
1

SAS4594-2020
Building an Expert's Toolbox: Essential Tools for Generating the Perfect Microsoft

Excel Worksheet
Parker, Chevell, SAS Institute Inc.

ABSTRACT
When you have a home building or renovation project to accomplish, you need expert tools
for the job. The same is true when you want to build (create) or modify (renovate) Microsoft
Excel worksheets. You need a variety of expert tools in your SAS® software toolbox to
accomplish these tasks. You have a choice of many tools that enable you to create and fully
customize your worksheets. For example, you can use the SAS® Output Delivery System
(ODS) Excel destination and the SAS EXPORT procedure. But you can also complement the
standard tools with more specialized ones (for example SAS macros and the Python open-
source language) to further extend the capabilities of your worksheets.

This paper explains how to use all of these tools to create fully functional Microsoft Excel
worksheets. The discussion is divided into two main sections. The first section explains how
to generate Excel worksheets and perform various tasks in SAS and SAS® Viya®. For each
task in this section, the paper demonstrates how to accomplish the task by using current
functionality (for example, the ODS Excel destination, PROC REPORT, and so on) that is
available in SAS and SAS Viya. This section also explains how you can enhance that
functionality by using the custom %Excel_Enhance macro. The second section illustrates
how you can further extend worksheet functionality in all environments by using the open-
source tools Python and Java.

INTRODUCTION
Microsoft Excel is a spreadsheet application that is used universally in all industries and job
categories. People use Excel for tasks ranging from adding formulas to a worksheet and
recording expenditures and income to planning budgets. You can use SAS® software to fully
automate the process of generating and customizing Excel worksheets. This paper discusses
methods for generating and enhancing worksheets from both the SAS and SAS Viya
platforms. For both platforms, the paper discusses in detail how you can use the SAS
Output Delivery System (ODS) Excel destination and PROC EXPORT to generate worksheets.
In addition, the discussion covers tools that you can use to enhance the output that the
ODS Excel destination and PROC EXPORT generate. This paper also discusses ways to
automate worksheets and extend worksheet functionality by using Python and Java open-
source software

GENERATING EXCEL FILES USING SAS® 9.4 AND SAS® VIYA®
You can generate Excel workbooks and worksheets in various ways with both SAS 9.4 and
SAS Viya. This paper discusses these methods in detail. It also explains the correct tools to
use to generate and enhance worksheets and workbooks. The next section discusses how to
generate worksheets using SAS Viya. Then, the next major section explains methods that
work with both SAS 9.4 and SAS Viya.

CREATING WORKSHEETS USING SAS® VIYA®
SAS Viya is a cloud-enabled, in-memory analytics engine that provides quick, accurate, and
reliable analytical insights. One of the huge benefits of SAS Viya is that you can run your
analysis in the cloud using the Cloud Analytic Server (CAS). The CAS server uses high-

2

performance, multi-threaded analytic code to rapidly process requests against data of any
size. SAS Viya also enables you to run your analysis using these open-source programming
languages: Python, R, Java, Lua, and the REST API. Programming languages such Python
and R connect to the CAS server to run analysis. However, SAS® Studio has the ability to
run in SAS or to connect to the CAS server. Tables that you create in CAS are stored in-
memory (in CAS libraries, or caslib names) in the SASHDAT format.

To save an in-memory CAS table to another format (for example, XLSX or XLS), you can
use either CASL programming language (via the CAS procedure), the CASUTIL procedure,
or PROC EXPORT. Both PROC CAS and PROC CASUTIL enable you to run actions on the CAS
server. PROC CASUTIL enables you to load, drop, save, and describe tables. PROC EXPORT
uses the CAS engine when you qualify it with a caslib. By doing so, you can use PROC
EXPORT to export CAS tables. In addition, you can use PROC EXPORT with a SAS data set
that uses the V9 engine to read the data that is exported or saved to an XLSX file. The
following example illustrates this ability by loading the SASHELP.ORSALES data set into
memory, using a caslib that is named CASUSER.

Note: You need SAS® Data Connector to PC Files in order to export data to Excel.

Example 1
cas mySess sessopts=(caslib=casuser locale="en_US");

proc casutil outcaslib="casuser";

load data=sashelp.orsales casout="sales;
save casdata="sales" casout="sales.xlsx";
list files;

quit;

In This Example

 The CAS session is established a with the session that is named CASAUTOS.
 The OUTCASLIB=option determines the caslib to which to write tables.
 The LOAD statement in PROC CASUTIL loads data from the client to the CASUSER

caslib.
 The SAVE statement saves the in-memory table to an Excel file that is named

SALES.XLSX

Output

Output 1. Output Created by Using the CASUTIL Procedure and the SAVE Statement

3

CREATING EXCEL WORKSHEETS WITH METHODS THAT WORK IN BOTH
SAS® 9.4 AND SAS® VIYA

With SAS 9.4 and SAS Viya, you can use various methods to create Excel worksheets that
can generate Excel files. Those methods include the use of the following tools as well as
others:

 ODS Excel destination: This destination generates presentation-ready output.
 EXPORT procedure: This procedure enables you to update worksheets. PROC

EXPORT also handles larger files very efficiently. This procedure runs either on the
CAS server or in SAS, depending on whether you use a CAS table or a SAS data set.

