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ABSTRACT  
Data scientists often need to work with multiple languages and in multiple analytic 
environments to solve a problem. SAS® provides a complete end-to-end environment, but it 
has traditionally been accessible to users only through GUIs and SAS languages. This paper 
introduces a new tool enabling data scientists to manage components of the analytics life 
cycle from within any Python environment. We first demonstrate how to register a model 
developed with Python using SAS® Model Manager, before exploring methods for managing, 
deploying, and tracking the model.  In addition, we show how to accomplish supporting 
tasks such as rendering visualizations and extending the existing functionality. 

INTRODUCTION  
In the past few years, the Python language has quickly become the preferred language for 
many data scientists (Mitchell 2019). 

Although SAS and Python are sometimes viewed as competing technologies, the reality is 
that these technologies can complement each other quite well.  The SAS platform contains 
numerous tools to help users manage the entire analytics lifecycle and a collection of high-
performance algorithms designed to scale to large data, while Python has a huge user 
community and a wide selection of packages that make it an ideal language for integrating 
different technologies. It’s only natural that Python users would want to leverage some of 
the additional functionality in SAS. 

This paper introduces the new sasctl package for Python, designed to allow control of the 
SAS® Viya® platform from a Python runtime. It can be used as a Python module or executed 
directly from a command line interface. There are already several excellent Python packages 
available for building analytic models (Pedregosa, et al. 2011, Smith and Meng 2017), but 
this is not one of them.  Instead, the sasctl package is designed to complement these 
analytics packages. This paper focuses on activities often related to but separate from 
model building. 

Specifically, we first demonstrate how to use sasctl for managing model registration and 
deployment of both SAS and open-source models.  Then, we introduce additional 
functionality such as monitoring model performance and rendering visualizations. 

This paper should be relevant to data scientists, developers, analysts, or anyone else who 
needs to communicate with the SAS Viya platform and prefers Python. The examples 
covered are intended to be simple, but a basic understanding of the Python language is 
assumed. Additionally, knowledge of standard analytics packages like SAS SWAT and scikit-
learn is not required but might be helpful. 

All code examples in this paper use sasctl v1.5 and are available on the sasctl GitHub page. 
(SAS Institute Inc. 2020a.) 
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MODEL MANAGEMENT 
An easy way to get a gentle introduction to using sasctl is to perform a few of the most 
common tasks for data scientists – model registration, deployment, and execution.  
Conveniently, these are also the areas where sasctl currently affords the highest levels of 
abstraction and ease of use. 

SWAT MODEL 
The following example demonstrates how to use sasctl to easily manage a model built with 
SAS. We use the SWAT package to define a simple regression model on the well-known 
Boston housing data set (Belsley, Kuh, and Welsch 1980). After training the model, we 
demonstrate how to easily register it with SAS Model Manager. This allows the model, and 
any associated metadata, to be stored in a central repository, version-controlled, and 
tracked over time. 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 

import swat 
from sasctl import Session 
from sasctl.tasks import register_model, publish_model 
 
s = swat.CAS('example.sas.com', 5570, 'arthur', 'K1ng0fTheBr!tons') 
s.loadactionset('regression') 
tbl = s.upload('data/boston_house_prices.csv').casTable 
 
features = list(tbl.columns[tbl.columns != 'medv']) 
tbl.glm(target='medv', inputs=features, savestate='model_table') 
astore = s.CASTable('model_table') 

 

In the code above, lines 5-7 establish a connection to SAS® Cloud Analytic Services (CAS), 
load the regression package, and import the data set from a local CSV file. Lines 9-11 fit the 
regression model to the data and save the results. We won’t examine the SWAT package in 
detail here, but for more information see (Smith and Meng 2017, SAS Institute Inc. 2020b). 
The key point is that the end result is a small, binary artifact, or ASTORE, containing the 
final model, and this is what we provide to sasctl to register: 

