Paper 3807-2019

Puzzle Me, Puzzle You: How a Thought Experiment Became a
Rubik's Cube Among a Set of Fun Puzzles

Amit Patel, Barclays plc; Lewis Mitchell, Barclays plc;

ABSTRACT

How do you help a community of SAS® users become more involved in the software, and
learn new ideas without providing direct training? We decided to answer this question by
designing a series of puzzles, which require the solutions to be run in SAS. This allowed us
to showcase SAS features that were unused by many of our colleagues and at the same
time promote a critical thinking mind set when solving the puzzles. Whether its X marks the
spot using office locations and geolocational data, solving a Rubik’s cube that utilises the
SGPLOT procedure, or a dataset based crossword using SAS Procedure names, each puzzle
requires a different technique to solve. Our aim is to help users expand their SAS knowledge
and develop a different way of thinking that they can apply to their day-to-day work.

INTRODUCTION

The idea of proactively engaging in interactive learning is not a new one, but the methods
and tools which are available depend on the environment in question. In this case it's not a
classroom, but a SAS® Grid environment with over 1000 users. We want to encourage these
users to use SAS in ways they are not typically exposed to in their day-to-day work. By
showing people different concepts within SAS or challenging their SAS skills in a fun way,
we hope to expand their horizons of what is possible. It is often said that your only limit is
your imagination; we hope these puzzles will help our users imagine something new.

THE PUZZLES

There are 10 unique puzzles that have been created to highlight a variety of concepts.

1) The Crossword Puzzle - Everyone knows the PRINT procedure, FREQ procedure
and SORT procedure - but there are some procedures with far more interesting
names. This crossword puzzle forms the intersection between SAS procedures and
Hollywood movie quotes.

2) The SAS Quiz - A quick bit of knowledge searching for SAS functions, SAS
Dictionary tables and maximum numbers. We encourage internet searching and
even provide a Imgtfy link for those who may struggle with what to search for.

3) The Safe Cracking Puzzle - There's a safe that needs cracking! What more needs
to be said?

4) The Maze Puzzle - Time to escape a digital maze! Just as ominous as it may
sound; the rules are based on mathematical sequences that tell you where you can
and can’t move to.

5) The Joining Puzzle - Can you join the data to get the hidden code? The twist is
only a single value in a single column in each dataset allows them to be merged.

6) The Encrypted Music Puzzle - Can you map and decrypt two datasets in order to
get the information needed to play a tune on a digital keyboard?

7) The Graph Puzzle - You've got the equations but can you identify the image they

reveal?

8) The Circuit Puzzle - With only 60 seconds and a complex set of instructions can

you defuse the circuit in time?

9) The X Marks the Spot Puzzle - It's often said that X marks the spot; this time it's
four Barclays offices that give you your X. The answer you seek is the postcode
nearest to the intersection of the X

10) The Rubik’s Puzzle - Can you solve a SAS generated Rubik’s cube?

SETTING UP THE ENVIRONMENT

In order to make things as accessible as possible for all users, a separate directory structure
was set up to store the puzzles together and restrict permissions across the files. Each
individual puzzle directory contains the following:

-] Shared

-7 lost+found

--[[7] sas_challenge

£ admin

: -7 puzzlell
—[:l admin

@ puzzle(1.egp
| | sasmacr sas /beat
-7 puzzled2

-7 puzzle03

-7 puzzleld

-7 puzzlels

-7 puzzlelf

-7 puzzlel7

-7 puzzle0?

-7 puzzle0%

-] puzzle10

@ puzzleD1_answers egp
i puzelell_macros.egp

e A copy of the egp which all users have read
access to. Each egp contains all the relevant notes
and macros the user will need in order to solve it.

o A SAS macro catalogue which holds all the code
to run and solve the puzzles. These were compiled
using the /secure option so users won't be able to
open up the code directly; it’s still available for them
to call and use within their egp using the SASMSTORE
option, but they are prevented from reading the
source code.

o An ‘admin’ directory with restricted permissions
holding egp’s for the solutions and the raw macro
code to create the SAS macro catalogue. These egp’s
are password protected in addition to the restricted
permissions.

o A hidden ‘.log’ directory that is used to record
when a user successfully completes a puzzle and
enables us to generate usage statistics.

