

1

Paper SAS4485-2020

Automation in SAS® Visual Data Mining and Machine Learning

Wendy Czika, Christian Medins, and Radhikha Myneni, SAS Institute Inc.

ABSTRACT

Automated machine learning can help every data scientist, from the novice to the most
experienced practitioner. This paper demonstrates the different levels of automation

available in the Model Studio environment of SAS® Visual Data Mining and Machine Learning
software. You can choose to have features automatically constructed or to automate the
process of algorithm selection and hyperparameter tuning by using dedicated Model Studio
nodes in the pipeline that represents your machine learning process. You can build on or
edit a pipeline that includes these nodes, inserting your domain expertise into the process.

Alternatively, you can ask the software to automatically build an entire pipeline that
includes various feature engineering steps and predictive models, optimized for your specific
data according to the assessment criterion of your choice. The included models are
determined using hyperparameter tuning across multiple modeling algorithms. Not only do
these automation techniques aid and accelerate the modeling process for beginning users,
but they also relieve expert data scientists of the burden of iterating through various feature

engineering steps, model hyperparameter values, and modeling algorithms, enabling them

to focus on solving the problem at hand.

INTRODUCTION

Automated machine learning (commonly referred to as AutoML) involves, as you would

expect, automating the tasks that are required for building a predictive model based on
machine learning algorithms. These tasks include data cleansing and preprocessing, feature
engineering, feature selection, model selection, and hyperparameter tuning, which can be
tedious to perform manually. Platforms that provide this capability offer many benefits,
including empowering data analysts or “citizen” data scientists by giving them a start at a

machine learning workflow, as well as enabling advanced data scientists to spend more time
on solutions to a problem rather than being bogged down with the repetitive tasks that they
must do to determine the best workflow for their data. Note, however, that automation is
not intended to replace the work of data scientists; ideally, there should be support for
manual intervention by experts in these systems to allow the performance of tasks such as

domain-specific feature engineering, which can be a critical component of predictive
modeling. These systems should also be transparent with regard to the algorithms being
used under the covers, so that users can be aware of and understand (and thus trust) the

models being generated.

Although Forbes listed the growing prominence of automated machine learning as an
artif icial intelligence trend to watch for in 2019 (Janakiram MSV 2018), this is not new
territory for SAS® software. SAS® Rapid Predictive Modeler software was f irst released in
2010, empowering users to develop predictive models by providing a process f low of

automated data preparation and data mining tasks as part of SAS® Enterprise Miner™
software. The Model Studio visual interface for SAS Visual Data Mining and Machine
Learning in SAS® Viya® is a modernized version of SAS Enterprise Miner that leverages the
cloud-enabled, in-memory analytics engine of SAS® Cloud Analytics Services (CAS) to run

2

algorithms in a distributed fashion (Wujek, Haller, and Wexler 2018). Model Studio provides
automation like that of SAS Rapid Predictive Modeler, as well as more sophisticated

automated machine learning that is presented in this paper. And automating your entire
pipeline isn’t the only degree of automation that is available. The paper presents various
levels of automation that you can include in your machine learning pipeline-building
process. You can do any combination of automated tasks, such as having the system
determine variable roles and levels for you, create the best transformation for numeric

features, generate multiple new features based on inputs and their prof iles, and perform
hyperparameter tuning. Alternatively, the whole process can be automated, through the
Model Studio interface as well as using a REST API. The Machine Learning Pipeline
Automation API can be integrated into your own applications to automatically build a
pipeline, run it, and return the champion model, which can then be deployed. All these tasks

are performed using SAS Visual Data Mining and Machine Learning under the hood.

AUTOMATION FROM THE MODEL STUDIO USER INTERFACE

DATA PREPROCESSING AND FEATURE ENGINEERING

Model Studio provides plenty of f lexibility for including your data preprocessing steps in your
machine learning pipeline so that you can address data issues and make your inputs more

effective in your model. These steps include nodes for imputing and transforming variables,
f iltering or replacing outliers, and reducing dimensionality. Even if you are manually building
your pipeline with these nodes, there is automation taking place that you might be unaware

of.

Data Advisor

One benefit that Model Studio provides to users is the data advisor. The data advisor serves
to both prescreen your inputs and determine their measurement level—that is, whether an
input should be treated as a categorical (nominal) input or a continuous (interval) input.
Prescreening and measurement level determination are based on the following values,

which you can control in the Advisor options (see Figure 1):

• Maximum class level – the maximum number of levels for a nominal input. This
prescreening option serves to exclude a nominal input whose cardinality exceeds the

specif ied value. Nominal inputs that exceed 254 class levels are automatically
excluded regardless of the value specified here. Nominal inputs are excluded by
setting their role in metadata to either “Rejected” or “ID.” Character variables that
exceed 254 levels are set to “ID,” and all other nominal variables (character and
numeric) that don’t exceed 254 levels but are greater than the specified value are

set to “Rejected.”