 
12 
13 

with Session('example.sas.com', 'arthur', 'K1ng0fTheBr!tons'): 
    model = register_model(astore, 'Linear Regression', 'Boston Housing', force=True) 

 

Everything in sasctl requires an established session to a SAS Viya server. At its most basic 
level, sasctl is a sophisticated REST client that calls the REST APIs available in all SAS Viya 
environments.  Creating a session allows sasctl to repeatedly call those APIs on your behalf 
without requiring you to authenticate each time. In this case, we’re establishing a session 
on line 12 using the same credentials we used to connect to CAS. There are a variety of 
ways to establish a session. See the APPENDIX for more details and for solutions to 
common problems (like SSL errors). 

Once a session has been created, it is used by default for all subsequent tasks without 
explicitly referencing it. The next step is to call the register_model task (line 13) and 
provide: 

1. the actual model to put in SAS Model Manager  

2. a name for the model 

3. the name of the project in which to create the model 
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In this case, we’re using the ASTORE model, creating a project called Boston Housing, and 
naming our model Linear Regression. The optional force=True parameter instructs sasctl to 
automatically create the Boston Housing project if it does not already exist. 

At this point our model should now be registered in SAS Model Manager and should be 
similar to Display 1. 

 
Display 1. Model in SAS Model Manager 

Now that the model is registered, we can use it with the full range of SAS Model Manager 
capabilities. We won’t go into those details here, but for more information about the 
available features, see the SAS Model Manager documentation (SAS Institute Inc. 2019g, 
SAS Institute Inc. 2019a). 

Of course, the next logical step is to publish the model somewhere and then run it. For this, 
we’ll push our model to the SAS® Micro Analytic Service (SAS Institute Inc. 2019f), a light-
weight engine designed for real-time scoring of records: 

 

14 
15 
16 
17  

    module = publish_model(model, 'maslocal') 
 
    first_row = tbl.head(1) 
    module.score(first_row) 

 

As you can see from line 14, we publish the model with just a single line of code. We 
provide the model and the name of a publishing destination. Here, we choose maslocal, the 
default SAS Micro Analytic Service instance available in most SAS Viya environments. The 
result is a newly created SAS Micro Analytic Service module, decorated with Python 
methods corresponding to operations available with our model. 

Since SAS Micro Analytic Service is a real-time scoring service, it expects a single row of 
data at a time, so line 16 selects the first row of data from our data set and then “scores” 
the record by calling SAS Micro Analytic Service. The result is shown in Output 1 and is the 
prediction from our model on that input: 

 

 
30.003843377 
 

Output 1. Predicted Median Value (in $1,000s) 
And with that, we’ve trained a new model, registered it in our repository, deployed it in a 
real-time environment, and successfully executed it, all with just a few lines Python code. 

SCIKIT-LEARN MODEL 
This next example is similar to the previous one. However, this time we work with a model 
built using the open-source scikit-learn package (Pedregosa, et al. 2011) rather than 
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building it with SAS algorithms. Just as before, the first step in the process is to train the 
model: 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 

import swat 
import pandas as pd 
from sasctl import Session, register_model, publish_model 
from sasctl.services import model_publish as mp  
from sklearn.ensemble import GradientBoostingRegressor 
 
df = pd.read_csv('data/boston_house_prices.csv') 
 
target = 'medv' 
X = df.drop(target, axis=1) 
y = df[target] 
 
model = GradientBoostingRegressor() 
model.fit(X, y) 

 

In lines 7-11 we import the Boston housing data set using Pandas (Reback, et al. 
2019) before separating the data into X and y variables containing an array of input 
features and the target output, respectively. Line 13 defines a gradient boosting model, and 
line 14 trains the model on our housing data set. At this point we have a simple, but 
complete model ready for registration and deployment. Despite not being a SAS model, we 
register this second model in SAS Model Manager using the same register_model task we 
used before: 

 

