

1

PAPER SAS4526-2020

ODS: It’s Not Just for Tables Anymore. Using Formatted Text

and Lists in Your Reports

Scott Huntley, SAS Institute Inc.

ABSTRACT

You’re used to seeing tables in your ODS reports, but maybe you need that extra something
to drive your results home. Did you know that you can add formatted text and lists to your

report? With PROC ODSLIST and PROC ODSTEXT, you can add richer descriptions to your

reports, or even generate data-driven lists and blocks of text.

The examples in this paper demonstrate several ways to display your output. Whether you

need to create a form letter or an infographic, PROC ODSLIST and PROC ODSTEXT can help

you generate the report that you want.

INTRODUCTION

The Output Delivery System (ODS) provides several ways for you to create the perfect way

to display your SAS output. Traditionally, ODS output contains tables and graphics.

This paper covers two new SAS procedures in first maintenance release of SAS 9.4: PROC

ODSLIST and PROC ODSTEXT. PROC ODSLIST creates bulleted lists. PROC ODSTEXT

creates text blocks like the statement ODS TEXT= . Both procedures can be used with any
ODS destination; however, these procedures are essential to creating content for the ODS

destinations PowerPoint and EPUB.

The intended audience is anyone who has a basic understanding of the ODS system. This
paper provides code samples to assist users in adding these new features to their existing

SAS programs.

CREATING BULLETED LISTS

Creating a bulleted list is a great way to delineate information. It also helps break up long
text strings into readable bits of text. In earlier versions of SAS, you could use titles,

footnotes, or ODS TEXT to create a static bulleted list. Here’s an example of using ODS

TEXT:

 options nodate nonumber nocenter;

 ods escapechar="^";

 ods pdf;

 title 'Lists using ods text';

 ods text = '^{unicode 00B7} Item 1';

 ods text = '^{unicode 00B7} Item 2';

 ods text = '^{unicode 00B7} Item 3';

 ods text = '^{unicode 00B7} Item 4';

 ods _all_ close;

2

In the code above, the ODS inline style Unicode function is used to produce the dot for the

list. If you want to indent or add spaces to the bulleted list, you must use the ODS inline
style nbspace to adjust the spacing. It’s a very manual process and it produces a static

list.

Running the code produces this output:

Figure 1. Lists using ODS Text

Here is an example using PROC ODSLIST to create the same bulleted list. The syntax is

very simple. Each ITEM statement specifies what gets displayed in the bulleted list.

 title 'Simple odslist example';

 ods pdf;

 proc odslist;

 item 'Item 1';

 item 'Item 2';

 item 'Item 3';

 item 'Item 4';

 end;

 run;

 ods _all_ close;

The output looks similar, but the results are improved:

Figure 2. List with PROC ODSLIST

3

The bulleted list is indented automatically. The default character to signify the list is the
disc. You can easily modify the default character if desired by using the style attribute

liststyletype. This paper discusses how to change the default character in the ‘Style

Adjustments’ section.

 proc odslist;

 item;

 list / style={liststyletype="decimal"};

 item 'Item 1’;

SAS can do much more than create simple static bulleted lists with PROC ODSLIST. The
ITEM statement in the procedure is a real differentiator. The ITEM statement is a SAS

expression, so it can contain both variable names and DATASET functions. You can read

from a data set and produce bulleted lists from that data set. The PROC ODSLIST syntax
supports the DATA= option. In this example, each player's name, career hits, and home

runs are listed out from the SASHELP.BASEBALL data set for the first 5 observations:

 ods pdf;

 title 'Baseball Players, Career Hits, and Career Home runs';

 proc odslist data=sashelp.baseball(obs=5);

 item Name || put (CrHits, 5.) || put (CrHome, 5.);

 run;

 ods _all_ close;

Running the code produces this output:

Figure 3. List from dataset variables

Notice the use of only one ITEM statement with a complex SAS expression. Each

observation of the data set is read and produces one line of output in the PDF file. The
variables Name, CrHits, and Crhome are displayed. The numeric variables are formatted to

be a numeric with a length of five digits with no decimals.