Within each of the egp’s there is a standard initialisation piece of code which allows the
puzzle macro catalogue to be loaded and then be available for the individual macro calls to

solve that puzzle:

$sysmstoreclear;

$let puzzle = puzzleOl;

%let puzzle root = /sas/Prod/Data/GrpPCB/Shared/sas challenge;

libname &puzzle. "&puzzle root./&puzzle.";
options mstored sasmstore=g&puzzle.

pagesize=1024;

The crossword is built up by using a dataset as a template with a format applied to colour
certain cells black. This dataset is displayed using proc report. One version of the dataset,
which is blank except for the clue numbers, is displayed on the left-hand side. On the right-
hand side, the version of the dataset with the answers the user has entered is shown. Any
answer the user enters which is the correct length is displayed, but if the user enters two
answers which overlap and have different characters in the overlapping cell, then a **" is
displayed instead of either character to highlight the conflict.

Crossword - Blank Crossword - User

2

||
||

[]
[| |
[| |
I
||
A
-
||
I
I

-
||
||
||
-
|
I
|
9

[=]

-
||
||
||
-
|
|
|
G
R
o]
0
v
Y

5
| ||
|| ||
- |
|| ||
|| ||
|| ||
I ||
| I

spuzzle crossword(
clue=8AS,

across3=,
downd=,
acrossb=,
down6=,
down7=,
across8=,
down9=

)

The users enter the answers using the %puzzle_crossword macro.

By default, the parameter CLUE is populated with the value SAS, which means that the
clues which are generated all relate to SAS procedures.

ACROSS:

3. proc is one of several tools available in SAS/STAT software for and sample size analysis_
5. proc implements a parametric method of linear estimation based on generalized maximum

8. proc not only copies or moves a library to the target installation, it also changes the members file format to the most recent release of SAS.
DOWWN:

1. proc contrasts the contents of two SAS datasets to each other.

2. proc sends an XML string to the SAS Senver.

4. proc produces printed output with oversized text.

6. proc performs one of several parent-child based tests, often using genotypic data.

T proc __ invokes a Web senice through Java Mative Interface.

9. proc enables SAS code execute statements on the Java Virtual Machine.

However, there are hints in the background information and log that let users know they
can change the CLUE parameter to have a value of MOVIE. If the user feels their pop culture
knowledge is better than their SAS procedure knowledge they can instead generate clues

that will lead to the same answers based on movie quotes.

ACROSS:

3. The Dark Knight - "This 1s foo much for one person”

5. Kill Bill: Vol. 1 - "Trying fo will my imbs out of "

8. Monty Python and the Holy Grail - "Are you suggesting coconuts ”

DOWVVN:

1. Avengers: Age of Ultron - " don't understand. Don't me with Stark!”
2. Mission Impossible: Rogue Nation - "Sifting fhrough mountains of

4. Shaun of the Dead - "% Oh, oh, oh, oh, oh

6. Gladiator - "Devotion to my "

7. Shark Tale - " in the eye! in the eye!”

9. Austin Powers: International Man of Mystery - ~ , baby”

and exabytes of encoded...”

Once the macro has been executed with the parameters containing a full set of correct
answers, the user will be congratulated in the log and informed that their success has been

recorded. This is the same for all 10 puzzles.

80

81 e

8z; % # RS # ¥OHHHE S #H o BHEEE # ¥ ¥ ##
83; # ¥ #HE ## ## # # # # % ®# # #
84 ¥ # #HEE OHEH# # # ¥ #O0# # # ¥ # #
a3 # ¥ # O8O E# uES BEEE SREEsE # # ®# it
a6 # ## # 8 HE# ¥# # # # # # ## # #
a7 T s # #Oduss # # # # % HEEE HHuREEE ¥ #
a8

8% vYour successful completion of Puzzlell has been recorded

50

o H O OH

PUZZLE 2 - THE SAS QUIZ

The SAS quiz is based around providing questions on key techniques or areas of SAS we
have found useful to know ourselves. On running the script, the first question is available:

Question 0l: Which function compresses multiple blanks to a single blank?

The user enters their answer using the macros provided below and a response is given each
time a macro is called.

spuzzle quiz _answer 01 (answer 01=UNKNOWN) ;
spuzzle quiz_answer_02(answer_ 02=);
spuzzle quiz_answer_03(answer_ 03=);
spuzzle quiz answer 04 (answer 04=);
%puzzlq_qui;_answer;OS(answer_05=);
spuzzle quiz answer 06 (answer 06=);
()
()
()
()

’

spuzzle quiz_answer_07(answer 07=
spuzzle quiz _answer 08 (answer 08=
spuzzle quiz_answer_09(answer 09=
spuzzle quiz_answer_10(answer_ 10=

’

’

’

In the event of three incorrect answers for any of the questions, a hint will be provided. For
the first few easier questions the hint is a link to “let me google that for you” to promote
looking online for SAS queries which may arise.[*] For the trickier questions, more detailed
hints are provided.

Question 0l: Which function compresses multiple blanks to a single blank?
ERROR: UNKNOWN is incorrect!

