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ABSTRACT  
Distribution transformer is the most vital asset in any electrical distribution network. Hence, 
distribution transformer health monitoring and load management are critical aspects of smart 
grids. Transformer health monitoring becomes more challenging for smaller transformers 
where attaching expensive health monitoring devices to the transformer is not economically 
justified. The addition of Advanced Metering Infrastructure (AMI) in smart grids offers 
significant visibility to the status of distribution transformers. However, leveraging vast 
amount of AMI data can be daunting. This paper uses the hourly usage data collected from 
Ameren Illinois' AMI meters to determine distribution transformer outage, failure, and 
overload. The proposed methodology not only detects and visualizes outage and congested 
areas in near real time, but also detects transformers and distribution areas with a long history 
of outage and congestion. This paper also offers a predictive algorithm to enhance regular 
equipment maintenance schedules and reduce repair truck trips for unscheduled maintenance 
during unplanned incidents like storms. SAS® Enterprise Guide®, SAS® Enterprise Miner™, and 
SAS® Visual Analytics were used to efficiently produce the information necessary for 
operational decision-making from gigabytes of smart meter data. 

INTRODUCTION  
Electric power distribution circuits provide power to end users through a network of cables, 
transformers, switches, and other devices. The loading of each of these elements in the 
electric circuit is limited by the physical capacity of devices. When actual load exceeds certain 
design threshold, the circuit is shut down or damaged or becomes susceptible to future failure. 
It’s necessary for the utilities to successfully identify the transformers, switches, devices etc 
that are of higher risk to avoid interrupting power supplies to end-users. However, given the 
quantity of the distribution transformers deployed in the distribution network, the line 
distribution transformers are not monitored by any automated processes. Distribution service 
transformers typically do not have sensors, instrument transformers, and other equipment to 
monitor its health. Typically, fault issues are captured on these devices when customers call 
in with a problem or when an outage is identified followed by investigation and perhaps, 
replacements.  

The cost of distribution service transformers ranges from ~$1000 to more than $100,000+ 
based on its size whereas the power transformer costs can easily exceed $1 million. 
Preventing or reducing transformer failure will help in reducing transformer maintenance cost 
(O&M expense for the utilities) and increase system reliability, which should provide enough 
incentives for the utilities to proactive prediction of pending transformer failures. Table 1 
summarizes the cost-benefit of transformer health monitoring to make a business proposition 
for the utilities (EPRI, 2016; EPRI, 2006). 

With the adoption of smart meter or automated metering infrastructure (AMI) and big data 
platforms to collect and analyze AMI meter data, utilities are equipped to continuously 
monitor and proactively manage distribution transformer overloading. This paper utilizes 
hourly usage (or electric load) data collected from Ameren Illinois' AMI meters and other 
distribution network data such as distribution transformer outage, failure, and overload. The 
proposed methodology not only detects and visualizes outage and congested areas in near 
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real time, but also detects transformers and distribution areas with a long history of outage 
and congestion. SAS Enterprise Guide, SAS Enterprise Miner™, and SAS Visual Analytics 
were used to efficiently produce the information necessary for operational decision-making 
from gigabytes of smart meter data. 

 

 
Table 1: Cost-Benefit Case for Transformer Health Monitoring 

 

 

Source: EPRI technical report “Data Analytics Cases for Asset Awareness,” EPRI, Palo Alto, CA: 2016. 
3002008799. Visit www.EPRI.com for details. 

http://www.epri.com/
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DATA AND DATA MODEL  
Electric distribution transformer rarely breaks down suddenly (EPRI, 2006). Usually there is 
enough priori signs from the gradual breakdowns of transformer components that leads to 
eventual transformer failure (EPRI, 2006). Such breakdowns provide early warning signs of 
possible future transformer failure. This paper explores ways to utilize smart meter data and 
outage, failure, or customer information to detect such early detection signs for future 
possible transformer failures.  

This paper utilizes data from various sources as shown in Figure 1. The primary data set is 
the AMI meter dataset from 13 different circuits in Ameren Illinois’ distribution network. The 
AMI meter data were augmented by mapping them to the corresponding customer class, geo-
location, distribution transformers, device, switch, and reclosers etc. The analysis also uses 
transformer ratings provided by the manufacturers, outage and known failure information 
(event data) by feeder/transformer and weather data for the nearest weather station. Figure 
2 shows the analytical framework using the data presented in Figure 1. Analytical framework 
shown in Figure 2 is similar to the framework presented by Anderson and DeBose (2013) in 
a previous publication. 

 

 

 
 

Figure 1: Input Data for Model Construction 
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The following section provides a brief description of various input data. 

• AMI: AMI or Advanced Metering Infrastructure provides usage data (kW or kWh) 
from the customers’ meters. The paper utilizes the hourly or sub-hourly interval 
usage (kW) data collected from the AMI system.  