• Interval cutoff – the minimum number of levels that a numeric variable must have in
order to be classif ied as an interval input. A numeric variable that is below this

number of levels is classif ied with one of three class levels (Nominal, Binary, Unary).
Further analysis of nominal variables via the “Maximum class level” option serves to

screen out high-cardinality variables.

• Maximum percent missing – the cutoff value for the missingness percentage allowed
in a variable. This prescreening option serves to exclude inputs whose missingness
percentage exceeds the specified value. These inputs are excluded by setting their
role in metadata to “Rejected.” You can choose not to apply this prescreening option

by deselecting Apply the “maximum percent missing” limit.

3

Figure 1. Advisor Options in User Settings

You can access the Advisor options globally via the User settings, which are the default

settings for all projects, or locally for a specific project via the Advanced button in the New
Project dialog box for that project. You can use all the decisions that the advisor
automatically determines, or you can override any number of them to insert your business
logic into what variables are used in your predictive models and how they are used. Don’t
want to override the same decisions in future projects? You can save any of the information

or settings for any variable in the global metadata repository. This allows any new project

that contains variables with the same names to automatically inherit these settings.

Best Transformation in Transformations Node

Another feature of Model Studio is the “Best” transformation method, available in the
Transformations node. You might have inputs that you know are skewed and could benefit
from a transformation, but you aren’t sure which transformation would best normalize

them. The Best transformation method includes typical Box-Cox transformations (x–2, x–1,
x–1/2, x1/2, x2) and others, such as Centering, Log, Log10, and Standardization. You can
specify which ranking criterion to use to determine the best transformation, including
target-based assessments for either binary or interval targets. In this ranking process, the
transformations are applied to each input, the resulting values are analyzed according to the

selected ranking criterion, and the top-ranked transformation is selected. Thus, the best
transformation is automatically chosen for you. In the Transformations node (Figure 2), you
access this method by selecting Best in the Default interval inputs method property. This
selection is applied to all interval inputs that come into the node, unless the action is
overridden by specif ic variable transformations identified via the Data tab or the Manage

Variables node.

4

Figure 2. Best Transformation Method in the Transformations Node

This is the list of transformations available through the Best method:

• None – no transformation
• Centering – variable’s value minus its mean
• Log
• Log10

• Square

• Square root

• Inverse square root

• Inverse

• Inverse square
• Range standardization – variable’s value transformed onto the range 0 to 1

• Standardization – variable’s value standardized using its mean and standard
deviation

The example report shown in Figure 3 presents the list of input variables with their selected

transformations. In this example, the Pearson correlation coefficient is the ranking criterion.

5

Figure 3. Best Transformation Example Output

For more detailed information about the Best transformation method, see “Appendix A: Best

Transformation.”

Feature Machine Node

Whereas you access the Best transformation method from within the Transformations node,
an entire set of transformed features is automatically generated by the Feature Machine
node. This node uses a three-step process to generate features. First, it explores the data

such that input variables are grouped into categories that share the same statistical profile.
This prof ile uses many variable attributes, including cardinality, coefficient of variation,
entropy, qualitative variation, skewness, kurtosis, missingness, and outlier percentage.
Next, the node screens input variables to identify variables to be excluded from feature
generation or to be transformed in a specif ic way. Finally, the variables that survive the

screening process are used to generate features, based on the exploration groupings and as
required by the transformation policies specified in the node properties. Seven
transformation policies are available for selection in the node (Figure 4), as shown in the
following list. The features that are generated for each policy are designed to treat the data
issue ascribed to that policy. Policies that are marked with an asterisk are enabled by

default.

• *Cardinality – treatment of high cardinality

• Entropy – treatment of low entropy

• Kurtosis – treatment of high kurtosis

• *Missingness – treatment of missing values

• Outliers – treatment of outliers

• Qualitative variation – treatment of low indices of qualitative variation

• *Skewness – treatment of high skewness

6

Figure 4. Transformation Policy in the Feature Machine Node

The following large pool of feature transformations is used to address the transformation

policies in the preceding list:

• Mode or median imputation

• Binary missing indicator

• Target encoding

• Level count encoding

• Level count rank encoding

• Rare level grouping

• Nominal level grouping using tree-based binning

• Tree-based binning

• Box-Cox power transformations

• Tukey’s ladder of power transformations

• Yeo-Johnson power transformations

• Winsorization

7

Multiple features can be generated per input variable, with the type and number of features
determined by the transformation policies that are selected. The name of each feature

defines the transformation steps that are applied for that feature. As an example, using the
UCI Machine Learning Repository data (Dua and Graff 2019) on credit card client defaults
(Yeh and Lien 2009), for a feature named “ho_winsor_BILL_AMT2,” the input variable is
BILL_AMT2, “ho” means that this feature is generated to address high outliers in the input,
and “winsor” means that its distribution is transformed using the Winsor method. The

features are subset (by default) with a feature selection process in which two features are
kept (by default) per input. For any input variable that has a feature that is output, the
input variable is dropped (rejected in metadata) by default. For more information about the

Feature Machine node, see “Appendix B: Feature Machine Node.”