HINT: http://lmgtfy.com/?g=Which+function+compresses+multiple+blanks+to+a+single+blank%3F

Once a question is correctly answered (in numerical order) then the next question is
provided in the log.

Question 01: Which function compresses multiple blanks to a single blank?
Answer 01l: compbl is correct!

Question 02: Which single function produces the same output as combining TRIM and LEFT?

PUZZLE 3 - THE SAFE CRACKING PUZZLE

The safe cracking macro is designed to motivate people into using macros and do loops, and
will test their ability to implement them correctly. The code to generate the query is
relatively simple and only requires three nested loops from 1 to 50 to solve. The three
loops will need to cycle through until the values for parameters turnl, turn2 and turn3 are
correct; at that point a global macro variable will be populated indicating the correct
combination has been found. In the code below the put statements that print the text art for
‘Congratulations’ to the log are shown using a reduced font size for readability.

$macro puzzle safe crack(turnl,turn2,turn3) / store secure;
options nonotes nomlogic nomprint nosymbolgen nosource nosource2;
%local solved sysmacrolog;

%let solved = O;
%let sysmacrolog = &sysmacroname.;

%global unlocked;
$if &turnl. = 37 and &turn2. = 19 and &turn3. = 11 %$then %do;

%$let solved = 1;

$let unlocked 1;

Sput ;
Sput $str() #H###
$put $str() # # HHHE # # HHHE HHHEE ## FhEEE # # # ## #HEHE # O HHEHE # # o
$put $str() # # #oH# # # #o# ## # # # # 4 ## # # 4 #oH# ##
$put $str() # # L A A # # # # # # # # # # # # # L S S 1
$put $str() # # #of# FF R HEEEE R # # # # FhtHHH # # # 4 ## #
Sput %str() # # # ¥ # #H # ¥ # # # # # # # 4 # # # # 4 # # #4 4 #
sput Sstr() ##### #HEE # # #HHE # # # # # #HEE HHEHEE # # # # #HHE # # HHH#

Sput ;

%put Your successful completion of Puzzle03 has been recorded ;

o)

sput ;

spuzzle log(puzzle=puzzle03, log=log03, sysmacro=&sysmacrolog., solved=é&solved.);

%end;
$else %do;

$let unlocked = 0;
%end;

$mend puzzle safe crack;

The macro call the users are given to solve this puzzle only relies on three parameters being
passed to it.

spuzzle safe crack(turnl=, turn2=,turn3=);

PUZZLE 4 - THE MAZE PUZZLE

The maze puzzle represents a step up in complexity and requires the users to use a little
more out of the box thinking. The rules for crossing the maze are explained in a rhyme,
which details how to move around the maze and which numbers not to move to. Most of the
restrictions are based on mathematical sequences.

/***/

/*** The next puzzle you face is a maze of sorts, *xK /)
/*** where the walls are the numbers and will mess with your thoughts. xHx/
/*** ***/
/*** From one to four-hundred you must go, *xx/
/*** up, down, left and right are the moves that you know. xxx/
/*** ***/
/*** By applying the rules in the order they come, xE*/
/*** you will escape from this maze and avoid feeling glum. *RK/
/*** ***/
/*** Rule 1 says you're safe on prime, fibonnaci or square, xHA
/*** unless one of those, for one more or one less don't go there. xxAx/
/*** ***/
/*** Rule 2 says the rest are safe to begin, *xx/
/*** although 272 has now changed, to make it harder to win. *xx/
/*** ***/
/*** Rule 3 says perfect numbers will give you a chance, *RK/
/*** on three lots of the second plus the first you can dance. xHEx/
/*** ***/
/*** Rule 4 says first 17 then 19 make the complexity worse, *xx/
/*** for all multiples, their safety will be the reverse. xxx/

/***/

Once the user runs the %puzzle_maze_initialise macro they will be presented with the
digital maze and a starting position of location 1. As described in the rhyme they need to
move to location 400.