16 
17 
18 
19 

with Session('example.sas.com', username='BlackKnight', password='invincible!'): 
    model_name = 'Gradboost Regression' 
 
    register_model(model, model_name, input=X, project='Boston Housing', force=True) 

 

Line 16 creates a connection to the SAS Viya environment.  Line 19 registers the model into 
SAS Model Manager and stores it in the same project as the previous model. Note that 
because the project has already been created, the force=True option has no effect. Unlike 
SAS models, those produced with scikit-learn do not contain information about the model 
inputs and outputs. Besides being good to document, this information is critical if we want 
to execute the model or track model degradation over time. The input= parameter provides 
this information and the easiest way to do it is to provide the training data set. Behind the 
scenes sasctl analyzes the data set to determine variable names and types as well as run a 
sample of the data through the model to determine output variables. 

Display 2 shows the updated SAS Model Manager project with the new Python model 
alongside the first model. 
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Display 2. Updated SAS Model Manager Project 

If you open the new model and explore, you’ll notice a few things. First, sasctl has 
automatically created and uploaded the following collection of files to accompany the model 
that should be similar to those in Display 3: 

• a pickled copy of the model. 

• a requirements.txt file that lists the Python packages installed in the environment 
where we registered the model. 

Note: The goal is to capture exactly which versions of packages might have been 
used in building the model. Unfortunately, this is just an estimate, as we can only 
see which packages are installed, not necessarily which ones were used. This is a 
good baseline, but you might refine this list as necessary for production models. 

• SAS programs that wrap the Python model in SAS DS2 code, which enables more of 
the SAS components to interact with a model that was not built with SAS (SAS 
Institute Inc. 2019d). 

 
Display 3. Files Uploaded to SAS Model Manager 

Display 4 shows the input and output parameters that sasctl determined and presented to 
SAS Model Manager because the input= parameter was provided when registering the 
model. In addition to being good practice, this is also necessary if we wish to track the 
model’s performance over time. 
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Display 4. Input and Output Variables in SAS Model Manager 

And finally, sasctl extracts and stores some additional metadata about the model, including 
the type of algorithm used and a description. SAS Model Manager allows user-defined 
properties that are searchable, so sasctl also includes the model parameters and Python 
package information in these properties.  Users can find models with specific settings, or 
models that were built using a particular package version. 
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Display 5. Model Properties in SAS Model Manager 
Of course, the files and metadata included with the model allow for customization.  By 
default, sasctl includes this information for the sake of completeness, and to ensure SAS 
Model Manager has sufficient information to allow it to interact with the model that was not 
built with SAS.  

Because of this, we have the ability to publish the model just as if it were a SAS model. The 
previous example demonstrated how to publish a model to SAS Micro Analytic Service, the 
real-time scoring engine. In the following example, we’ll demonstrate publishing a model to 
CAS, the distributed analytics engine, that affords large-scale data processing capabilities to 
the SAS platform. 

 
20 
21 
22 
23 

    if mp.get_destination('caslocal') is None: 
        mp.create_cas_destination('caslocal', 'Public', 'model_table') 
 
    module = publish_model(model_name, 'caslocal') 

Some environments might already have a CAS publishing destination, while others might 
not. Lines 20 and 21 define such a destination, called caslocal if it does not already exist. 
The specific parameters on line 21 dictate that models published to this destination will be 
stored in a table named model_table, located in the Public caslib (SAS Institute Inc n.d.a). 
Line 23 publishes the model to CAS and makes it available for execution. 

Behind the scenes, what’s actually being published is a DS2 program that wraps our Python 
model. This is because CAS doesn’t currently know how to execute Python code directly, but 
it uses the PyMAS package (SAS Institute Inc 2018b) in DS2 to handle the execution.  Note 
that the example above assumes that the environment has been configured for PyMAS 
execution (SAS Institute Inc. 2018a), which is beyond the scope of this paper. 