MODELING

When you have your data ready for modeling, there are multiple modeling algorithms to
choose from, and within each one of them is an abundance of options and hyperparameters
to set. Hyperparameters are properties that affect the training process, and thus they affect

the quality of the resulting predictive model. Examples of hyperparameters include learning
rate, regularization parameters, and the number of trees in a forest. Finding the optimal
values for the hyperparameters for each model can involve a lot of manual trial and error.
To f ind the optimal values in an automated manner, automatic hyperparameter tuning
(autotuning) can perform an algorithmic search to determine the best model settings for

your data. Autotuning (Koch et al. 2017) seeks to minimize or maximize a chosen objective
function (typically a measure of model error) by using search methods such as Bayesian
kriging, genetic algorithm, grid search, Latin hypercube sampling, and random search.

Supervised Learning Nodes: Autotuning Properties

To automate the identif ication of the hyperparameter values that give you the most
accurate model, you can enable the Perform Autotuning property available in six of the
Supervised Learning nodes in Model Studio: the Bayesian Network, Decision Tree, Forest,
Gradient Boosting, Neural Network, and SVM nodes. Enabling this property requests that

the optimal values of the available hyperparameters be chosen automatically. You can
control which hyperparameters to autotune, the range of values to tune across, and the

hyperparameter value to start with.

Figure 5 shows the autotuning properties of the Decision Tree node. You can see that there
are four hyperparameters that can be autotuned for this modeling algorithm: Maximum
Depth, Minimum Leaf Size, Interval Input Bins, and Grow Criterion. There are also other
options related to the search method, and then a subset of general autotuning options are
also shown. These options control the method of partitioning validation data, the objective

function to optimize, and the limits for the time spent autotuning.

8

Figure 5. Autotuning Properties of the Decision Tree Node

When the optimal set of hyperparameters has been determined on the basis of these
properties, the model is trained using those hyperparameter values, giving you the results
and assessment that you would get if you had set the values manually. The table in Figure 6

is included in the node results and shows the optimal values that were found for the
hyperparameters, the evaluation at which they were used, and the value of the objective
function (the Kolmogorov-Smirnov statistic in this example). Also included in the results for
the node (not shown) is the “Autotune Results” table, which shows the sets of values of
hyperparameters that were tried, the evaluation, the resulting objective function, and the

evaluation time.

9

Figure 6. Optimal Values for Hyperparameters for the Decision Tree Node

Model Composer Node

New in SAS Visual Data Mining and Machine Learning 8.5 is the Model Composer node for
performing what is known as combined algorithm selection and hyperparameter tuning
(CASH). This feature adds another level of automation to autotuning, which can further

enhance your productivity. It enables you to autotune various model types in parallel and
performs multiple rounds of autotuning. The number of evaluations that are allocated to
each model type in the rounds after the f irst round (where they are equally allocated) is
determined by the accuracy and computational cost of each model type in previous rounds.
When the rounds of autotuning are complete, the overall best model (according to your

objective function) across model types that has the optimal set of hyperparameters is
selected. The properties for the Model Composer node are shown in Figure 7, including the
autotuning properties that are common to the Supervised Learning nodes mentioned

previously.

10

Figure 7. Properties of the Model Composer Node

The Model Composer node determines the best modeling algorithm and its best
configuration of hyperparameters based on your data and the properties you set. The score
code from that particular model is provided, in either DATA step or analytic store (astore)
form. If you request any of the model interpretability plots, they are included in the node
results for the best overall model as well. You can also see the best configurations for the

other model types. Figure 8 shows four of the tables that the node results include: the top
models for each model type and their objective function value, the configuration for the top
overall model, the best configuration for each model type, and the evaluations that are used

per round for each model type.

11

Figure 8. Results of the Model Composer Node

AUTOMATING THE ENTIRE PIPELINE

So far, the paper has discussed different pieces of a machine learning pipeline that can be
automated individually. For a fully automated experience, there are tools available to you in
Model Studio to have an entire pipeline built for you, either using a static, prebuilt template

or having a pipeline dynamically generated that is specif ically tailored to your data.

Templates

Model Studio offers a broad array of prebuilt pipeline templates for predictive modeling,
along with a template for feature engineering. These “getting started” tools give you the
means to apply classical and modern modeling and feature engineering techniques to your

data so that you can quickly integrate predictive analytic capabilities earlier in the decision-
making cycle. You can choose f rom basic, intermediate, advanced, and advanced-with-
autotuning predictive modeling templates. There are two versions of each template—one
where the target is a class (categorical) variable, and one where the target is an interval

variable.

• Basic template – includes a regression model (logistic for a class target, linear for

an interval target) with imputation.

• Intermediate template – includes the Basic template and adds a decision tree
model and a stepwise regression model (logistic for a class target, linear for an

interval target) with imputation and variable selection.

