I</td>
<td>Male</td>
<td>Male</td>
<td>244</td>
</tr>
<tr>
<td>10</td>
<td>College J</td>
<td>Male</td>
<td>Male</td>
<td>163</td>
</tr>
<tr>
<td>11</td>
<td>College K</td>
<td>Male</td>
<td>Male</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>College L</td>
<td>Male</td>
<td>Male</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>College M</td>
<td>Male</td>
<td>Male</td>
<td>52</td>
</tr>
</tbody>
</table>

Figure 5. AY_TRANSPOSED Dataset

This use of PROC TRANSPOSE does not transpose all of the variables and it puts the semester identifier at the end of the variable instead of at the beginning. It may be possible to generate a dataset like the above with all of the variables in one pass of the transpose procedure. Another option is running multiple transpose procedures for each variable in a macro loop which might more easily accomplish the task. A fully developed alternative to the macro presented in this paper has not been developed. PROC TRANSPOSE is only being mentioned as a potential alternative.

ADDITIONAL PARAMETER MACRO

An additional parameter was added to the original macro to allow it to run on datasets that had an additional variable in the long data. The full code is in Appendix B. If, for example, the variable male and female was included in a variable called gender, the original dataset could be slit out by semesters by gender. Invoking the macro with four parameters would be done as shown below:

%vars2(ay_v2m,4,male,ay_v3m);
%vars2(ay_v2f,4,female,ay_v3f);

When originally writing the program, the source data was mixed in terms of how the data were structured. Having two versions of the macro that could be invoked made it easier to process all of the data. The two versions meant that I did not have to manipulate all of the datasets into a single format and this saved time in the overall coding. Also, since each dataset run through the macro needed to be for a single
semester and have the prefix variable added, that code was easily reused throughout the program. Again, this bit of code could also have been transformed into a macro to make the final program even more streamlined.

CONCLUSION

The goal of this paper is to provide a method of getting multiple datasets into a format so they can be easily combined for modeling or some other use. The additional benefit of this method is that prefixes can be added to the variable names to make sequencing and comparisons easier. The macro is flexible and allows users to alter it to meet additional needs.

ACKNOWLEDGMENTS

Some of the ideas for this macro were found online. Unfortunately, the specific references have been lost. However, I wish to thank the SAS user community and SAS Institute Inc., for their willingness to share code and ideas through various online forums and websites.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Stephanie R. Thompson
Sr. Data Scientist / Principal
Jenzabar / Datamum
stephanie@datamum.com
http://www.Jenzabar.com
http://www.datamum.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
** APPENDIX A **
FULL SAS CODE

SAS Code File

Program 1.sas

/** First parameter is the data set that contains all of the variables. **/
/** Second parameter is the number of loops. **/
/** Third parameter is the new data set that contains the new variables. **/

libname mypaper '/folders/myfolders/Long to Wide Paper';

/* dataset mypaper.sampledata */

data ay1 ay2 ay3 ay4;
set mypaper.sampledata;
if semester = 'Fall 2014' then do;
 prefit = 1;
 output ay1;
end;
else if semester = 'Fall 2015' then do;
 prefit = 2;
 output ay2;
end;
else if semester = 'Fall 2016' then do;
 prefit = 3;
 output ay3;
end;
else do;
 prefit = 4;
 output ay4;
end;
run;
%macro vars(dsn,num,out);
 %do j = 1 %to #
 %let dsid=%sysfunc(open(&dsn&j));
 %let n=%sysfunc(attrn(&dsid,nvars));
 %let pref = semester&j._;

 data &out&j;
 set &dsn&j(rename=(
 %do i = 1 %to &n;
 %let var=%sysfunc(varname(&dsid,&i));
 &var=&pref&var
 %end;));
 %let rc=%sysfunc(close(&dsid));
 %let rc=%sysfunc(close(&dsid));
 where &pref.prefit = &j;
 drop &pref.prefit &pref.semester ;
 rename &pref.college = college;
 run;

 proc sort data = &out&j;
 by college;
 run;

 %end;
%mend vars;

%vars(ay,4,aynew);

data newcolleges;
merge aynew: ;
by college;
run;