Once published, the model executes like any other CAS model.  For this, we will use SWAT 
to connect to CAS and run the model: 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33  

    cas = swat.CAS('example.sas.com', 5570, 'BlackKnight', 'invincible!') 
    tbl = cas.upload(X).casTable 
    cas.loadactionset('modelpublishing') 
 
    result = cas.runModelLocal(modelName=module.name, 
                               modelTable=dict(name='model_table', caslib='Public'), 
                               inTable=tbl, 
                               outTable=dict(name='boston_scored')) 
 
    cas.CASTable('boston_scored').head() 

 
Lines 24-26 are very similar to the initial steps in the SWAT example covered previously – 
they establish a connection to CAS and load the necessary data and CAS action sets. 

Lines 28-31 contain a single command but are spread out for readability. We execute the 
runModelLocal CAS action (SAS Institute Inc 2019b) to score the model on the uploaded 
input data and write the results to a CAS table named boston_scored. 

Line 33 retrieves the first five rows of scored output from the CAS table, which should 
appear similar to those shown in Output 2. 
var1 crim zn indus chas nox … dis dis tax ptratio b lstat 

25.916   0.006 18    2.31    0   0.538   … 4.090 1 296 15.3 396.9 4.98 

21.963 0.027 0 7.07 0 0.469 … 4.967 2 242 17.8 396.9 9.14 

33.927 0.027 0 7.07 0 0.469 … 4.967 2 242 17.8 392.8 4.03 

34.145  0.032 0 2.18 0 0.458 … 6.0622 3 222 18.7 394.6 2.94 

35.413  0.069 0 2.18 0 0.458 … 6.0622 3 222 18.7 396.9 5.33 

Output 2. Sample Results from a CAS Table with “var1” Holding a Predicted Median Value (in 
$1,000s) 

SUPPORTING TASKS 
In the previous section we demonstrated how sasctl enables Python developers to easily 
integrate with SAS and accomplish some of the most common tasks in data science. In this 
section, we’ll demonstrate how to achieve some less common, but equally useful tasks. 

PERFORMANCE MONITORING 
While registering and deploying models are obviously critical steps in any analytics pipeline, 
there are also a host of challenges that only surface once a model is in production. One of 
these, model degradation, is crucial to manage.  Over time almost all models will degrade, 
whether it’s because the process being modeled changes (for example, shifting user 
behavior) or because the input data changes (for example, shifting demographic data). If 
we can monitor these changes over time, then we can intelligently determine when to 
retrain our model. SAS Model Manager performs this monitoring and provides helpful 
visualizations over time (SAS Institute Inc. 2019a). The following example demonstrates 
using this functionality on a scikit-learn model. The following example code builds on top of 
the scikit-learn model developed in the previous section. 

 

33 
34 
35 
36 

    from sasctl import update_model_performance 
    from sasctl.services import model_management as mm, model_repository as mr 
 
    project = mr.get_project('Boston Housing') 
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37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

    project['targetVariable'] = target 
    project = mr.update_project(project) 
 
    mm.create_performance_definition(model_name, 'Public', 'boston') 
 
    perf_df = X.copy() 
    perf_df['var1'] = model.predict(X)   
    perf_df[target] = y                  
 
    for period in ('q1', 'q2', 'q3', 'q4'): 
        sample = perf_df.sample(frac=0.2) 
        update_model_performance(sample, model_name, period) 

Up until now, we’ve only dealt with high-level sasctl tasks, not the underlying services 
supporting those tasks. Here we’ll use two services directly: the model_management and 
model_repository services. Lines 33 and 34 import those services as well as the 
update_model_performance task, which we will use shortly. 

SAS Model Manager monitors model performance by inspecting data tables containing the 
model inputs and outputs.  However, before it can do that it must know which column in the 
table contains the target value. In lines 36-38 we use the model_repository service to 
update the model project and specify the column containing the target variable. 