• Advanced template – includes the Intermediate template and adds a gradient
boosting model, a forest model, a neural network model with imputation and variable

selection, and an ensemble model. (See Figure 9.)

• Advanced template with autotuning – includes the Advanced template and adds

hyperparameter autotuning to the nonregression models.

12

Figure 9. Advanced Template for Class Target

Also available is the feature engineering template. This template gives you the means to
execute a prebuilt pipeline that transforms your data, producing different types of features
with the goal of improving predictive modeling performance. The feature engineering
template treats your data to handle high cardinality, high dimensionality, missingness,

skewness, and variable selection, generating three different feature result sets that use a

variety of feature engineering methods. (See Figure 10.)

13

Figure 10. Feature Engineering Template

In the template pipeline, the f irst three nodes use the following feature engineering

techniques:

• Median imputation for interval inputs – treatment of missingness

• Target encoding for class inputs – class to interval feature mapping for treatment of

high cardinality

• Observational clustering – clustering by using the k-prototypes algorithm to extract a

cluster feature that can provide more information for predictive modeling

Next, a variable selection node takes as input the original input variables and the generated
features from the three feature engineering methods in the preceding list, applying two
supervised methods to select the features that provide the most information about the
target. This subset of features is the source for the following three downstream feature
engineering nodes, each applying a different feature engineering technique to generate a

feature set:

• Transformations – Best: This node transforms all interval variables by using the Best

transformation method. See the “Data Preprocessing and Feature Engineering”

section of this paper for more information about this method.

14

• Feature Extraction – Autoencoder: This node uses the autoencoder technique to
create new features from all input variables, both nominal and interval. Using the

neural network algorithm, an autoencoder is an unsupervised learning technique
whose objective is to learn a set of lower dimensional features that can be used to
reconstruct the input data. Ten lower-dimensional features are extracted here. You
can f ind the white paper that includes a discussion of this technique at

https://support.sas.com/resources/papers/proceedings16/SAS3100-2016.pdf.

• Feature Extraction – PCA: This node implements principal component analysis (PCA)
to extract f ive lower-dimensional features (principal components) from the set of 500
or fewer interval inputs. If there are more than 500 interval inputs in the data, this

node uses the singular value decomposition (SVD) technique instead of PCA to

extract f ive lower-dimensional features.

Each of these three feature engineering branches, along with the original untransformed
data, is used as input to a gradient boosting modeling node so that you can compare the
predictive performance among the four sets of data. After running this template against
your data, view the Model Comparison node for the assessment results. In Figure 11, you
can see that the PCA and Gradient Boosting model, whose source is the PCA feature set, has

the best KS assessment result.

Figure 11. Model Comparison Results from Feature Engineering Template

Automatically Generated Pipelines

One of the most exciting new features in SAS Visual Data Mining and Machine Learning 8.5

is the option to automatically generate the pipeline when you add a pipeline to your Model

Studio project, as shown in Figure 12. This combines some of the automation concepts

mentioned previously with intelligence being used behind the scenes to dynamically create

the optimal pipeline for your data. It takes the Advanced templates a step further by

attempting to improve on their champion models by using techniques such as these:

• applying the Best transformation method to interval inputs

• binning and/or encoding variables to create new features

• imputing and/or creating missing value indicators

• generating a set of new features for each input based on its characteristics

• selecting important inputs

• creating an ensemble model of two or more of the top branches of the pipeline

https://support.sas.com/resources/papers/proceedings16/SAS3100-2016.pdf

15

Figure 12. New Pipeline Dialog Box with Option to Automatically Generate the

Pipeline

Selecting this option gives you the pipeline that contains the top f ive models, in the time

allotted if a time limit is set, based on the Model Comparison selection statistic and partition
that you specify in Model Studio Project Settings. The top f ive models include a regression
model (logistic for a class target or linear for an interval target), so you always have an

interpretable model in case you need one for regulatory or other such purposes.

When the pipeline has been generated, the nodes that the pipeline includes and the
properties that are set for them provide details of the data preprocessing steps that are
being performed and the supervised learning algorithms that are being used; there is no
“black box” aspect of this process. You can then run the pipeline in its locked state to get

the overall pipeline champion model, shown in the Model Comparison node, based
completely on the automation. Alternatively, you can unlock the pipeline so you can edit it
to include your domain knowledge by adding, deleting, or modifying nodes in the pipeline.

Other subsequent tasks for the pipeline that is built could include the following:

• performing autotuning in the Supervised Learning nodes, by turning on that
property, if you have time to run and potentially improve your model by tuning its
hyperparameters. This can be done automatically when you use the Enhanced

modeling mode with the REST API (see the next section for more information).