/* proc transpose comparison */

proc sort data=mypaper.sampledata out=ay_sort;
by college ;
run;
proc transpose data=ay_sort out=ay_transposed prefix = male_;
 id semester;
 by college;
 var male ;*female Both_Parents_College First_Generation No_FAFSA One_Parent_College;
 where semester = 'Fall 2014';
run;
APPENDIX B
VERSION TO RUN BY ADDITIONAL PARAMETER

Code included on embedded SAS code file

/* second version if gender as a row split out into additional datasets */
/* sample data not configured for this macro */

%macro vars2(dsn,num,typ,out);
 %do j = 1 %to #
 %let dsid=%sysfunc(open(&dsn&j));
 %let n=%sysfunc(attrn(&dsid,nvars));
 %let pref = semester&j._&typ._;
 data &out&j;
 set &dsn&j(rename=(
 %do i = 1 %to &n;
 %let var=%sysfunc(varname(&dsid,&i));
 %let var=%sysfunc(varname(&dsid,&i));
 &var=&pref&var
 %end;));
 %let rc=%sysfunc(close(&dsid));
 where &pref.prefit = &j;
 drop &pref.prefit &pref.semester ;
 rename &pref.college = college;
 run;

 proc sort data = &out&j;
 by college;
 run;

%end;
%mend vars2;

%vars2(ay_v2m,4,male,ay_v3m);
%vars2(ay_v2f,4,female,ay_v3f);
APPENDIX C
IMPORT CODE

SAS File

/* Generated Code (IMPORT) */
/* Source File: sample data.xlsx */
/* Source Path: /folders/myfolders/Long to Wide Paper */
/* Code generated on: 2/21/20, 10:46 AM */

libname mypaper '/folders/myfolders/Long to Wide Paper';

%web_drop_table(mypaper.sampledata);

FILENAME REFFILE '/folders/myfolders/Long to Wide Paper/sample data.xlsx';

PROC IMPORT DATAFILE=REFFILE
 DBMS=XLsx
 OUT=mypaper.sampledata;
 GETNAMES=YES;
RUN;

PROC CONTENTS DATA=mypaper.sampledata; RUN;

%web_open_table(mypaper.sampledata);
Appendix D

Data

Excel Workbook of Sample Data

![Excel Workbook of Sample Data](sample data.xlsx)