1 2 3 4 5 & F 8 9 1m0 11 12 13 14 15 16 17 18 189 20
21022 23 024 25 26 7 28 29 30 31 32 33 34 35 36 FF 3@ 39 40
41 42 43 44 45 46 47 4B 49 &0 51 52 53 &4 55 5B &7 58 59 BO
61 B2 B3 B4 BS5 B B7 BB B9 YO V1 Y2 V3 Y4 V5 YR 778 79 8O
g1 82 83 B4 B85 86 87 B8 B9 90 91 S22 93 94 95 55 97 93 99100
101 102 103 104 105 106 107 108 109 110 111 1120 113 114 115 116 117 118 119 120
121 1220123 124 125 126 127 128 129 130 131) 132 133 134 135|136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151) 1562 153 154 155 156 157 153 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 185 189 190 191) 152 193 194 195 156 197 198 199 200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215|216 217 218 219 220
22222 2230 224 225 226 XXV 228 229 230 231 232 233 234 235|236 237 238 239 240
241 242 243 244 245 246 247 248 249 280 2A1) 2527 253 254 255|286 257 2AB 259 ZBO
261 262 263|264 265 266 267 268 269 270 J71 272 273 274 75| A6 277 278 279 280
201 262 283|284 285 206 287 2858 209 200 291 282 293 294 205|205 297 205 299 300
301 302 303) 304 305 306 307 308 309 310 311 312 313 314 315/ 316 317 318 319 320
3N 322 323 324 325 326 327 328 329 330 331 332 333 334 335|336 337 338 339 340
341 342 343) 344 345 346 347 348 349 380 351 352 353 354 355|356 357 358 359 3RO
361 362 363|364 365 366 367 368 369 370 371 372 373 374 375|376 377 378 379 380
381 382 383|354 385 386 357 388 389 390 391 392 393 394 395|356 397 398 3599 400

The rhyme should help the user identify that they need to specify up, down, left or right in
order to move in those directions. Any illegal moves will be prevented by the macro when it
is executed.

1.2 3 4 sHE 7 5 Sl 1S s NS 1o [
il Besl B B Bl BEd | BESEEREECIEEE]
4 I o S oo DEENEIREE - S -c DEENEENEE oo e
o1 EEINEE -+ MESNEE o7 o0 ool N oM s 77 7o R
1 EE e - s s 90 3 92 o3 o4 [EEEE o7 EEEE 100
101 102 103 R 10S S 107 S oo W 0 B 11 1124 115 116 117 118 [NEEEE
121 Bl 123 124 125 B8 127 EE 120 Bl 1o R 3¢ 135 136 137 HEE 130 N
141 142 S 124 8 145 127 R 120 EE 151 =2 EE 154 155 EE 157 EE 152 160
161 B8 157 B 0= EE o7 EE c2 170 SRS ;i s 16 177 [170 EE
181 B8 153 184 135 156 B 195 192 190 191 [HEE 12 FEEEEE 105 107 EEE 150 [EEE
201 202 203 B 205 206 207 200 |EEEEEE 211 B 212 214 215 216 217 218 219 220

B - s B 227 22 220 23 Bl 2o Bl 235 236 237 238 230 [l
201 B 243 244 245 245 B 245 240 EEE 251 BB 253 254 255 256 257 EEE 259 260
gl Ex O EE O EE O EE O E RS Ed BEBE
251 Bl 2o: B oo o7 RS oo B co- B o5 295 297 298 299 300
301 302 303 B 05 306 307 EEE 0o Bl s B -0 B s B 2 Bl 219 320
321 322 B 24 B 26| 327 328 2o Rl 23 B S35 334 335 EEE o7 B -0 R
341 B 343 344 345 EEE 347 EEE ca0 EEE a5 EEE ooc B 155 ooc EEEEEE oo EEE

T EEETEEE O E KRRl EEEDEE EE S EElEED
391 BBl 303 R 355 3096 307 R oo EEEEEM -0z 393 394 395 R 3o EEE 329 400

In order to solve this puzzle the user first needs to understand which of the numbers
represent the walls in the digital maze; they will soon discover if they move onto a space
that is defined as a wall they will be reset to the starting location. By following the rules laid
out they should be able to generate a formatted dataset that highlights the walls.

* Run the puzzle maze move to move orthogonally;
spuzzle maze move (move=up, display=YES)
spuzzle maze move (move=down, display=YES)
spuzzle maze move (move=left, display=YES)
spuzzle maze move (move=right, display=YES)

’
’
’
’

At this point the user can manually enter the directions to navigate from 1 to 400 based on
their observations. An alternate strategy to solve this automatically would be to use the
classic maze solving technique of placing one of your hands on the maze wall and not
removing it until you reach the exit. This is more of a brute force approach and will mean
you explore a lot of dead ends as you traverse the maze, but eventually through an
exhaustive approach you will reach the destination. This method is often called ‘wall
follower’ but there are various algorithms for solving mazes.[?] The below diagram is the
implementation of a macro to replicate the ‘wall follower’ method. The first twenty moves of
the route it took were1 ->2->3->4->5->25->45->25->5->4->3->23->43
->23->3->2->1->21->41-> 61 -> etc. Once you understand how it is moving it is
easy to see how it ended up at this solution.