• turning on model interpretability properties in the Supervised Learning nodes to get
a better understanding of the inputs that drive the predictions in general, by using

variable importance and partial dependency (PD) plots, or a better understanding of
the predictions for specific observations in your data, by using ICE, LIME, and/or

Kernel SHAP techniques

• comparing the champion from this pipeline with a pipeline that you have manually
built, or with a pipeline from a template that you had previously saved or a colleague

shared with you

16

Again, using the credit card clients data from the UCI Machine Learning Repository, in order
to predict probability of default on credit card payments, Figure 13 presents an example of

the automatically generated pipeline that uses the default Project Setting values. The best
models that are found include a forest model that uses the Best transformation method for
each interval input and the binning of rare levels for class inputs that are then target-
encoded; a forest model with two new features generated per input by using the Feature
Machine node; a forest model with no preprocessing, along with a logistic regression model

included for interpretability; and an ensemble model that averages the posterior

probabilities of these four models.

Figure 13. Automatically Generated Pipeline Using Default Project Settings

Just by changing the Class selection statistic option in Project Settings from the default of
Kolmogorov-Smirnov statistic (KS) to Multiclass log loss and generating a new pipeline,
you can see in Figure 14 how the pipeline contains different data preprocessing steps
represented by the nodes, based on the different selection statistic. For example, weight-of-

evidence (WOE) encoding is applied to high-cardinality inputs, dif ferent types of imputation
are performed, and the best ensemble model includes only the forest models, not the

logistic regression.

17

Figure 14. Automatically Generated Pipeline Using Modified Project Settings

AUTOMATICALLY GENERATED PIPELINES USING REST API

Another way to automatically generate pipelines in Model Studio is through RESTful
interfaces. These interfaces enable you to embed this capability into your custom
applications and drive it with a few clicks. The Machine Learning Pipeline Automation REST
API is a set of endpoints that enables you to control more parameters than those available

through the Model Studio user interface.

A REST request to create a project requires only the input data and a target variable in
order to start the pipeline automation process. The process f irst creates a Model Studio
project, runs the Advisor (to determine metadata), partitions and samples the input data

(based on the parameters in the request or from Model Studio project settings), tries
various models, and f inally builds a pipeline by using top n (n=5 by default) models from

the previous step.

When you create a project, you can modify the parameters shown in Table 1 and Table 2,
which appear under settings and analyticsProjectAttributes in the request payload of the

REST API.

18

Table 1. Parameters in Create Project Request under Settings

Parameter Name Parameter Description

autorun Specif ies whether to run the pipeline after it is automatically

built. Valid values are True and False. The default is True.

maxModelingTime Specif ies the modeling time in minutes. Valid values include

any integer greater than zero.

modelingMode Specif ies the modes of operation. Valid values are Standard and
Enhanced. If time permits, the Enhanced mode proceeds to
model selection and hyperparameter optimization after running

Standard mode. The default is Standard.

numberOfModels Specif ies the maximum number of final candidate models to
create in the pipeline. Valid values include any integer greater

than zero. The default is 5.

Table 2. Parameters in Create Project Request under analyticsProjectAttributes

Parameter Name Parameter Description

classSelectionStatistic Specif ies the selection statistic for binary or nominal target.
Valid values are ks, ase, c, response, cumulative_response,
cumulative_lift, f1, fdr, fpr, gain, gini, lif t,
misclassification_event, mce, mcll, ks2, rase, and
misclassificiation_cutoff. The default is ks (Kolmogorov-

Smirnov statistic).

cutoffPercentage Specif ies the cutoff value to use for classifying binary target
predictions. Valid values are 5, 10, 15, 20, 25, 30, . . . , 90,

and 95. The default is 50.

intervalSelectionStatistic Specif ies the selection statistic for the interval target. Valid

values are ase, rase, rmae, and rmsle. The default is ase

(average square error).

numberofCutoffValues Specif ies the number of cutoff values to use in computing ROC-
based measures. Valid values are 10, 20, 50, 100, 500, and

1000. The default is 20.

partitionEnabled Specif ies whether data should be partitioned. Valid values are
True and False. The default is True. The data are partitioned

according to Model Studio project settings.

samplingEnabled Specif ies whether to enable event-based sampling for a binary
target. Event-based sampling undersamples a majority event
and can be used when the event of interest is rare. Valid values
are the strings AUTO, TRUE, and FALSE. The default is AUTO.
When set to AUTO, event-based sampling is enabled when the

target event rate is less than 5% or the gradient boosting
model produces a misclassification rate greater than the target

event rate.

19

samplingPercentage Specif ies the percentage of minority events in the f inal sample
when event-based sampling is enabled using the
samplingEnabled parameter. Valid values include integers

between 1 and 99, inclusive. The default is 50.

selectionDepth Specif ies the depth to use for the class target in computing lift-
based measures. Valid values are 5, 10, 15, and 20. The

default is 10.

selectionPartition Specif ies the data partition to use for selecting the champion

model. Valid values are default, train, validate, and test. The
default is default. By default, the partition chosen in Model
Studio project settings is used, which is test if unchanged by

the user.

targetEventLevel Specif ies the target event level of interest. The default value is

based on the project settings in Model Studio.

targetVariable Specif ies the target variable in input data. This is a required

parameter.