Note: You can use both the ODS Excel destination and PROC EXPORT in SAS®9 and SAS
Viya. Currently, the Excel destination is not CAS enabled. Therefore, the ODS destination
and your data are run in SAS rather than on the CAS server.

You do not use a Philips screwdriver to remove a hollow-point nail because you would be
using the wrong tool for the job. The task would be inefficient, tedious, and frustrating. In
the same way, you need to use the correct tool for the job when you construct a worksheet.
Table 1 lists several tools that are right for the job when you want to generate and modify
Excel worksheets. The table correlates these tools with their strengths and weaknesses.

Tools Description Limitations

ODS Excel
Creates XLSX files from SAS DATA
steps and procedures.

Does not have update ability. It
generates a new worksheet each
time.

PROC EXPORT
Creates XLSX files from SAS data
sets. Does not have styling capabilities.

DDE (does not run on SAS Viya)
Uses the DDE-Triplet specification,
which writes to Excel worksheets.

Only works in Microsoft Windows
environments, and DDE is no
longer supported by Microsoft.

%Excel_Enhance Macro
Adds functionality to and post-
processes Excel files. Requires Microsoft Excel in order to

execute.

TableEditor Tagset
Adds pivot tables and Excel output
to a worksheet. Requires Microsoft Excel in order to

execute.
Open Source (Python) Modifies or creates XLSX files. Adds an extra step.

Table 1. Tools That Enable You to Create or Enhance Excel Worksheets

MODIFYING WORKSHEETS USING THE ODS EXCEL DESTINATION
This section demonstrates how to create a worksheet from start to finish by using both the
ODS Excel destination and the %Excel_Enhance macro. The macro enables you to include
additional functionality that generates Microsoft VBScript.

Note: The %Excel_Enhance macro is not shipped with SAS. Therefore, you need to include
it or call it from a macro library. To download the macro, click here.

The following sections explain how to perform the following enhancements to a worksheet:
 include a banner
 add summary totals
 add a summary worksheet
 filtering within worksheets
 adding text with the Excel destination

INCLUDING A BANNER
You can add a banner image to a worksheet with the Excel destination by using the SAS
Report Writing Interface (RWI). The RWI can add a logo only to cells beginning in column
A1, and it cannot control the size of the image.. Tools such as the %Excel_Enhance macro
and Python open-source language (discussed later in this paper) enable you to place images

https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4594-2020-Parker

4

anywhere on the worksheet, but you must post-process such files. For more information,
see the blog Tips for Using the ODS Excel Destination. (Parker, 2017)

The following example illustrates how to add a banner image to a worksheet.

Example 2
ods excel file="c:\temp\image.xlsx";

data _null_;
declare odsout obj();
obj.image(file:"C:\Users\sasctp\pictures\banner_bi.jpg");

run;
proc print data=sashelp.heart(obs=5);

var Sex Height Weight Diastolic Systolic Smoking Cholesterol;
run;

ods excel close;

In This Example

 The DECLARE statement declares the object OBJ().
 The image method (OBJ.IMAGE) is used within RWI to add the banner.
 PROC PRINT displays the SASHELP.HEART data sets.

Output

Output 2. Adding a Banner by Using the Report Writing Interface

ADDING SUMMARY TOTALS TO THE WORKSHEET
Adding summary totals to a worksheet enables decisionmakers to view an overall snapshot
of the data initially. But it also offers them the ability to drill down into the data
dynamically, much like a pivot table. Summary totals (which include the total sales, average
sales, and sales count [number of items visible]) are displayed at the top of a report, and
you can modify them based on filtered values in the table.

In the following example, filters are added to all of the categorical columns. This program
uses the Excel application's SUBTOTAL() function in the Report Writing Interface.

Example 3
ods escapechar="^";
ods excel file="filter.xlsx" options(sheet_interval="none"

autofilter="1-4"
start_at="3,3");

proc odstext;
p 'Total Sales' / style={color=red};;
p "=Text(SUBTOTAL(9,G10:G9999),""$#,###.00"")";
p " ";
p 'Average Sales' / style={color=purple};
p "=Text(SUBTOTAL(1,G10:G9999),""$#,###.00"")";
p " ";

(code continued)

https://blogs.sas.com/content/sgf/2017/02/20/tips-for-using-the-ods-excel-destination/
https://support.office.com/en-us/article/subtotal-function-7b027003-f060-4ade-9040-e478765b9939

5

p 'Items Visible' / style={color=blue};
p "=SUBTOTAL(2,G10:G9999)";

run;

proc report data=sashelp.prdsale;

column COUNTRY REGION PRODUCT YEAR ACTUAL PREDICT;
run;

ods excel close;

In This Example

 The Excel option AUTOFILTER= is applied to the first four columns of the report.
 The Excel SUBTOTAL() function, used within PROC ODSTEXT, defines the statistics to

use and the ranges for those statistics.
 The TEXT() function nests the SUBTOTAL() function within the PROC ODSTEXT,

which provides the formatting (the names of the function or statistic, along with the
actual statistic value).