Line 40 uses the model_management service to create a performance definition. Here we 
specify the name of the model to monitor and tell SAS Model Manager we’ll be placing the 
relevant data tables in the Public caslib with a boston prefix.  Typically, we would collect the 
model’s output over time once it’s deployed and feed this data to SAS Model Manager, but 
for demonstration purposes we’re going to mockup this data. Lines 42-44 create a new data 
set containing the model inputs, the actual target value, and the model’s output for each 
input. 

In lines 46-48 we repeatedly take a 20% sample from this data set and use it to represent 
the results of the model for each quarter. As each result is uploaded to SAS Model Manager 
the model metrics and visualizations are automatically recomputed, resulting in a set of 
visualizations similar to those shown in Display 6. 
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Display 6. Model Manager Performance Reports 

REPORT VISUALIZATIONS 
It is also possible to retrieve reports and visualizations from SAS, rendered on the fly for the 
desired size. SAS includes two microservices that manage reports (SAS Institute Inc. n.d.e) 
and the display of their contents (SAS Institute Inc. n.d.d) and sasctl leverages these to 
allow easy rendering of report visualizations. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 

from sasctl import Session 
from sasctl.services import reports, report_images 
 
Session('example.sas.com', 'knight', 'Ni!') 
 
activity_report = reports.get_report('CAS Activity') 
 
elements = reports.get_visual_elements(activity_report) 
graph = next(e for e in elements if e.label == 'I/O and Threads') 
 
report_images.get_images(activity_report, elements=graph) 

Currently, no high-level task exists in sasctl for retrieving report content.  Despite this, it is 
still a straightforward process to retrieve images.  On line 2 we import the reports and 
report_images services so that we can work directly with them.  Line 6 retrieves that CAS 
Activity report, a system-monitoring report included in all SAS Viya environments (SAS 
Institute Inc. 2019c). The object returned by the service contains basic information about 
the report as well as metadata about the contents of each page in the report. Lines 8 and 9 
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filter those contents and isolate the “I/O and Threads” graph.  The call on line 11 retrieves 
that content from the report. 

Because web browsers are the primary client for these services, we can request the images 
at specific sizes and levels of detail, and the results will be rendered on the fly and returned 
as an SVG image. Since we didn’t specify a size or detail level, sasctl automatically uses 
reasonable defaults. Figure 1 shows the resulting visualization. Note that the result from 
line 11 is one or more SVG images, a standard format for web-based content, but there are 
common Python packages available to convert these to traditional raster formats (pyrsvg 
2016).  

 
Figure 1. CAS Server Activity 

 

LOW-LEVEL USAGE 
Previous examples demonstrated how sasctl aims to be simple and easy to use, providing 
high-level interfaces for common tasks and simple service-level interfaces. As such, we 
haven’t focused on what is being sent to and returned from the SAS services when calling 
them. However, we understand that some users will want or need to have more control over 
their interactions with the SAS environment. The following example shows some of the 
lower-level ways to interact with SAS. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9  

import pickle 
from sasctl import get, get_link, request_link, Session 
 
s = Session('example.sas.com', 'brian', 'N@ughtiusMax1mus') 
 
response = get('files') 
 
for link in response.links: 
    print(link)  
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In addition to the familiar Session object, line 2 imports a few new low-level functions. The 
first, get(), is used on line 6. This makes an HTTP GET request to the specified URL using 
the current session. In this example, the request call is to https://example.sas.com/files. 
This URL corresponds to the top-level URL for the Files service in a standard SAS 
environment, and the result is a dictionary representation of the REST response object 
(generally a JSON payload). This response can be used like a standard Python dictionary, or 
accessed using dot notation, similar to a Pandas DataFrame. 

Many of the SAS microservices follow the HATEOAS paradigm (HATEOAS Driven REST APIs 
n.d.), and the standard is for services to return a links collection containing valid operations. 
Lines 8 and 9 iterate over this collection and display the available links.  