<table>
<thead>
<tr>
<th>College</th>
<th>Semester</th>
<th>Female</th>
<th>Male</th>
<th>First Generation</th>
<th>Both Parents College</th>
<th>No FAFSA</th>
<th>One Parent College</th>
</tr>
</thead>
<tbody>
<tr>
<td>College A</td>
<td>Fall 2014</td>
<td>1838</td>
<td>1328</td>
<td>863</td>
<td>609</td>
<td>1100</td>
<td>594</td>
</tr>
<tr>
<td>College A</td>
<td>Fall 2015</td>
<td>1893</td>
<td>1438</td>
<td>852</td>
<td>631</td>
<td>1249</td>
<td>599</td>
</tr>
<tr>
<td>College A</td>
<td>Fall 2016</td>
<td>2222</td>
<td>1670</td>
<td>966</td>
<td>778</td>
<td>1380</td>
<td>768</td>
</tr>
<tr>
<td>College A</td>
<td>Fall 2017</td>
<td>2402</td>
<td>1739</td>
<td>976</td>
<td>790</td>
<td>1612</td>
<td>763</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2014</td>
<td>135</td>
<td>202</td>
<td>71</td>
<td>136</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2015</td>
<td>141</td>
<td>190</td>
<td>81</td>
<td>134</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2016</td>
<td>148</td>
<td>179</td>
<td>71</td>
<td>142</td>
<td>49</td>
<td>65</td>
</tr>
<tr>
<td>College B</td>
<td>Fall 2017</td>
<td>137</td>
<td>174</td>
<td>65</td>
<td>143</td>
<td>42</td>
<td>61</td>
</tr>
<tr>
<td>College C</td>
<td>Fall 2014</td>
<td>3181</td>
<td>2156</td>
<td>1823</td>
<td>1203</td>
<td>1088</td>
<td>1223</td>
</tr>
<tr>
<td>College C</td>
<td>Fall 2015</td>
<td>3091</td>
<td>2066</td>
<td>1684</td>
<td>1141</td>
<td>1141</td>
<td>1191</td>
</tr>
<tr>
<td>College C</td>
<td>Fall 2016</td>
<td>3035</td>
<td>1992</td>
<td>1612</td>
<td>1101</td>
<td>1119</td>
<td>1195</td>
</tr>
<tr>
<td>College C</td>
<td>Fall 2017</td>
<td>3034</td>
<td>1862</td>
<td>1549</td>
<td>1125</td>
<td>1057</td>
<td>1165</td>
</tr>
<tr>
<td>College D</td>
<td>Fall 2014</td>
<td>1852</td>
<td>781</td>
<td>852</td>
<td>581</td>
<td>552</td>
<td>648</td>
</tr>
<tr>
<td>College D</td>
<td>Fall 2015</td>
<td>1728</td>
<td>617</td>
<td>738</td>
<td>537</td>
<td>490</td>
<td>580</td>
</tr>
<tr>
<td>College D</td>
<td>Fall 2016</td>
<td>1137</td>
<td>261</td>
<td>373</td>
<td>295</td>
<td>419</td>
<td>311</td>
</tr>
<tr>
<td>College D</td>
<td>Fall 2017</td>
<td>1100</td>
<td>267</td>
<td>403</td>
<td>278</td>
<td>408</td>
<td>278</td>
</tr>
<tr>
<td>College E</td>
<td>Fall 2014</td>
<td>1197</td>
<td>418</td>
<td>690</td>
<td>303</td>
<td>236</td>
<td>386</td>
</tr>
<tr>
<td>College E</td>
<td>Fall 2015</td>
<td>1059</td>
<td>422</td>
<td>612</td>
<td>291</td>
<td>257</td>
<td>321</td>
</tr>
<tr>
<td>College E</td>
<td>Fall 2016</td>
<td>927</td>
<td>393</td>
<td>536</td>
<td>248</td>
<td>238</td>
<td>298</td>
</tr>
<tr>
<td>College E</td>
<td>Fall 2017</td>
<td>830</td>
<td>378</td>
<td>460</td>
<td>233</td>
<td>228</td>
<td>287</td>
</tr>
<tr>
<td>College F</td>
<td>Fall 2014</td>
<td>864</td>
<td>787</td>
<td>479</td>
<td>454</td>
<td>327</td>
<td>391</td>
</tr>
<tr>
<td>College F</td>
<td>Fall 2015</td>
<td>880</td>
<td>746</td>
<td>459</td>
<td>467</td>
<td>307</td>
<td>393</td>
</tr>
<tr>
<td>College F</td>
<td>Fall 2016</td>
<td>892</td>
<td>800</td>
<td>451</td>
<td>491</td>
<td>332</td>
<td>418</td>
</tr>
<tr>
<td>College F</td>
<td>Fall 2017</td>
<td>944</td>
<td>778</td>
<td>460</td>
<td>514</td>
<td>318</td>
<td>430</td>
</tr>
<tr>
<td>College G</td>
<td>Fall 2014</td>
<td>1421</td>
<td>1737</td>
<td>948</td>
<td>621</td>
<td>871</td>
<td>718</td>
</tr>
<tr>
<td>College G</td>
<td>Fall 2015</td>
<td>1337</td>
<td>1707</td>
<td>894</td>
<td>635</td>