• GIS: The geospatial information system or GIS provides the geolocation of the 
elements in the feeder/circuit.  

• SCADA: The Supervisory Control and Data Acquisition or SCADA data provides time 
stamped information about the distribution system devices. 

• OMS: The Outage Management System or OMS acts as a repository for all the 
outage related information and metrics. It’s an important parameter in the model 
presented in this paper. 

• CIS: The Customer Information System or CIS contains all customer related 
information such as customer address, customer number, meter number, usage etc 
including upstream distribution transformer that provides power to the customer.  
It’s essentially a database of historical information of customer load and other 
operational data. 

• Weather: Various weather data elements from different weather stations across the 
service territory are sourced from outside vendor and stored within a repository.  

• Transformer Rating: Transformer rating information helps in calculating transformer 
loading or busy factors at a given instance 

• Work Management: Work management data comes from various internal systems 
and provides information about cause, description and duration of the outage and 
parts replaced etc.  

 

 
Figure 2: Analytic Framework for Transformer Health Index 
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The dataset from various sources, as shown in Figure 1, are brought into SAS EG to process 
and build data model for efficient and easy analytic model development and deployment. 
The final dataset is imported into SAS EM to construct predictive models and finally the 
results are represented in SAS VA. Figure 3 shows a highlight of the data models in SAS EG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: SAS Process Flow for Data Input Process 

 

 

ANALYTICAL CONCEPTS AND BACKGROUND 
 

Numerous studies have been published by both academia and industry to predict transformer 
failure or loss of life based on the aging of the isolation of the transformer and the operation 
temperature due to loading (EPRI, 2016; Rashid, 2011; Montsinger and Dann, 1934). 
Publications are available to construct mathematical models for the temperature of a 
transformer submerged in oil or the hot-spot temperature. This temperature is used for the 
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evaluation of a thermal aging rate due to a cyclical load under ambient air temperature. 
Ambient temperature is the temperature of air conducting the radiators or heat exchangers. 
Research publications indicate that ambient temperature is an important factor affecting the 
life expectancy of the transformer (Rashid, 2011; Montsinger and Dann, 1934; Alquthami and 
Meliopoulos, 2014). The ambient temperature and the heat produced by the transformer 
windings are directly proportional to the load the transformer is bearing. Due to 
instrumentation limitation, utilities do not regularly measure the ambient temperature of the 
distribution transformers unlike the substation or bulk transformers.  As load correlates to 
weather (temperature, humidity, wind speed, and dew point), this paper tests the significance 
of weather data in transformer failure.  

 

Transformer loading is defined as the ratio of the load on the transformer to the actual 
nameplate rating of the transformer. Transformers experiencing loading above the nameplate 
rating will be prone to eventual failure. In electrical distribution systems, the transformers 
can be loaded above their nameplate capacity ratings due to emergency-situations or due to 
higher usage from the customers served by the transformer (Rashid, 2011; Jardini et al, 
2000). Transformer overloading can be planned, short termed or long-termed.  Risk of loss 
of life of the transformer is greater in case of long-term overloading. Overloading of 
transformers above its nameplate capacity or an ambient temperature higher than what it is 
designed for accelerates the aging of the transformer more than that in the case of normal 
loading (Rashid, 2011; Leal et al, 2002).  The short-term overloading can also be significantly 
risky (Rashid, 2011). Sudden increase in load yields higher hot-spot temperature, which will 
breakdown of the thermal insulation system that will lead to transformer loss of life (Rashid, 
2011; Jardini et al, 2000).  Clearly, the key component of the transformer failure lies in higher 
than optimal loading. Therefore, this paper attempts to predict transformer failure using 
transformer loading or running average of busy factor as defined later in the paper. 

 

Historical AMI meter data aggregated to the transformer level provide a loading (or, busy 
factor as noted in this paper) history on each transformer. The methodology proposed in this 
paper utilizes AMI interval data aggregated to the transformer and device level to calculate 
transformer utilization or transformer busy factor to predict possible loss-of-life in near real-
time manner.  

Ultimately, given the volume and complexity of the data, a good system will require an 
interactive system that can be applied to all transformers individually in near real time. This 
paper attempts to achieve the same. 

Variable used for model construction are described below: 

• Moving Values based on Average, Max and Variance  

o Time Periods 

 6 hours 

 12 hours 

 24 hours  

 72 hours 

• Busy Factor: Busy Factor is defined as ratio between the load on the transformer 
and Transformer rating from the manufacturer. 

• Weather: Weather variables that can spike up transformer load and subsequently 
busy factors are temperature, humidity, dew point and wind speed.  
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This predictive modeling step started with a Decision Tree, followed by a Forrest and Gradient 
Boost models. The results were compared before selecting the champion model. The following 
section discusses these models. 