 

 
{'method': 'HEAD', 'rel': 'checkState', 'href': '/files/files',  
 'uri': '/files/files', 'type': 'application/json'} 
{'method': 'POST', 'rel': 'create', 'href': '/files/files', 'uri': '/files/files', 
 'type': '*/*', 'responseType': 'application/vnd.sas.file'} 
{'method': 'GET', 'rel': 'files', 'href': '/files/files', 'uri': '/files/files', 
 'type': 'application/vnd.sas.collection'} 
{'method': 'POST', 'rel': 'bulkFiles', 'href': '/files/files',  
 'uri': '/files/files', 'type': 'application/vnd.sas.selection',  
 'responseType': 'application/vnd.sas.collection'} 
 
 

Output 3. Available Links from the Top-level /files URL 
Some response objects might have numerous valid operations, and therefore many different 
links available. If the name (rel) of the desired link is known, then the get_link() function 
can be used to retrieve the link information from the response. 

 

10 get_link(response, 'files')  

 

 
{'method': 'GET', 'rel': 'files', 'href': '/files/files', 'uri': '/files/files', 
 'type': 'application/vnd.sas.collection'} 
 

Output 4. The “Files” Link 
 

While this makes it easy to get the information for a particular link, generally the goal is to 
actually make a request to that link. We use the request_link() function to make this call. 

 

11 
12 
13 
14 

all_files = request_link(response, 'files') 
 
for file in filter(lambda x: x.name == 'traincode.sas', all_files): 
    print(file) 
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Line 11 makes the request described in Output 4 and returns the results. In this case, that 
link retrieves the metadata about all of the files in the SAS environment (SAS Institute Inc. 
n.d.b). Since this is likely to be a very large list, the Files service supports pagination and 
returns only the first few results. However, sasctl automatically recognizes when this occurs 
and converts the response into a PagedList data structure. The all_files variable references 
such a data structure and operates just like a standard Python list but will transparently 
fetch data from the server only when needed. 

Lines 13-14 demonstrate this capability by iterating through each file and filtering out those 
where the file name is traincode.sas. The (truncated) results are shown in Output 5. Note 
that even though we’re only iterating through each file’s metadata and not the actual file 
contents, this is still not a recommended practice as there may be thousands of files in the 
environment and sasctl will be forced to download the metadata for all of them. 

 

 
traincode.sas 
traincode.sas 
traincode.sas 
traincode.sas 
...  
 

Output 5. Client-Filtered Files Named “traincode.sas” (Truncated) 
Instead, the recommended alternative is to use server-side filtering whenever possible, 
especially when dealing with potentially large collections. Most SAS services support 
multiple filtering methods (SAS Institute Inc. n.d.c) and since sasctl is built on the requests 
module (Reitz 2016) it is simple to pass additional parameters to request_link() to 
customize the request sent. 

 

15 
16 
17 
18  

all_files = request_link(response, 'files', params={'filter': 'eq(name, traincode.sas")'}) 
file = all_files[0] 
content = request_link(file, 'content') 
print(content)  

 

Line 15 again retrieves a list of files named traincode.sas, but unlike before, it uses server-
side filtering to only return the matching files to the client. Lines 16-18 select the first 
matching file and retrieve the actual content of the file. Output 6 shows the first few lines of 
that content, which in this case is SAS code. 

 

 
*------------------------------------------------------------*; 
* Macro Variables for input, output data and files; 
  %let dm_datalib =; 
  %let dm_lib     = WORK; 
  %let dm_folder  = %sysfunc(pathname(work)); 
*------------------------------------------------------------*; 
*------------------------------------------------------------*; 
  * Training for tree; 
*------------------------------------------------------------*; 
*------------------------------------------------------------*; 
  * Initializing Variable Macros; 
*------------------------------------------------------------*; 
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%macro dm_unary_input; 
%mend dm_unary_input; 
%global dm_num_unary_input; 
...  
 