12 3 4 8 7 5 Sl 2 oSS o W6
2 = s 7 o RS s v o o
SR I s o oo DENSINEE - S - NEENGENEE -o R
61 NESNEE = MESMEE - o colE R M - 7 7o ED
sl B s "B 0 0 31 92 o3 o JEEEE o7 BEEEE oo
101 102 103 EE 105 8 107 EE oo EEE 0 8 112 114 11s 1e 17 13 [EREE
121 B8 123 124 125 [HEE 127 EEE 120 B o EEEEE 152 135 136 137 S 120 EE
141 142 S 144 S 145 147 HEE 140 EE 151 152 B 154 155 HEE 157 B 152 160
161 B8 163 EE 165 B8 167 Bl 150 170 RIS 7 s 176 177 EEE 170 [HEE
181 B8 153 184 185 15: HEE 195 189 120 191 EE 12: HEEEEE 105 197 HEE 12 I

201 202 203 B 205 206 207 20: EREIIEE - B 213 214 215 216 217 218 219 220

B C: B oo B 227 22 220 B 23 R 2o Bl 235 235 297 236 230
241 B 243 244 245 246 B 245 240 EEE 251 BEE 253 254 255 256 257 BB 259 260
el el O EEd e Bl B EElEREE S o el
201 B 2o- S oo oo EEE I o1 Bl ooc [oos 096 297 298 299 300
301 202 303 M 305 306 307 EEE Soc EE c B 22 Bl s B 17 Bl 212 320
321 322 R 24 JBEE 326 327 o285 320 Rl o3 R 333 334 33 EEE 357 EEE c3c EE
8l EEETEE CEH O EE B KB EESEEE | EE

O EEETEEE B EEENER EEEREE EE EEEED
351 BB oo R 255 2356 357 EEE oS00 IEEEEE oz 393 394 395 EEE o7 JEEE coo 400

PUZZLE 5 - THE JOINING PUZZLE

The joining puzzle touches some of the same areas as the safe puzzle, requiring an
understanding of loops and macros to solve. However, there is an added degree of
complexity that will mean users have to push their technical skills a little further this time.
The code the user is initially presented with is as follows:

/***/

/*** Run the puzzle join initialise to build the join datasets. There are three *xx/
/*** datasets each with 100 columns and 1000 rows. *xx/
/*** ~ Only one column in each dataset will allow the datasets to be joined *xx/
/*** ~ Once the data is joined the columns will reveal the positive code *xK /)

/***/

spuzzle join initialise();

/***/

/*** Enter the positive code into puzzle join check code to solve the puzzle *kx /
/***/

spuzzle join check code(code=2??7?);

By running the %puzzle_join_initialise macro the users will randomly generate three
datasets, each with 100 columns and 1000 rows. Every cell will contain a 6-digit number but
only a single 6-digit number is repeated across all three datasets. This means there is only a
single cell that belongs to a single column in each dataset that can actually be joined. The
users need to develop a way of finding out what columns can be joined in order to
determine the code and solve the puzzle.

@ ABU @ ADN @ AJF @ A6 @ ARE @ BCZ @ BEH @ BwWKX @ CHE @ GO

1 121547 183161 303434 536051 30275 18322 317335 197462 800343
2 423671 863196 7EYETE a74na 528008 231500 803540 214318 383336 269363
3 738380 70973 633225 375413 5276 262850 504363 522693 570763 250023
4 8E9165 372085 195141 E0E023 B74747 330113 404344 339340 530228 719455
5 1003986 7RITTE 435243 3E3673 206280 9B4E78 457351 BE2357 8473974 527515
[373006 147634 G46382 188376 302860 178644 215861 453286 238872 144103
7 770243 922434 201662 368483 782778 353854 593294 £51186 7713 577344
8 374543 827196 733438 740240 285555 GaEv202 745392 331403 88v205 E7B167
9 302336 503741 673256 2110 533440 327806 121702 831756 405334 273435
10 EO01793 949802 E797EE B32513 852239 812473 236882 484683 931273 534375

10

PUZZLE 6 — THE ENCRYPTED MUSIC PUZZLE

There are two key components to this puzzle. Firstly, the puzzle is designed to test a user’s
knowledge of arrays and ability to find the functions they need to resolve an issue.
Secondly, once they’ve cracked the code, they then have to be able to follow the
instructions in order to play a tune on a virtual piano before identifying the tune. If they
don’t recognise the tune themselves they may have to reach out to someone else to see if
they can help them identify it - knowing when to ask for help is also a skill!

/*** Run the puzzle music macro as many times as you like.