Output

Output 3. Adding a Dynamic Summary Table to a Worksheet

ADDING A SUMMARY WORKSHEET

Similar to the previous example, summary worksheets provide a quick snapshot of the data.
They also enable you to drill down to supporting details or other data. The supporting
details or other data can be in the same workbook, in an external workbook, on a web page,
in a PDF file, or in a Word file.

The following table illustrates example syntax of the various types of links you can use in a
worksheet for drill-down information.

Syntax for Drill-Down Links
That You Can Use in Excel

Results

#sheet1!A1 Link to a worksheet within a workbook that begins in cell
A1

='Sales Report'!A10 Link to a worksheet that includes spaces starting at cell
A10

D:\Reports\[Sales.xlsx]Jan!B2:B5 Link to an external worksheet
[Sales.xlsx]Jan!jan Link to a specific named range
filename.html#name Link to a named destination (anchor) of on web page
Mailto:john.doe@sas.com Link to a particular email address

Table 2. Syntax for Generating Links in a Microsoft Excel Worksheet

Filtered Values

6

Adding Hyperlinks and Drill-Down Capability in Microsoft Excel Worksheets
Drill-down capability in worksheets enables you to access more detailed data than is
available visibly on your worksheet. As mentioned previously, that information can be
internal to the worksheet or in external locations. You can also include hyperlinks directly in
your worksheet to access supporting data.

Example 4 demonstrates adding hyperlinks and drill-down functionality. You can add
hyperlinks using several methods:

 the LINK= option in TITLE and FOOTNOTE statements
 the Excel =HYPERLINK function within SAS statements (for example, ODS TEXT=,

PROC ODSTEXT, TITLE, LABEL, and FOOTNOTE), in the Report Writing Interface, or
in a DATA step

 either the URL style attribute or the URL method within the SAS REPORT procedure's
CALL DEFINE statement (dynamically builds links to various files)

The example demonstrates how to include hyperlinks via the =HYPERLINK Excel function by
using the ODS TEXT= statement because the URL= attribute is not supported in the ODS
TEXT= statement.

In addition, Example 4 uses PROC REPORT with a compute block to generate drill-down
functionality for each unique value of the products.

Example 4
ods escapechar="^";
title "Summary of Financials for year 2019";
ods excel file="c:\temp\drill.xlsx" options(sheet_interval="none"

sheet_name="Summary"
embedded_titles="yes"
start_at="2,2");

ods text='=hyperlink("mailto:joe.doe@sas.com","Hyperlink to Email")';
ods text='=hyperlink("#Beds!a1","Hyperlink to Embedded Worksheet")';
ods text='=hyperlink("c:\[drill.xlsx]#Beds!a1","Hyperlink to External
Worksheet")';
ods text='=hyperlink("http://www.sas.com","Hyperlink to URL")';
ods text='=hyperlink("file://c:\temp.pdf","Hyperlink to PDF File")';
title "Summary Worksheet";
proc report data=sashelp.prdsale spanrows

style(report)={pretext=" "};
column product country actual predict;
define country / group;
define product / group style(column)={textdecoration=underline

color=blue};
compute product;

if product="SOFA" then call define(_col_,"url","Sofa");
else if product="CHAIR" then call

define(_col_,"url","#Chair!a1");
else if product="DESK" then call define(_col_,"url","#Desk!a1");
else if product="TABLE" then call define(_col_,"url","#Table!a1");
else if product="BED" then call define(_col_,"url","#bed!a1");

endcomp;
run;

(code continued)

7

ods excel options(sheet_name="#byval(product)"
sheet_interval="bygroup");

title link="#summary!a1" "Back to summary";
proc report data=sashelp.prdsale;

column product country region actual predict;
by product;

run;
ods excel close;

In This Example

 The ODS TEXT= statement adds hyperlinks to the various file formats. The links that
are generated open an email message, link to internal and external worksheets,
open web pages, and open a PDF file.

 PROC REPORT is used with the CALL DEFINE statement and the URL method to
create drill-downs to the various worksheets.

 The second PROC REPORT step (which includes the SHEETNAME="#BYVAL(product)"
option) generates comparable like-named worksheets in the same workbook to
which you can drill down. This PROC REPORT step generates detail data from the BY-
group, which is the target of the drill-down information. The data set is already
sorted by product.

Output

Output 4. Adding a Summary Sheet to a Workbook

FILTERING WITHIN EXCEL WORKSHEETS
Adding filters to table enables you to subset on(or, filter) values within a column. To apply
filters to columns with the ODS Excel destination, you need to use the AUTOFILTER=
suboption. You can add filters to all columns, to the default column, to a specific column, or
to a range of columns in sequence (for example, columns 1-3), as illustrated in Output 4.