Output 6. Content of the traincode.sas File 
 

In some cases, the file content might not be simple text, or we might want more control 
over how the response is handled. In that case, we can tell the request_link() function how 
to format the response. The following code snippet builds off the previous Scikit-Learn 
Model example and assumes that those files are present in the environment: 

 
19 
20 
21 
22 
23 
  

file = request_link(response, 'files', params={'filter': 'eq(name, "model.pkl")'}) 
 
pkl = request_link(file, 'content', format='content') 
 
pickle.loads(pkl)  

Line 19 requests the file called model.pkl from the SAS environment using another server-
side filter. This is the file containing the pickled scikit-learn model that was automatically 
created by sasctl when the model was registered.  In this case, we’re assuming there’s only 
one such file in the environment. If you have registered multiple such models in your 
environment, you might need to apply additional filtering. 

Line 21 requests the actual content of the file. Since we know the file contains a binary 
pickle object and not regular text, we use the format= parameter to specify that we want 
the raw file contents returned instead of trying to parse it into text/JSON as is the default. 
The result is a binary string we unpickle on Line 23, giving us back the original scikit-learn 
model. 

 

 
GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse', 
                          init=None, learning_rate=0.1, loss='ls', max_depth=3, 
                          max_features=None, max_leaf_nodes=None, 
                          min_impurity_decrease=0.0, min_impurity_split=None, 
                          min_samples_leaf=1, min_samples_split=2, 
                          min_weight_fraction_leaf=0.0, n_estimators=100, 
                          n_iter_no_change=None, presort='deprecated', 
                          random_state=None, subsample=1.0, tol=0.0001, 
                          validation_fraction=0.1, verbose=0, warm_start=False)  
 

Output 7.  Unpickled scikit-learn Model from SAS Model Manager 

CONCLUSION 
We’ve demonstrated how the new sasctl package enables Python developers to integrate 
with the SAS platform without having to focus on the technical details of the integration. 
The single overriding goal is to make integration easy by providing the following: 

• high-level operations for accomplishing common tasks. 

• medium-level access to each SAS microservice for easy integration with specific 
services. 
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• low-level access to the underlying REST framework, allowing custom requests 
without having to worry about authentication, logging, or security. 

• an easy way to retrieve all REST responses and requests, enabling the foundational 
REST interactions to be easily replicated in other tools and programming languages. 

The sasctl package is intended to be a community-driven package as we believe the Python 
user community is best equipped to identify what functionality should be added or 
improved. As such, we welcome and greatly appreciate any contributions or feedback!  The 
current version of sasctl contains many enhancements since its initial release in 2019, and 
we will continue to improve the package with input from our users. 

APPENDIX 

INSTALLING SASCTL 
Install the sasctl package in any current Python environment using pip: 

pip install sasctl 

 

sasctl requires a few additional packages, but if these packages are not already present, 
they will be downloaded and installed automatically: 

• requests 

• six 

 

Further, note that the examples described in this paper require functionality from some 
additional packages: 

• pandas 

• sklearn 

• swat 

ESTABLISHING SESSIONS 
The first step in using sasctl is to establish a session to a SAS Viya server. When creating 
the session, sasctl performs a few steps behind the scenes: 

• verifying the identity of the SAS server 

• authenticating the user 

• obtaining an authorization token 

While the steps above are usually transparent to the user, it is important to understand 
these steps since establishing a session can sometimes cause difficulty for new users. By 
default, sasctl communicates with the SAS server using an encrypted HTTPS connection, 
and before establishing this connection it verifies the server’s identity by validating the 
server’s digital certificate. Generally, this is not a problem in production environments, but 
development and test environments often use servers with self-signed certificates that are 
not automatically trusted by your machine. If this is the case, you must either update your 
machine to trust the certificate or tell sasctl to skip the certificate verification step. There 
are a few different ways to do this (SAS Institute Inc. 2019e) but the easiest is usually to 
specify verify_ssl=False when creating the session, like the following: 

s = Session('example.sas.com', 'arthur', 'K1ng0fTheBr!tons', verify_ssl=False) 
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