/***

/*** Your aim is combine the SOURCE and MAPPING datasets in such a way that you:
/*** ~ a) Find which website you need to access (recommended browser is Chrome)
/*** ~ pb) Enter the code into the website (using the recorder function within the
[*x* website)

/*** ~ c) Identify the resultant tune that is played and submit your answer using
Ve the macro

/***

spuzzle music(tune name=);

/***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*/

***/
***/
***/
***/
***/
***/
***/
***/

***/

/***/

The encryption part of this puzzle requires the user to convert hexadecimal codes to ASCII
and then use the mapping dataset to only keep the values from the hexadecimal array,
which have a 1 in their mapping column counterpart. There is only one mapping column
with a value of 1 per row.

HINT: Play the keyboard in recorder mode and figure out the tune {using the Chrome browser)

168 45 349 44 46 a1 1 0 0 0 0
274 3c 32 57 33 46 1 0 0]]
338 4F 39 4B 74)l 0 0 0] 1
4 4B 4D 70 4D a7 3E 0 0 1]]
550 73 e 31 o a8 a 1 1] 0 0
641 a1 44 34 a7 44 a0 0 0 1 0
737 38 39 34 2F 34 1] 0 0] 1
845 55 32 2F 34 4B 0 0 0 1]
976 42 40 40 33 53 1 1] 1] 0 0
10 36 47 46 aiz] 3F 33 a0 0 0 1 0

The left side holds the code you need (WORK.SOURCE]) - The right side holds the key (WORK.MAPPING)

Obs Hex Val 1 Hex Val 2 Hex Val 3 Hex Val 4 Hex Val 5 Hex Val 6 ' Map Col 1| Map Col 2| Map Col 3 Map Col 4 Map Col 5 Map Col 6

Lo v e e o o e

11

Once the users have resolved the encryption part, they then need to go to the URL they are
directed to and enter the code as instructed to be played on the virtual piano.l?] The name
of the tune is the puzzles answer.

MUSIC SHEETS KEY ASSIST ON AUTOPLAY

RECORDER HOW TO PLAY STYLES ABOUT

s
+
T

JUST PLAY

t i
+ +
i i

12

PUZZLE 7 - THE GRAPH PUZZLE

As expected of any SAS education piece we couldn’t not include graphs. The GPLOT
procedure and SGPLOT procedure are extremely useful when wanting to quickly view trends
of data; so we wanted to make use of them within a puzzle. In order to solve this puzzle,
users will need to utilise the equations provided and plot a graph that reveals an image.
Only the equations for the first image are provided initially.

/***/

/*** 1) The answer to imagel is what you see when you plot the below equations: *xx/
Voo x = 16sin(t)"3 *xk [
Ve y = 13cos (t)-5cos (2t)-2cos (3t)-cos (4t) * ko /
Vool for 0<t<6.3 *kx [
/*** ***/
/*** 2) To be able to get the answer to image2 you will need to await further xAK/
Vil instructions! xxx/

/***/

spuzzle graphs(imagel=???,1image2=27?7?);

Once the users have identified the first image they will be presented with a series of more complex
equations that they will need to graph.

INFO: The answer to image2 is what you see when you plot the below equations:

yl = 2sqgrt (-abs (abs(x)-1) *abs (3-abs(x))/ ((abs (x)-1)* (3-abs (x)))) * (1+abs (abs (x) -3) / (abs (x) -
3)) *sgrt (1-(x/7)*2)+(5+0.97* (abs (x-.5) +abs (x+.5)) -3 (abs (x-.75) +abs (x+.75))) * (1+abs (1-
abs(x))/ (l-abs(x)))

y2 = =-3sqrt(l-(x/7)"2)*sqrt (abs (abs (x)-4)/ (abs (x)-4))
y3 = abs(x/2)-0.0913722 (x"2)-3+sqrt (1- (abs (abs (x)-2)-1)"2)
y4d = (2.71052+(1.5-.5abs(x))-1.35526sqrt (4-(abs(x)-1)"2))*sqrt (abs (abs(x)-1)/(abs(x)-1))+0.9

for -7<x<7

Once the equations have successfully been graphed, it should be clear what the second
image is.

348

248

0.4

-0.4a

-24

-34

13

PUZZLE 8 — THE CIRCUIT PUZZLE

The circuit puzzle involves a change of pace with it being the only timed puzzle. Like several
of the other puzzles, you begin by initialising a start position and then have a second macro
to interact with the output produced by the first.

/***/

/*** Run puzzle circuit initialise to generate a circuit and start the countdown *kok /
/***/

spuzzle circuit initialise();

/***/

/*** Run puzzle circuit cut wires to cut (Y) or not (N) wires for an active circuit *kx [
/***/

spuzzle circuit cut wires(cut wirel=N,cut wire2=N,cut wire3=N,cut wire4=N,
cut wireb5=N,cut wire6=N,cut wire7=N,cut wire8=N);

Once you have initialised a circuit you will have 60 seconds to deactivate it before it is
destroyed. When the circuit is initialised, an rsubmit is used to spawn an additional session
that will output a file after 60 seconds that prevents the user from being able to solve the
circuit at that point. Each circuit is randomly generated. There are always 8 wires but those
wires can cross one or more of their neighbours. Each wire has a chance of randomly being
assigned 1 of 8 colours. After the 60 seconds are up the user can initialise another circuit.