<td>861</td>
<td>654</td>
</tr>
<tr>
<td>College G</td>
<td>Fall 2016</td>
<td>1306</td>
<td>1774</td>
<td>875</td>
<td>652</td>
<td>914</td>
<td>639</td>
</tr>
<tr>
<td>College G</td>
<td>Fall 2017</td>
<td>1287</td>
<td>1796</td>
<td>845</td>
<td>698</td>
<td>883</td>
<td>657</td>
</tr>
<tr>
<td>College H</td>
<td>Fall 2014</td>
<td>204</td>
<td>947</td>
<td>293</td>
<td>290</td>
<td>301</td>
<td>267</td>
</tr>
<tr>
<td>College H</td>
<td>Fall 2015</td>
<td>235</td>
<td>1019</td>
<td>327</td>
<td>320</td>
<td>339</td>
<td>268</td>
</tr>
<tr>
<td>College</td>
<td>Year</td>
<td>Application</td>
<td>Enrolled</td>
<td>Acceptance</td>
<td>Offered</td>
<td>Enrollment</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>College H</td>
<td>Fall 2016</td>
<td>261</td>
<td>1157</td>
<td>358</td>
<td>378</td>
<td>359</td>
<td>323</td>
</tr>
<tr>
<td>College H</td>
<td>Fall 2017</td>
<td>294</td>
<td>1203</td>
<td>360</td>
<td>402</td>
<td>412</td>
<td>323</td>
</tr>
<tr>
<td>College I</td>
<td>Fall 2016</td>
<td>1867</td>
<td>244</td>
<td>818</td>
<td>453</td>
<td>259</td>
<td>581</td>
</tr>
<tr>
<td>College I</td>
<td>Fall 2015</td>
<td>1837</td>
<td>267</td>
<td>843</td>
<td>465</td>
<td>250</td>
<td>546</td>
</tr>
<tr>
<td>College I</td>
<td>Fall 2016</td>
<td>1933</td>
<td>297</td>
<td>903</td>
<td>486</td>
<td>260</td>
<td>581</td>
</tr>
<tr>
<td>College I</td>
<td>Fall 2017</td>
<td>1868</td>
<td>289</td>
<td>866</td>
<td>490</td>
<td>232</td>
<td>569</td>
</tr>
<tr>
<td>College J</td>
<td>Fall 2014</td>
<td>202</td>
<td>163</td>
<td>75</td>
<td>51</td>
<td>182</td>
<td>57</td>
</tr>
<tr>
<td>College J</td>
<td>Fall 2015</td>
<td>107</td>
<td>68</td>
<td>22</td>
<td>17</td>
<td>127</td>
<td>9</td>
</tr>
<tr>
<td>College J</td>
<td>Fall 2016</td>
<td>137</td>
<td>109</td>
<td>35</td>
<td>26</td>
<td>171</td>
<td>14</td>
</tr>
<tr>
<td>College J</td>
<td>Fall 2017</td>
<td>170</td>
<td>143</td>
<td>34</td>
<td>35</td>
<td>224</td>
<td>20</td>
</tr>
<tr>
<td>College K</td>
<td>Fall 2014</td>
<td>91</td>
<td>11</td>
<td>11</td>
<td>40</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>College K</td>
<td>Fall 2015</td>
<td>89</td>
<td>8</td>
<td>8</td>
<td>37</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>College K</td>
<td>Fall 2016</td>
<td>97</td>
<td>6</td>
<td>9</td>
<td>45</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>College K</td>
<td>Fall 2017</td>
<td>103</td>
<td>8</td>
<td>5</td>
<td>62</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>College L</td>
<td>Fall 2014</td>
<td>83</td>
<td>37</td>
<td>23</td>
<td>23</td>
<td>59</td>
<td>15</td>
</tr>
<tr>
<td>College L</td>
<td>Fall 2015</td>
<td>109</td>
<td>50</td>
<td>23</td>
<td>33</td>
<td>85</td>
<td>18</td>
</tr>
<tr>
<td>College L</td>
<td>Fall 2016</td>
<td>129</td>
<td>62</td>
<td>34</td>
<td>44</td>
<td>85</td>
<td>28</td>
</tr>
<tr>
<td>College L</td>
<td>Fall 2017</td>
<td>137</td>
<td>55</td>
<td>31</td>
<td>37</td>
<td>92</td>
<td>32</td>
</tr>
<tr>
<td>College M</td>
<td>Fall 2014</td>
<td>90</td>
<td>52</td>
<td>39</td>
<td>46</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>College M</td>
<td>Fall 2015</td>
<td>147</td>
<td>174</td>
<td>94</td>
<td>95</td>
<td>58</td>
<td>74</td>
</tr>
<tr>
<td>College M</td>
<td>Fall 2016</td>
<td>114</td>
<td>181</td>
<td>69</td>
<td>87</td>
<td>65</td>
<td>74</td>
</tr>
<tr>
<td>College M</td>
<td>Fall 2017</td>
<td>129</td>
<td>211</td>
<td>98</td>
<td>98</td>
<td>76</td>
<td>68</td>
</tr>
</tbody>
</table>