An end-to-end example in Python to automatically generate pipelines using this REST API is
provided in the example1.py f ile in the sas-viya-dmml-pipelines GitHub repository. Other

languages or REST clients can also be used in place of Python.

In the example code, modify the setup parameters urlPrefix (host name of the
microservice), authUser (user ID), authPw (password), datasetName (name of the input
data loaded in CAS), target (target variable in data), and publicUri (URI of CAS library name

where data reside) in the beginning section.

The example code performs the following steps:

1. Creates a Model Studio project for the automated pipeline.

2. Polls every 5 seconds to wait until the project state goes to completion. The project
state starts in pending state and transitions to waiting, ready, modeling,

constructingPipeline, runningPipeline, and f inally to completed state.

3. Retrieves and prints the champion model information.

4. Publishes the champion model to the SAS® Micro Analytic Service destination.

5. Scores new data.

6. Retrains the project (when new training data become available).

Before you execute the example, the input data set (uci_default_credit_card) should be
loaded into the corresponding CAS library that is specif ied in the publicUri parameter, and
the location of analytic store model f iles needs to be configured for the SAS Micro Analytic

Service destination as described in the documentation for SAS Viya Administration: Models.

For more information about the REST API and the authentication tokens needed for access,
see the SAS developer site at https://developer.sas.com/apis/rest/MachineLearningPipeline.
Information about configuring publishing destinations like Hadoop, Teradata, and CAS can

be found in the documentation for SAS Viya Administration: Publishing Destinations.

https://github.com/sassoftware/sas-viya-dmml-pipelines/tree/master/machine_learning_pipeline_automation/rest_api
https://go.documentation.sas.com/?docsetId=calmodels&docsetTarget=n10916nn7yro46n119nev9sb912c.htm&docsetVersion=3.5&locale=en
https://developer.sas.com/apis/rest/MachineLearningPipeline
https://go.documentation.sas.com/?docsetId=calpubdest&docsetTarget=n1i7t4fs3kdr88n1uj6h47e39w1b.htm&docsetVersion=3.5&locale=en

20

CONCLUSION

The automation of key tasks that are involved in the building of predictive models is an
integral part of Model Studio. These tasks, which include assigning variable roles, feature
transformation and engineering, model hyperparameter tuning, combined model selection

and hyperparameter tuning, using templates to create pipelines, and automatically
generating pipelines, enable the data analyst and data scientist to hit the ground running
when they are developing predictive models to solve their data problems. The automation of
these complex and time-consuming tasks aids in democratizing machine learning and

signif icantly reduces the time it takes to put models into production.

REFERENCES

Dua, D., and Graff, C. (2019). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information

and Computer Science.

Janakiram MSV (2018). “5 Artif icial Intelligence Trends to Watch Out For in 2019.” Forbes.
Available at https://www.forbes.com/sites/janakirammsv/2018/12/09/5-artificial-

intelligence-trends-to-watch-out-for-in-2019.

Koch, P., Wujek, B., Golovidov, O., and Gardner, S. (2017). “Automated Hyperparameter
Tuning for Effective Machine Learning.” In Proceedings of the SAS Global Forum 2017
Conference. Cary, NC: SAS Institute Inc. Available at

https://support.sas.com/resources/papers/proceedings17/SAS0514-2017.pdf.

Wujek, B., Haller, S., and Wexler, J. (2018). “Navigating the Analytics Life Cycle with SAS

Visual Data Mining and Machine Learning on SAS Viya.” In Proceedings of the SAS Global
Forum 2018 Conference. Cary, NC: SAS Institute Inc. Available at
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/2246-2018.pdf.

Yeh, I.-C., and Lien, C.-H. (2009). “The Comparisons of Data Mining Techniques for the
Predictive Accuracy of Probability of Default of Credit Card Clients.” Expert Systems with

Applications 36:2473–2480.

ACKNOWLEDGMENTS

The authors would like to thank Ed Huddleston for editing this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Wendy Czika
wendy.czika@sas.com

Christian Medins

christian.medins@sas.com

Radhikha Myneni
radhikha.myneni@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

http://archive.ics.uci.edu/ml
https://www.forbes.com/sites/janakirammsv/2018/12/09/5-artificial-intelligence-trends-to-watch-out-for-in-2019
https://www.forbes.com/sites/janakirammsv/2018/12/09/5-artificial-intelligence-trends-to-watch-out-for-in-2019
https://support.sas.com/resources/papers/proceedings17/SAS0514-2017.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2246-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2246-2018.pdf
mailto:wendy.czika@sas.com
mailto:christian.medins@sas.com
mailto:radhikha.myneni@sas.com

21

APPENDIX A: BEST TRANSFORMATION

This appendix contains additional information about the Best transformation method.