Example 5
ods escapechar="^";
ods excel file="filter.xlsx" options(autofilter="all");

proc report data=sashelp.orsales(obs=3);
column Year Product_Line Profit;

run;

proc report data=sashelp.orsales(obs=3)
style(header)={posttext="^{nbspace 4}" asis=on};
column Year Product_Line Profit;

run;
ods excel close;

8

In This Example

 The AUTOFILTER= option adds filters to the table headers.
 Notice that the filter icon (the down arrow circled in red in Report 1 of Output 5)

might hide part of the header text. You can avoid that situation by using the
POSTTEXT= attribute with the NBSPACE function, as is done in Example 5. In this
example, that combination adds four spaces to the right of the value. As a result, the
header text is no longer hidden (as shown in the second report of Output 5).

Output

Output 5. Adding Filters with the AUTOFILTER= Option and Fixing Hidden Header
Text with the POSTTEXT= Attribute

ADVANCED FILTERING
Currently, the ODS Excel destination provides basic filtering by using the AUTOFILTER=
options. However, you can achieve some advanced filtering capabilities by using the ODS
Excel destination in conjunction with the %Excel_Enhance macro. Doing so offers the
following features:

 the ability to add preselected filters. Preselected filters are values that you supply
and that are filtered when the table is displayed.

 the ability to select the top 10% of values in a column.
 the ability to select the bottom 10% of values in a column.

Example 6 adds preselected filters by passing the FILTER= parameter to the macro along
with the sheet name, the column to which you want to add the filter. The FILTER=
parameter has a three-part argument. Those parts are the sheet name, the column name,
and value or expression on which to filter the column.

FILTER="sheet-name, column-name, value-or-expression"

The values that are available for this parameter are documented in this %Excel_Enhance
macro download.
Example 6

ods excel file="c:\temp\summary.xlsx" options(sheet_name="sales");
proc print data=sashelp.orsales;
run;

ods excel close;

/* Modify the file to create the predefined filters. */
%excel_enhance(open_workbook=c:\temp\summary.xlsx,

filter=%str(sales,4,Sports),
create_workbook=c:\temp\summary_update1.xlsx);

https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4594-2020-Parker
https://github.com/sascommunities/sas-global-forum-2020/tree/master/papers/4594-2020-Parker

9

In This Example

 The ODS Excel destination creates a sample workbook named summay.xlsx.
 The %Excel_Enhance macro passes the worksheet name, the column name that

should be added to the filter, and the value or expression on which to filter.

Output

Output 6. Adding a Predefined Filter to the Product-Line Column of a Worksheet

USING TEXT WITH THE ODS EXCEL DESTINATION
You can use the ODS Excel destination with the following methods to add text to output:

 The ODS TEXT= statement enables you to add text quickly. However, it does not
generate an output object, nor does it have the advanced capabilities of PROC ODS
TEXT.

 PROC ODSTEXT or PROC ODSLIST, along with the Report Writing Interface,
generates output objects. When you combine these tools with the
SHEET_INTERVAL= option, they control whether text is added to a new worksheet.

 The PRETEXT= and POSTTEXT= style attributes enable you to add text strings before
or after cell or table values.

This section illustrates how to use these tools to customize your output.

Using PROC ODSTEXT and the ODS Excel Destination to Generate a
Customized Table of Contents
PROC ODSTEXT can generate custom lists and text, among other things. You can also use
this procedure to add Excel functions to a worksheet.

In Example 7, PROC ODSTEXT generates a customized table of contents by creating a
hyperlink with the unique data value from the variable Product_line from the data set.

Example 7
proc sort data=sashelp.orsales out=temp nodupkey;

by product_line;
run;
ods escapechar="^";
ods excel file="c:\temp\contents.xlsx" options(sheet_name="Summary"

embedded_titles="yes");
proc odstext data=temp;

p "=hyperlink("||'"[contents.xlsx]'|| product_line ||'!A1"'||',' ||
quote("Product: "||product_line)||")";

run;

ods excel options(sheet_name="#byval(product_line)");
proc print data=temp;

by product_line;
run;

ods excel close;

10

In This Example

 Dynamic hyperlinks with unique values are added to the Product_line variable.
 The ODS Excel option SHEET_NAME= is used with the #BYVAL argument to name

worksheets that are the targets of the hyperlinks.

Output

Output 7. Using PROC ODSTEXT and the Text added with the PROC ODSTEXT

Using the PRETEXT= and POSTTEXT= Attributes to Add Text to a Variable
Value
You can add text before or after character variable values in a cell or before or after a table
by using the PRETEXT= or POSTTEXT= attributes. However, you cannot use these attributes
with numeric values because Microsoft Excel (unlike SAS ODS formatted destinations that
are not based on Excel) enforces data types.

If you want to add text before or after a numeric field, you must first set the cell type to
STRING in the TAGATTR= attribute (as shown in Example 8).

Example 8
ods excel;

proc report data=sashelp.class;
define age /style(column)={tagattr="type:String" pretext="Current

age"};
run;

ods excel close;

In This Example

 This example uses the TAGATTR="TYPE:String" attribute to change the cell type to
STRING.