 

DECISION TREE 
As described in literature and SAS manuals, a decision tree creates a hierarchical 
segmentation of the input data based on a series of rules applied to each observation. Each 
rule assigns an observation to a segment based on the value of one predictor. Rules are 
applied sequentially, which results in a hierarchy of segments within segments. The hierarchy 
is called a tree, and each segment is called a node. The original segment contains the entire 
data set and is called the root node. A node and all of its successors form a branch. The final 
nodes are called leaves. For each leaf, a decision is made about the response variable and 
applied to all observations in that leaf. The exact decision depends on the response variable.  
Figure 4 shows the Decision tree model presented for transformer failure. 

Constructing the decision tree requires a measure, category, or date response variable and 
at least one predictor. This decision tree presented in this paper utilizes event data as 
categorical variable.  This variable identifies an actual failure event on a transformer. The 
variable importance graph shows that the busy factor and certain weather conditions are most 
significant based on the relative importance of each variable. The average square error (ASE) 
for the model presented in this paper was 0.0893. ASC provides fit statistic for the decision 
tree and a better model would have lower ASC. 

 

 
Figure 4: Predictive Model Output – Decision Tree 

 
FOREST 
As described in literature and SAS manuals, forest is an ensemble model containing a number 
of decision trees. Forest, a popular data science methodology, can be used to build predictive 
models for both classification and regression problems. To avoid any overfit the data, each 



8 

tree in the forest is built on a different sample of the training data and when splitting each 
node, a set of candidate inputs for the split are selected at random, and the best split is 
selected from those. This ensures that the trees aren’t correlated to each other. 

Reviewing the Assessment Plot and the ASE score (0.0854), the Forest performed a little 
better than the Decision tree in predicting transformer failure.  The variable of importance 
graph, as shown in the Figure 5, highlights that the Forest model used more data points in its 
evaluation than the Decision tree did.  

 

 
 

Figure 5: Predictive Model Output –Forest 

 

 

GRADIENT BOOST 
Gradient boosting is an iterative approach that creates multiple trees where each tree is 
typically based on an independent sample without replacement of the data. A gradient 
boosting model hones its predictions by minimizing a specified loss function, such as average 
square error. The first step creates a baseline tree. Each subsequent tree is fit to the residuals 
of the previous tree, and the loss function is minimized. This process is repeated a specific 
number of times. The final model is a single function, which is an aggregation of the series of 
trees that can be used to predict the target value of a new observation. 

The Gradient Boost performed far better than the Decision Tree and Forest.  With an ASE of 
0.0110, the model predicted over 80% of the events.  Noticeably, this model fares better 
when predicted event values are compared to actual event values (Figure 6).  

Given low ASE and model fit, it was determined that Gradient Boost model had a better fit for 
the problem presented in this paper. Hence this model was used to score the distribution 
transformers in order to create the scorecard report displayed in Figure 8.  Furthermore, this 
model can be implemented in real-time by leveraging SAS Event Stream Processing.  
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Figure 6: Predictive Model Output – Gradient Boost 

 

 
Figure 8: Transformer Scorecard: Health Index with Historical Reference 

 
It’s important to note that the models developed and presented in this paper could be 
implemented in SAS Event Stream Processing (ESP).  For the purpose of illustration, the 
gradient boost model was exported and implemented as an ASTORE model. ASTORE, 
indicative of Analytical Store in SAS systems, allows the analyst to save predictive models 
and subsequently use it to score new data for future prediction. In this paper, the gradient 
boost model was used to score the transformers for propensity of failure in real time. This 
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provides a dashboard identifying key transformers with a score of 0.80 or greater, displays a 
map as well as identifies the Feeder (circuit) associated with the transformer (Figure 9). 

 

 
 
 

CONCLUSION  
The methodology provided in this work not only detects and visualizes outage and 
congested areas in near real time, but also detects transformers and distribution areas with 
a long history of outage and congestion. This paper provided examples of predictive 
algorithms to enhance regular equipment maintenance schedules and reduce repair truck 
trips for unscheduled maintenance during unplanned incidents like storms. This solution 
leveraged SAS® Enterprise Guide®, SAS® Enterprise Miner™, SAS® Visual Analytics as well as 
SAS Event Stream Processing to efficiently produce the information necessary for 
operational decision-making.  

 

 

 

Figure 9: Event Stream Viewer Displaying Output from SAS ESP 

 
CONCLUSION 
 
The methodology presented in this paper not only detects and visualizes outage and 
congested areas in near real time, but also detects transformers and distribution areas with 
a long history of outage and congestion. This paper provided examples of predictive 
algorithms to enhance regular equipment maintenance schedules and reduce repair truck trips 
for unscheduled maintenance during unplanned incidents like storms. This solution leveraged 
SAS® Enterprise Guide®, SAS® Enterprise Miner™, SAS® Visual Analytics as well as SAS Event 
Stream Processing to efficiently produce the information necessary for operational decision-
making.  
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