4

NESTED LISTS

You can further expand the lists even more by introducing nested lists. From the previous

example, you can see that an expression was used in the ITEM statement comprised of

dataset variables and PUT functions. That means each observation is produced individually.
To create a nested list an ITEM/END block of SAS code is needed. There is one restriction

on the ITEM statement: ITEM statements that do not specify an expression must end with
an END statement. More SAS statements are needed inside the ITEM block. The first

statement you need is the P statement. The P statement specifies that a new paragraph is

created inside an ITEM block. Multiple P statements can be used in an ITEM block. After
each P statement, there can exist a LIST/END block that contains ITEM statements that

generate a bulleted list.

Here is a quick example using the P and LIST statements:

 title 'Nested odslist example';

 ods powerpoint;

 proc odslist;

 item;

 p 'Fruit';

 list;

 item 'Apple';

 item 'Banana';

 end;

 end;

 item;

 p 'Vegetables';

 list;

 item 'Carrots';

 item 'Lettuce';

 end;

 end;

 item;

 p 'Beverages';

 list;

 item 'Water';

 item 'Lemonade';

 end;

 end;

 run;

 ods _all_ close;

5

Running the code produces this output:

Figure 4. Nested List

To recap how the code works, the ITEM/END block creates the outside list. The P statement

indicates that item’s content. The LIST/END block then creates the inside list to complete

the nested list.

STYLE ADJUSTMENTS

ODS is all about presentation. A big part of the presentation comes from using STYLE and
STYLE attributes. Style attribute changes, including color or font size, are achieved the

same way as with any other ODS code. PROC ODSLIST can easily use styles to make your

lists really standout. A standout for PROC ODSLIST is the style attribute liststyletype.
This attribute allows you to change the style of the list indicator. The SAS documentation

has an entire section discussing which style attributes are available to which destinations.
Here is the code from the nested list example modified to include some basic styles

attribute changes.

Here is a quick example of modifying the results with styles using the ODS WORD

destination:

6

 title 'Nested odslist example with Style';

 ods word;

 proc odslist;

 item / style={liststyletype="decimal_leading_zero”

 fontsize=12pt

 color=blue};

 p 'Fruit';

 list;

 item 'Apple';

 item 'Banana';

 end;

 end;

 item;

 p 'Vegetables';

 list / style={liststyletype="decimal" fontsize=12pt color=green};

 item 'Carrots';

 item 'Lettuce';

 end;

 end;

 item / style={liststyletype="none" fontsize=12pt color=purple};

 p 'Beverages';

 list / style={liststyletype="upper_alpha” fontsize=12pt color=red};

 item 'Water';

 item 'Lemonade';

 end;

 end;

 run;

 ods _all_ close;

Running the code produces this output:

Figure 5. Nested List with Styles

7

Notice that six different types of the liststyletype attribute (decimal_leading_zero, circle,
disc, decimal, none, upper_alpha) are used in this example. Each of these style attribute

types are set at different levels to help show how flexible it can be. The first ITEM/END

block uses the DECIMAL_LEADING_ZERO type for its list indicator. The font size and color
attributes for the paragraph text are also used. The circle indicator is used for the nested

list under the “Fruit” heading. In the next ITEM/END block for “Vegetables,” the style
attribute is not set for the indicator, so the default disc indicator for the ITEM block is used.

The liststyletype attribute for the list items under “Vegetables” is set to decimal and the font

color is set to green. On the last ITEM/END block the style attribute is set to none.
Therefore, there is no bullet for “Beverages” and the text color is set to purple. The nested

LIST/END block has the color set to red and uses style attribute value, “UPPER_ALPHA,” as

the indicator.

CREATING BLOCKS OF TEXT

Most output created for customer reports has text included to embellish the tables and

graphs that are created by SAS procedures. This text can help explain a graphic better or

be a part of a larger report that has text embedded throughout. As mentioned earlier, most
coders use titles, footnotes, and ODS TEXT to put text into their output. Using the ODS

TEXT statement to put one or more text strings in your output is useful but, in my opinion,
PROC ODSTEXT makes coding text statements easier. PROC ODSTEXT is used to create

text blocks. These text blocks create lists and paragraphs for your output.