 The text Current age is added by the PRETEXT="Current age" attribute so that the
text is placed before the numeric value (which was changed to type STRING) 14 in
the Age cell.

Output

Output 8. Using the PRETEXT= and the TAGATTR=
Attributes to Add Text before a Variable Value

Displaying Text with the Best Fit for Text within Cells
With the ODS Excel destination, column width in a worksheet might not always fit text the
best in the display, especially if you have longer strings. To display this column with the
optimal width for text, you need to set the cell width explicitly with the WIDTH= style

11

attribute. You use this attribute in the TEMPLATE procedure or in other SAS procedures that
enable you to override style. The WIDTH= attribute overrides the default measurement. As
another option, you can use the ODS Excel suboption ABSOLUTE_COLUMN_WIDTH=. This
option sets the width for the cell after the text for that cell is optimally sized.

Output 9(a). Column Var1 As It Appears before You Use the ABSOLUTE_COLUMN_WIDTH=
Option

Example 9 illustrates how to remove extra blank spaces in columns in a worksheet.

Example 9
data one;

length Var1 $75;
set sashelp.orsales;
Var1="This is a long value that is used to demonstrate how values
display";

run;

ods excel file="c:\temp\wrap.xlsx" options(flow="tables" sheet_name="test"
absolute_column_width="4.1in,5,7,15,18");

proc print data=one noobs;
var Var1 Year Quarter Product_Line Product_Group;

run;
ods excel close;

In This Example

The ABSOLUTE_COLUMN_WIDTH= option in this example controls the column width, giving
you a method for removing extra blank spaces.

Output

Output 9(b). Extra Space in Column Var1 Is Removed When You Specify the
ABSOLUTE_COLUMN_WIDTH= Option

Automatically Fitting Columns in the Table

To automatically fit cells in a worksheet, select the Autofit Column Width option (under
Home Format in Excel). You can also achieve the same result in an automated manner
by using the AUTOFIT_COLUMNS= option in the %Excel_Enhance macro. Doing so ensures
the best space of the cells using the macro or with Excel.

The following example autofits the output that is shown in Output 10(a). This output shows
blank spaces at the end of the Var1 column.

Output 10(a). Var1 Column before You Use the AUTOFIT_COLUMNS= Option

12

Example 10 shows you how to use the AUTOFIT_COLUMNS= option in the macro. Note that
the original file is generated in Example 9. So, only the %Excel_Enhance macro statement
is shown in the following example.

Example 10
%excel_enhance(open_workbook=c:\temp\wrap.xlsx,

autofit_columns="test");

Output

Output 10(b). Var1 Column after You Use the AUTOFIT_COLUMNS= Option

USING PROC EXPORT TO GENERATE AND UPDATE WORKSHEETS
The previous section demonstrated the power of the Excel destination in generating multiple
worksheets per workbook. However, you can also use PROC EXPORT to generate multiple
worksheets per workbook (using the DBMS=XLXS option) and to update worksheets.

This procedure handles large files very efficiently. However, PROC EXPORT cannot add
styles (for example, adding colors) or add formulas.

Example 11 shows a basic EXPORT procedure that generates an Excel file.

Example 11
proc export data=sashelp.orsales outfile="c:\temp\table.xlsx"

dbms=xlsx replace;
run;

Output

This procedure generates the following output:

Output 11. Output for the SASHELP.ORSALES Data Set That Is Generated with PROC
EXPORT

EXTENDING THE FUNCTIONALITY OF THE EXPORT PROCEDURE
PROC EXPORT can be enhanced to provide some common features in Excel worksheets (for
example, adding filters, freezing headers, or adding Excel styles, and so on).

The next example demonstrates how to add some enhanced functionality by using PROC
EXPORT with the %Excel_Enhance macro. The program uses the TABLE_STYLE= attribute to
generate an Excel style that includes column banding (highlighting), column totals, and the
application of the TableStyleDark10 style.

Note: This example uses the same PROC EXPORT step that is shown in Example 11.

13

Example 12
%excel_enhance(open_workbook=c:\temp\table.xlsx,

table_style=%str(ShowTableStyleColumnStripes=1
ShowTotals=1
TableStyle="TableStyleDark10");

In This Example

The TABLE_STYLE= attribute generates an Excel style that includes alternating column
banding, column totals, and the application of the TableStyleDark10 style.

Output

Output 12. Using the TABLE_STYLE= Attribute to Apply Style Features

GENERATING PIVOT TABLES USING THE TABLEEDITOR TAGSET
A pivot table in Excel summarizes large amounts of data (from other data sources) easily,
tracks trends, and enables you to view the data dynamically in different views. Microsoft
Excel 2016 also has new functionality that permits you to select multiple tabs in a slicer (as
illustrated in in Output 13).