As mentioned in the main body of this paper, when you are processing the Best

transformation for an input variable, a list of available transformations is applied, and the

resulting values are analyzed to determine the best transformation according to a ranking

criterion. Here is a list of the available ranking criteria, divided into three groups, followed

by a brief description of each group:

Univariate statistics (target not used)
• Moment skewness
• Average quantile skewness
• Moment kurtosis

• Average quantile kurtosis

Empirical distribution comparison statistics (binary target)
• Anderson-Darling statistic with target
• Cramér–von Mises statistic with target

• Kolmogorov-Smirnov statistic (K-S) with target

Correlation statistics (interval target)

• Pearson correlation with target

Univariate statistics. You can choose one of these statistics to select the transformation

that maximizes the normality of an input. Moment skewness and moment kurtosis are the

standard skewness and kurtosis statistics. For average quantile skewness and average

quantile kurtosis, ratios of the average quantile values in their formulas are used. They are

considered robust, because they are signif icantly less sensitive to extreme outliers. For all

four statistics, the transformation whose absolute value of the chosen statistic is closest to

zero is selected. For more documentation about the average quantile statistics, see the

article at

http://www.cirano.qc.ca/realisations/grandes_conferences/methodes_econometriques/white

.pdf. From the article, the average quantile skewness is SK3 = ((m – Q2)/(AAD_median))*3

and the average quantile kurtosis is KR3 = ((U0.05 – L0.05)/(U0.5 – L0.5)) – 2.59.

Empirical distribution comparison statistics. You can choose one of these statistics to
compare the empirical distributions of a transformed input between the binary target
groups. The predictive power of an input variable increases when there is greater
distribution variation between target groups. For all three statistics, the transformation that

has the greatest distribution variation is the one that has the maximum statistic value, and

this is the transformation that is selected.

Correlation statistics. The Pearson correlation coefficient measures the linear correlation

between each transformed input and the target. The transformation that has the highest

correlation statistic is selected.

There are three properties in the Transformations node, within the Ranking Criterion for

Best Transformation group, which enable you to select the ranking criterion: Criterion for

interval target, Criterion for binary target, and Criterion for nominal target. (See Figure

15.)

http://www.cirano.qc.ca/realisations/grandes_conferences/methodes_econometriques/white.pdf
http://www.cirano.qc.ca/realisations/grandes_conferences/methodes_econometriques/white.pdf

22

Figure 15. Ranking Criterion for Best Transformation

The criteria are divided into these three properties. Which property to use depends on the
level of the target variable (interval, binary, or nominal) in your data. Note that univariate
statistics are always available as ranking criteria because they do not use the target

variable.

See this SAS Communities post for another resource about the Best transformation method.

https://communities.sas.com/t5/SAS-Communities-Library/Best-transformation-a-new-feature-in-SAS-Model-Studio-8-3/ta-p/489604

23

APPENDIX B: FEATURE MACHINE NODE

This appendix contains additional information about the Feature Machine node.

For input variable screening, a number of options are available in the node (see Figure 16):

• Coefficient of variation – Identif ies interval variables that have a low coefficient of

variation (close to constant value). These variables are excluded from feature
processing. This property is enabled by default.

• Group rare levels – Identif ies nominal variables that have rare levels. These variables
are transformed by rare level grouping. This property is enabled by default.

• Leakage percent threshold – Identif ies variables that have a very high level of

information about the target (leakage variables). Variables that exceed this threshold
(target entropy reduction) are excluded from feature processing. The default value is
90.

• Mutual information threshold – Identif ies variables that have a low level of
information about the target (not informative). Variables that fall below this
threshold are excluded from feature processing. The default value is 0.05.

• Redundancy threshold – Identif ies variables that are redundant (highly correlated). If
the symmetric uncertainty coefficient, a measure of nominal association for two
variables, exceeds this threshold, the variable that has less information about the
target is excluded from feature processing. The default value is 1. With this default
value, redundancy screening is not enabled. You can enable this property by

specifying a value less than 1.

Figure 16. Input Variable Screening in the Feature Machine Node

Feature Selection is enabled by default to subset the list of multiple generated features. All

the features for an input variable are ranked using the symmetric uncertainty (SU)

coefficient, and the top-ranked features (per input) are selected and output from the node.

When it is not enabled, all generated features are output from the node. For Feature

Selection, you specify the number of selected features per input by using the Number of

features per input property (Default=2). This value is compared to the ranking values to

determine the selected features. If the ranking of features results in a tie (that is, two or

more features have the same SU value), this can result in more features being selected for

24

an input than specif ied. In Figure 17, which lists the generated features for the input

variable AGE, the third, fourth, and f ifth features are tied at Feature Rank 3. In this

example, if the specified number of features per input is 1, the f irst feature is kept. If the

specif ied number of features is 2, the f irst and second features are kept. However, if the

specif ied number of features is 3, the f irst through f ifth features are kept, since features 3,

4, and 5 all have Feature Rank 3.