Here is a simple example of PROC ODSTEXT:

 ods pdf;

 title 'Quick example of ODSTEXT';

 proc odstext;

 p 'Creating simple text to show off PROC ODSTEXT';

 p '';

 p 'The quick brown fox jumps over the lazy dog. The quick brown fox

jumps over the lazy dog.';

 p '';

 p 'Closing out the ODSTEXT block with a 3rd line' / style=[color=blue

 fontweight=bold];

 run;

 ods _all_ close;

Running the code would produce this output:

Figure 6. Simple ODSTEXT example

8

In this PROC ODSTEXT statement example, five P statements are used to create the sample
text. Notice the P statement with no text is used to create some spacing in the text block to

make it more readable. The fifth P statement uses style attributes to make the text bold

and blue.

Creating a paragraph of text is one piece of a text block. PROC ODSTEXT can also create

bulleted lists. There are some differences in the syntax when compared to PROC ODSLIST.
It’s important to read the SAS documentation that explains the differences in more detail.

Also, the spacing in the lists and the bullet points are slightly different as well.

Here is an example of ODSTEXT with text and a bulleted list:

 ods pdf;

 title 'Quick example of ODSTEXT with Text and a List';

 proc odstext;

 p 'Creating some simple text to show off PROC ODSTEXT';

 p '';

 p 'The quick brown fox jumps over the lazy dog. The quick brown fox

 jumps over the lazy dog.';

 p '';

 p 'Creating a list';

 list;

 item 'Quick Brown Fox';

 item 'Lazy Dog';

 end;

 p '';

 p 'Closing out the ODSTEXT block' /

 style=[color=blue fontweight=bold];

 run;

 ods _all_ close;

9

Running the code would produce this output:

Figure 7. ODSTEXT with Text and a List

As mentioned above, be sure to notice the distinct syntax that creates a list within PROC

ODSTEXT. The LIST/END block is used to create this list.

Similarly, PROC ODSTEXT supports the DATA= option in order to read SAS datasets. Using

SASHELP.BASEBALL, you can expand on the previous example (Figure 3) that used PROC
ODSLIST. You can create a form letter that reads a dataset and produces standardized text

for each observation. Adding an expression using the CELLSTYLE syntax, you can use logic

to make some information stand out. Notice how the players that have more than 400

home runs appear in red and the font is italicized.

Here is an example of using PROC ODSTEXT to create paragraph text and a bulleted list:

 ods escapechar = "^";

 ods word;

 title 'Home run Hitters over 350 home runs in 1996';

 title2 'Players with over 400 home runs are in ^{style [color=red]red} and

 in ^{style [fontstyle=italic]italic}';

 data test;

 set sashelp.baseball;

 where CrHome > 350;

 run;

 proc odstext data=test;

 p "Player's name ... " || name;

 list;

 cellstyle Crhome > 400 as {fontstyle=italic color=red};

 item 'Team Name was ' || Team;

 item 'Career Home runs were ' || put(CrHome, 3.);

 item 'Position was ' || Position;

 end;

 end;

 run;

 ods _all_ close;

10

Running the code produces this output:

Figure 8. ODSTEXT Reading from a SAS Dataset

The code is condensed and easy to understand. Starting with two title statements

containing inline styles to describe the output, the data step code is used to filter the data

by selecting players with over 350 career home runs. Then PROC ODSTEXT reads each
observation in the dataset in order to display information about each player. PROC

ODSTEXT is a perfect way to create a form letter from your SAS datasets.

11

WHICH PROCEDURE DO I USE?

The big question … How do you decide which procedure to use?

The ODSLIST procedure can only render lists where each list item corresponds to a data set

row. If all you need is a quick static or bulleted list, then PROC ODSLIST is your answer.

The ODSTEXT procedure can do anything ODSLIST does and more. PROC ODSTEXT is more

flexible because it can easily combine both text and lists.

Experiment with each procedure to determine which is the better solution for you.

CONCLUSION

The Output Delivery System strives to provide numerous ways to create the perfect output

you need to show off your SAS work. PROC ODSTEXT and PROC ODSLIST are two new

procedures to help you in that endeavor.

ACKNOWLEDGMENTS

The author would like to thank Allison Crutchfield, David Kelley, Bari Lawhorn, and Kevin

Smith for their assistance and contributions to this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Scott Huntley

SAS Institute Inc.
Scott.Huntley@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

	Paper SAS4526-2020
	Abstract
	Introduction
	CREATing bulleted Lists
	Nested Lists
	Style adjustments

	Creating Blocks of Text
	Which procedure do I use?
	Conclusion
	Acknowledgments
	Contact Information