You can also generate pivot tables with the SAS TableEditor tagset. The tagset provides
various options (for example, PIVOTROW=, PIVOTCOL=, and PIVOTDATA=) that enable you
to place variables in the Excel layout areas of a report that are available from the
PivotTable Fields options list. The tagset also enables you to create one or more slicers
(visual filters) by using the PIVOT_SLICER= option. The TableEditor tagset also contains
new style options (as illustrated below in Example 13). To find information about the tagset
options, submit DOC=:"help" as an option in the ODS TAGSETS.TABLEEDITOR statement.

Example 13 generates a workbook to which a pivot table is added. The TableEditor tagset
generates a JavaScript file (with the .js extension) that contains a script to create the pivot
table.

Example 13.
/* Reference the tagset from support.sas.com. */

filename tpl url
"http://support.sas.com/rnd/base/ods/odsmarkup/tableeditor/tableed
itor.tpl";

/* Insert the tagset into the search path for ODS templates. */
ods path(prepend) work.templat(update);
%include tpl;

options noxsync noxwait;
/* Create sample data to which to add pivot data. */

ods excel file="c:\temp\report.xlsx" options(sheet_name="Sales");
proc print data=sashelp.prdsale;
run;

ods excel close;
(code continued)

14

ods tagsets.tableeditor file="c:\temp\PivotTable.js"
options(update_target="c:\\temp\\report.xlsx"

output_type="script"
sheet_name="Sales"
pivot_sheet_name="Profit Analysis"
pivotrow="month,country"
pivotcol="product"
pivotdata="actual"
pivot_slicer="MONTH" /* Has the match case in the source. */
header_bgcolor="black"
rowheader_bgcolor="black"
rowheader_fgcolor="white"
data_bgcolor="18"
datalabel_bgcolor="magenta"
pivotdata_fmt="$#,###.##"
);

data _null_;
file print;
put _all_;

run;
ods tagsets.tableeditor close;
x "c:\temp\PivotTable.js";

In This Example

 The Excel destination creates a workbook to which a pivot table is added.
 The FILE= option generates the JavaScript that, when executed, generates the pivot

table.
 The UPDATE_TARGET= option loads the file with the data from which the pivot table

is created.
 The PIVOTROW=, PIVOTCOL=, AND PIVOTDATA= options add fields to the various

Excel layouts that are available in the Pivotable Fields list.
 The PIVOT_SLICER= option generates the MONTH slicer.
 The style options (ROWHEADER_BGCOLOR=, ROWHEADER_FGCOLOR=,

DATA_BGCOLOR=, and DATALABEL_BGCOLOR=) modify the row, data, columns,
and labels.

 The DATA _NULL_ step triggers the execution of the .js file, and the X statement
executes the pivot table.

Output

Output 13. Generating a Pivot Table from an Excel File

Slicer

15

USING OPEN-SOURCE SOFTWARE TO UPDATE WORKSHEETS
Individuals and companies have begun using open-source software (for example, Python
and Java) because it provides additional functionality and enables customization for specific
needs. Open-source software also provides methods for reading, modifying, and
generating XLSX files. The Python language performs these tasks by using the openpyxl
package and Java uses the Apache Poi library.

Using the combination of open-source software (Python or Java) and SAS software
(reporting tools such as the Excel destination or PROC EXPORT) enables you to take
advantage of automating the reporting process. The next sections demonstrate how to use
the Python openpyxl package, which modifies XLSX files in Python. You can run and call
Python functions (for example, to include the openpyxl package) with the SAS FCMP
procedure.

ENHANCING WORKSHEETS USING THE PYTHON OPENPYXL PACKAGE
The good news is that you do not need to be a Python programmer to take advantage of the
Python language for enhancing Excel output. Excellent openpyxl documentation is available
that demonstrates the object model and methods that you need to enhance your output.

First, you need to install Python which you can do using the Anaconda distribution package.
After you install Python, then you need to install the openpyxl package by submitting the
following command from a command line:

$ pip install openpyxl

Based on information in the openpyxl documentation, you can add functionality that you
want in worksheets that you generated previously with PROC EXPORT or with the ODS Excel
destination. In the following example, the Excel worksheet is created with PROC EXPORT,
and additional functionality is added with the Python script that is shown in Display 1. This
script imports the packages and loads workbooks.

Example 14

First, you use PROC EXPORT to create a worksheet based on the SASHELP.ORSALES data,
as shown below. The workbook sales.xlsx is written to the current working directory.

proc export data=sashelp.orsales
outfile="sales.xlsx" dbms=xlsx;

run;

To locate your current working directory (where Python searches for relative files), submit
the following code:

import os
print os.getcwd()

Then, use the following Python script to modify the worksheet. In this case, you modify tab
name (by making the value uppercase) and tab color.
import openpyxl
import load_workbook

#Create workbook object
wb=load_workbook('sales.xlsx')

#Create worksheet object
ws=wb.active

#Modify worksheet tab name
ws.title='sales'

#Color the tab name
ws.sheet_preperties.tabColor="red" (code continued)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjg77mEvrTnAhVtlnIEHSSnCjUQFjAAegQICRAC&url=https%3A%2F%2Fpoi.apache.org%2F&usg=AOvVaw0OBA3NHlCtYOmrZadLYesF
https://openpyxl.readthedocs.io/en/stable/
https://www.anaconda.com/distribution/?gclid=EAIaIQobChMIz6mO_7uO5wIVjJ6zCh075wsbEAAYASAAEgIV4vD_BwE#download-section

16

#Save workbook with a new name
wb.save('sales_update.xlsx')

In This Example

Once you import the openpyxl and load_workbook packages, the Python script uses
methods to modify the tab name and change the tab color.