Figure 17. Feature Ranking Example in the Feature Machine Node

25

The following lists present the set of available feature transformations, grouped by

transformation policy. For more information about these transformations, see the SAS

Visual Data Mining and Machine Learning: Programming Guide.

Cardinality (Nominal to Interval Transformations)

• hc_tar_mean – Mean target encoding

• hc_tar_min – Minimum target encoding
• hc_tar_max – Maximum target encoding

• hc_tar_frq_rat – Frequency ratio target encoding
• hc_tar_woe – Weight-of-evidence target encoding
• hc_tar_evt_prob – Event probability target encoding

• hc_lbl_cnt – Level count rank
• hc_cnt – Level count

• hc_cnt_log – Level count followed by log transformation

Entropy, Qualitative Variation

• grp_rare1 – Mode imputation and group rare levels

• grp_rare2 – Missing level and group rare levels
• lchehi_lab – Label encoding

• lcnhenhi_grp_rare – Group rare levels
• lcnhenhi_rtree5 – Five-bin regression tree binning
• lcnhenhi_rtree10 – Ten-bin regression tree binning

• lcnhenhi_dtree5 – Five-bin decision tree binning
• lcnhenhi_dtree10 – Ten-bin decision tree binning

• lcnhenhi_woe5 – Five-bin weight-of-evidence binning
• lcnhenhi_woe10 – Ten-bin weight-of-evidence binning

Kurtosis

• hk_yj – Yeo-Johnson power transformations with parameters –2, –1, 0, 1, 2
• hk_dtree_disct5 – Five-bin decision tree binning

• hk_dtree_disct10 – Ten-bin decision tree binning
• hk_rtree_disct5 – Five-bin regression tree binning

• hk_rtree_disct10 – Ten-bin regression tree binning

Missingness

• cpy_int_med_imp – Median imputation

• cpy_nom_mode_imp_lab – Mode imputation and label encoding
• cpy_nom_miss_lev_lab – Missing level and label encoding

• miss_ind – Missing indicator

https://go.documentation.sas.com/?docsetId=casactml&docsetTarget=casactml_datasciencepilot_details23.htm&docsetVersion=8.5&locale=en
https://go.documentation.sas.com/?docsetId=casactml&docsetTarget=casactml_datasciencepilot_details23.htm&docsetVersion=8.5&locale=en

26

Outliers

• ho_winsor – Winsorization
• ho_quan_disct5 – Five-bin quantile binning

• ho_quan_disct10 – Ten-bin quantile binning
• ho_dtree_disct5 – Five-bin decision tree binning

• ho_dtree_disct10 – Ten-bin decision tree binning
• ho_rtree_disct5 – Five-bin regression tree binning

• ho_rtree_disct10 – Ten-bin regression tree binning

Skewness

• hs_bc – Box-Cox power transformations with parameters –2, –1, 0, 1, 2

• hs_dtree_disct5 – Five-bin decision tree binning
• hs_dtree_disct10 – Ten-bin decision tree binning

• hs_rtree_disct5 – Five-bin regression tree binning
• hs_rtree_disct10 – Ten-bin regression tree binning

Kurtosis, Outliers, Skewness (Low- or Medium-Rated Values)

• nhoks_nloks_pow, nhoks_nloks_log – Tukey’s ladder of power transformations with
parameters –2, –1, –0.5, 0, 0.5, 1, 2

• nhoks_nloks_dtree5 – Five-bin decision tree binning
• nhoks_nloks_dtree10 – Ten-bin decision tree binning

• nhoks_nloks_rtree5 – Five-bin regression tree binning
• nhoks_nloks_rtree10 – Ten-bin regression tree binning

Kurtosis, Outliers, Skewness (Low-Rated Values)

• all_l_oks_dtree5 – Five-bin decision tree binning
• all_l_oks_dtree10 – Ten-bin decision tree binning

• all_l_oks_rtree5 – Five-bin regression tree binning
• all_l_oks_rtree10 – Ten-bin regression tree binning

After running the Feature Machine node, click to open the results from the context pop-up
menu. When Feature Selection is enabled, the Selected Features report is displayed. This
report contains the list of selected features, sorted by input variable, feature rank, and
feature, that are output by the node. Downstream nodes receive only these features. The

Description column, which describes the feature, includes the input variable followed by a
colon and the data quality issue, which is followed by a hyphen and the transformation
method. An example feature description is “AGE: Not high (outlier, kurtosis, skewness) –
power(2) + impute(median).” Its expanded meaning is as follows: This feature is for the
input variable AGE. It addresses the data quality where one or more of the statistical
measures for outliers, kurtosis, and skewness have a medium value but none of them have

a high value. It is transformed by taking the square and imputing the median value. When
Feature Selection is not enabled, the Generated Features report is displayed instead. This
report contains the list of all generated features, which are output by the node for input into
downstream nodes. These are sorted by input variable and feature. The Output report
contains all features that the Feature Machine node generates, regardless of whether

Feature Selection is enabled.