14

The puzzle gives the user a comprehensive set of instructions to disarm the circuit.
However, the design is such that it should be near impossible to manually apply all 17
instructions in 60 seconds. The developer will have to use the WIRES and COLOURS
datasets output on initialisation to develop an automated solution. The instructions are as
follows:

1) Cut wire 1 if at least two of the following colours are not present in the circuit:
BLACK, BLUE, BROWN & GREEN

2) Cut wire 2 if at least two of the following colours are not present in the circuit:
ORANGE, PURPLE, RED & YELLOW

3) Cut wire 3 if there is exactly one BLACK wire and one BROWN wire in the circuit
unless there is also exactly one ORANGE wire and one RED wire in the circuit

4) Cut wire 4 if there is exactly one BLUE wire and one GREEN wire in the circuit unless
there is also exactly one PURPLE wire and one YELLOW wire in the circuit

5) Cut wire 5 if at least two of the following colours have exactly two wires present in
the circuit: BLACK, GREEN, ORANGE & YELLOW

6) Cut wire 6 if at least two of the following colours have exactly two wires present in
the circuit: BLUE, BROWN, PURPLE & RED

7) Cut wire 7 if any of the following colours have three or more wires present in the
circuit: BLACK, BLUE, ORANGE & PURPLE

8) Cut wire 8 if any of the following colours have three or more wires present in the
circuit: BROWN, GREEN, RED & YELLOW

9) If wire 1 crosses a BLACK or PURPLE wire then do the opposite of what you would
have done to wire 1 based on the previous instructions (e.g. cut becomes don't cut)

10)If wire 2 crosses exactly 1 wire then do the opposite of what you would have done to
wire 2 based on the previous instructions (e.g. cut becomes don't cut)

11)If wire 3 crosses a BLUE or RED wire then do the opposite of what you would have
done to wire 3 based on the previous instructions (e.g. cut becomes don't cut)

12)If wire 4 crosses exactly 2 wires then do the opposite of what you would have done
to wire 4 based on the previous instructions (e.g. cut becomes don't cut)

13)If wire 5 crosses a BROWN or YELLOW wire then do the opposite of what you would
have done to wire 5 based on the previous instructions (e.g. cut becomes don't cut)

14)If wire 6 crosses exactly 2 wires then do the opposite of what you would have done
to wire 6 based on the previous instructions (e.g. cut becomes don't cut)

15)If wire 7 crosses a GREEN or ORANGE wire then do the opposite of what you would
have done to wire 7 based on the previous instructions (e.g. cut becomes don't cut)

16)If wire 8 crosses exactly 1 wire then do the opposite of what you would have done to
wire 8 based on the previous instructions (e.g. cut becomes don't cut)

17)If after following all other instructions the solution is to cut no wires then instead cut
all wires

15

In this instance, the instructions are pointing us to cut wires 2, 3, 4 and 7 to disarm the
circuit. Once the user runs the macro and specifies which wires to cut, they will be
presented with a second image of the circuit and their success or failure to disarm the
circuit in 60 seconds will be put to the log.

16

PUZZLE 9 - THE X MARKS THE SPOT PUZZLE

The penultimate puzzle marks a significant increase in difficulty. By this point, the users
should be looking out for any clues that will help them. The background information tells
them that a formation of four Barclays offices will provide them with an X and that the
solution is the postcode nearest to the intersecting lines of that X. It also tells them that the
Earth has been assumed to be a sphere and the value used for the radius of the Earth.
When the users run %puzzle_x_marks_initialise to begin this puzzle they will be provided
with a dataset with 1,762,315 UK postcodes as well as the latitude and longitude points for
those postcodes. This dataset was downloaded from an open source site.[?!

iz id Ay postcode (@ latitude (G longitude
1 AB10 1XG 5714416516 | -2.114847768
2 2| AB10 6RN 5713787976 | -2.121436688
3 1|AB10 7JB 5712427377 | 2127189644
4 4| AB11 50N 57.14270109 -2.093295
5 5| AB11 6UL 57.13754663 2112233
6 & |AB113RQ £7.13597762 | -2.072114784
7 7|AB12 3FJ 57.0980029 2077438

Once the user has seen the dataset they are likely to try and solve this puzzle one of three
ways.