USING PROC FCMP TO CREATE PYTHON FUNCTIONS IN SAS®
As mentioned earlier, you also can modify Excel worksheets that are created in SAS by
using Python objects. You do this by including a Python function, which includes the
openpyxl package, and using Python objects within the FCMP procedure.

The first step in using PROC FCMP and Python objects is to declare the objects in a DECLARE
statement, as shown in Example 15.

DECLARE OBJECT object-name(PYTHON);

You include the Python functions between the SAS SUBMIT and ENDSUBMIT statements.

SUBMIT INTO PY;

python-syntax

ENDSUBMIT;

Other methods and techniques (for example, using the INFILE method) are available with
PROC FCMP for including external code. For more information, see What's New in FCMP for
SAS 9.4 and SAS Viya.

After you submit your code, you then must publish the code that is stored in the Python
object to the Python interpreter. The interpreter validates the syntax of the code. Finally,
after the Python function is published, you can call it from either PROC FCMP or from a
DATA step. You can also pass the value back to SAS using the RESULTS method. However,
the next example publishes and calls the Python function without returning a value.

Example 15 adds a Python function in PROC FCMP to calculate the change the worksheet
name and color.

Example 15
proc fcmp;

declare object py(python);
/* Create an embedded Python block to write your Python function */

submit into py;
def MyFunc(arg1,arg2):

"Output: MyKey"
from openpyxl import load_workbook
wb=load_workbook(filename=arg1)
ws=wb.active
ws.title="Sales"
ws.sheet_properties.tabColor="FF0000"

endsubmit;

/* Publish the code to the Python interpreter */
rc=py.publish();

/* Call the Python function from SAS */
rc=py.call("MyFunc","sales.xlsx","sales_update.xlsx");

run;

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3480-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3480-2019.pdf

17

In This Example

 The Python object py is created in the DECLARE statement.
 The Python function and two arguments (Arg1 and Arg2) are added in the SUBMIT

block.
 The "Output: MyKey" argument is required for denoting the variable type.
 The publish and call methods compile and execute the Python function from SAS.

They also return a value to the variable RC if the compile and execution are
successful.

Output

Output 15. Changing a Worksheet Name and Tab Color Using Python and PROC
FCMP

This output is the same as the output that is generated by the code in Example 14.

Modifying Existing Excel Files by Using PROC FCMP and a Python Function
The next series of examples use a Python function within PROC FCMP to update worksheets
that are created with PROC EXPORT. These examples apply an Excel style, conditional
formatting, and a graph dashboard to an Excel table.

To make managing and analyzing a group of related data easier, you can turn a range of
cells into an Excel table. (Excel tables were previously called Excel lists.)

Excel tables enable you to modify various sections of a table individually or as a group. By
default, tables are generated with headers in the first row and with column filters. Styles are
managed by using the TableStyleInfo object.

Example 17
proc fcmp;

declare object py(python);
submit into py;
def MyFunc(arg1,arg2):

"Output: MyKey"
from openpyxl import load_workbook
from openpyxl.worksheet.table import Table, TableStyleInfo
wb=load_workbook(filename=arg1)
ws=wb.active

define a table style
 med=TableStyleInfo(name='TableStyleMedium16',showColumnStripes=True)

Create a table
tab=Table(displayName="Table1",ref="A1:J1441",tableStyleInfo=med)

Add the table to the worksheet
 ws.add_table(tab)
 wb.save(filename=arg2)

endsubmit;
rc=py.publish();
rc=py.call("MyFunc","sales.xlsx","excel_table.xlsx");

run;

18

In This Example

 The packages that are needed for this example are added to the Python function.
 The Python variable med specifies style information (the table style column color-

striping attributes) for the table.
The Python variable tab specifies all the information that is required to create an
Excel table. That information includes the table name (Table1), the range (via the
ref= variable) , and the style (via the TableStyleInfo= option).

 The ws.add_table method adds the Excel table to the worksheet.

Output

Output 16. Generating an Excel Table from PROC EXPORT Output by Using a Python
Function

Conditional Formatting
Conditional formatting enables you to add a format either to a cell or a range of cells in an
Excel file. You can use this type of formatting to add data bars, icon sets, and a color scale
to elements in your Excel file. A color scale adds color to cells in a range of cells based on
the values for those cells. This feature enables you to trends as well as minimum and
maximum values.

Example 17 demonstrates how to add data bars as well as a color scale. For data bars, the
below are the type of values in the cell that the data bars can be generated. The
appropriate package is the first thing which is modified, before adding the rule.

Example 17
proc fcmp;

declare object py(python);
submit into py;
def MyFunc(arg1,arg2):

"Output: MyKey"
from openpyxl import load_workbook
from openpyxl.formatting.rule import DataBarRule, ColorScaleRule
wb=load_workbook(filename=arg1)
ws=wb.active

Add the rule for the data bars.
rule=DataBarRule(start_type='num',start_value=10,
end_type='num', end_value='800',
color="FF638EC6",showValue="None")

Add data bars to the worksheet.
ws.conditional_formatting.add('F2:F10',rule)

Add a color scale to the worksheet.
ws.conditional_formatting.add('G2:F20',
ColorScaleRule(start_type='min',start_color='FF638EC6',
end_type='max', end_color='FF638EC6'))
wb.save(filename=arg2)

(code continued)

19

endsubmit;
rc=py.publish();
rc=py.call("MyFunc","sales.xlsx","Condition.xlsx");

run;

In This Example

 Several packages are included in this example. These packages load the workbook
and create data bars and color scales.

 The wb workbook object is created from the workbook; the ws object is created from
the active worksheet.

 The rules variable is created with the rules for the data bars. The data bars are
created with information such as the starting and ending colors and values.

 The ws object and the conditional_formatting.add method create rules for
creating data bars and a color scale.

 The .save method creates a new workbook with the updates.

Output

Output 18. Adding Data Bars and a Color Scale

Creating Graphs
Using code similar to that in the previous example, you can add graphs to your Excel
worksheet. With the Python openpyxl package, you can add various types of graphs: bar
charts, VBAR charts, line charts, bubble plots, stock charts, and more. You can create a
single graph or multiple graphs in a dashboard.

Example 18 creates a summary table along with a bar chart. This code generates a
summary table that was created with the SQL procedure.

Example 18
proc sql;

create table temp as
select distinct(product) as Product, sum(actual) as Actual, sum(predict)
as Predicted
from sashelp.prdsale;

quit;

proc export data=temp;

outfile="graph.xlsx" dbms=xlsx;
run;

proc fcmp;

declare object py(python);
submit into py;
def Myfunc(arg1,arg2):

"Output: MyKey"

(code continued)

20

from openpyxl import load_workbook
from openpyxl.chart import BarChart, Series, Reference
wb=load_workbook(filename=arg1)
ws=wb.active
chart=BarChart()
chart.title="Sales Report"
data=Reference(ws=ws,min_row=1,max_row=2,min_col=2,

max_col=3)
cats=Reference(ws,min_col=1,min_row=2,max_row=6)
chart.add_data(data, titles_from_data=True)
chart.set_categories(cats)
ws.add_chart(chart, "E2")
wb.save("arg2")

endsubmit;
rc=py.publish();
rc=py.call("Myfunc", graph.xlsx","output.xlsx");

run;

In This Example
 PROC EXPORT generates a worksheet that contains a summary.
 The chart= variable, which holds the chart type, is set to BarChart(), which

creates a bar chart.
 The data= variable references the data that is used to create the bar chart.
 The actual chart is added by using the chart.add method.
 The .save method creates a new, second worksheet.

Output

Output 18. Creating a Bar Chart by Using the Python openpyxl Package

CONCLUSION
Using the SAS ODS Excel destination in combination with Microsoft Excel leverages the
power of SAS and automates the generation of presentation-ready spreadsheet. This paper
discussed several tools that you can use to generate worksheets with SAS 9.4 (ODS Excel
destination, PROC EXPORT, and DDE) and SAS Viya (PROC CASUTIL). The discussion also
explained how you can use the %Excel_Enhance macro, PROC EXPORT, and open-source
software (Python and Java) to build the worksheet that you want. All of these tools can be
added to your toolbox for creating perfect, presentational worksheets.

REFERENCES
 Gazoni, Eric and Charlie Clark. 2020. "openpyxl: A Python library to read/write Excel

2010 xlsx/xlsm files." OpenPyXL website. Available at
openpyxl.readthedocs.io/en/stable/. Accessed on February 5, 2020.

https://openpyxl.readthedocs.io/en/stable/

21

 Parker, Chevell. 2018. "Insights from a SAS Technical Support Guy: A Deep Dive into
the SAS® ODS Excel Destination." Proceedings of the SAS Global Forum 2018
Conference. Cary, NC: SAS Institute Inc. Available at
support.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2018/2174-2018.pdf .

 Whitcher, Michael, et al. 2019. "What's New in FCMP for SAS 9.4 and SAS Viya." ."
Proceedings of the SAS Global Forum 2019 Conference. Cary, NC: SAS Institute Inc.
Available at www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2019/3480-2019.pdf.

ACKNOWLEDGEMENTS
I would like to thanks Susan Berry for her editorial help with this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Chevell Parker
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
 Email: support@sas.com
Web: support.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

https://support.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2174-2018.pdf
https://support.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2174-2018.pdf
http://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3480-2019.pdf
http://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3480-2019.pdf
mailto:support@sas.com
https://support.sas.com/en/support-home.html