1) Try and genuinely solve the puzzle using some reasonably complex equations which
will involve

a. Finding the great-circle distance between the offices which are diagonal to
each other

b. Finding the initial bearing to travel between the pairs of offices
c. Finding the intersection point based on the start points and bearings
d. Finding the postcode nearest to the intersection point

2) Try and genuinely solve the puzzle but mistakenly use equations for a plane and not
a sphere

3) Try to brute force solve the puzzle

17

The first approach uses equations like the Haversine formula; for some this might be too
much mathematics.

Distance

This uses the ‘haversine’ formula to calculate the great-circle distance between two points - that is, the shortest
distance over the earth’s surface - giving an ‘as-the-crow-flies” distance between the points {ignoring any hills they
fly over, of course!),

Haversine a=sinq /) + cos g - cos gy - sind AN
formuial o = 7« atand(va, Y(1-a))
d=F-.c
where s latitode, M is longitude, RS earth's radivs (mean radius = 6,37 15m);
note that angles need to be in radians to pass to trig functions!

JavaScrpd var R o= 6371ei; ¢/ metres
var $l = latl. toRadians();
var §2 = lat?. toRadians():
var Ap = (lat2-latl) . toRadians()
var Ak = (lan?-lonl) . toRadians ()

var a = Math . sin(ags2) * Math. siniahs2) +
Math.cosigl) * Math.cos(d2) *
Math.siniax/2) * Math.sin(aks2);

var Cc = 2 * Math. atanZ (Math.sqrtia),. Math.sqrtil-al):

var d = R * C;

The second approach gets users pretty close to the right answer when they treat the
latitude and longitude as points on a plane. To reward their efforts a special note is put to
the log in this scenario, which lets them know they are within 5km of the correct answer.

INFO: This is the answer if you treat the coordinates as a plane and not a sphere - but
you're within a 5km radius!
* Increasing time penalty for incorrect answers by a second!

The final approach of brute force is something they will have been able to utilise in other
challenges and so this time we’ve made it a little trickier. As per the above message in the
log, every incorrect answer yields an increase in time penalty of a second; as such, it would
take around 49,241 years to brute force all of the postcodes. The key to brute force working
here is the user needs to realise there is something keeping track of their efforts from one
round to the next, it can’t all be local to that one macro call. If they look at the current
global macro variables they will see one called sleep_secs and if they set this to 0 before
every macro call they will sleep for 0 seconds instead of what would have been the penalty
amount.

Calling a macro up to 1,762,315 times is still going to take a little while so there are more
hints available to help speed up the process. When entering most incorrect postcodes you
will get the following message.

INFO: You're cold!

18

The message “You're cold!” is meant to serve two purposes; first to tell them they are
incorrect and second to imply if they get in the right ball park they will be told something
like “You're getting warmer!”. In the UK, there are six different formats a postcode can
come in but they are all made up of an area, district, sector and unit. There are only 125
unique areas and if a postcode containing the correct area is entered, you get.

INFO: That's the correct POSTCODE AREA - You're getting warm!

In total there are 2,983 unique districts, but within the correct area there are only 24. If a
postcode containing the correct area and district is entered, you get.

INFO: That's the correct POSTCODE DISTRICT - You're pretty hot!

While there might be 11,241 sectors in the UK, within the correct area and district there are
only 6. If a postcode containing the correct area, district and sector is entered, you get.

INFO: That's the correct POSTCODE SECTOR - You're burning up!

Whilst this puzzle is one of the most challenging, the variety of solutions available to people
with a keen eye makes it an interesting addition.

19

PUZZLE 10 - THE RUBIK’S PUZZLE

In time-honoured tradition, we saved the best puzzle until last. For the final puzzle, we have
a fully functional digital Rubik’s cube. In the background, the cube consists of 54 macro
variables that define the current state of the cube. The cube is displayed using a proc sgplot
that is applied to a dataset with tens of thousands of data points. The data points give the
illusion of a cube in the exact same way pixels work on a monitor. The users start by
initialising a randomly generated cube. The default is to display the cube in 3D but it can
also be displayed in 2D.

Rubiks Cube

a'n glnn'n ginnin giag's/ginly's

LI LR L

Left Front Right

C1/C2|C3 C1/C2|C3 C1(C2|C3

Bottom

The objective for this puzzle is what you would c1lcales
expect, solve the Rubik’s cube. In order to do this .
the users are given a couple of tools. The

%puzzle_rubiks_turn macro allows the cube to be
turned up, right, left and down in order to allow
the cube to be viewed from other angles when

displayed in 3D. Down

C1/C2|C3
The %puzzle_rubiks_rotate macro allows you to .
rotate each of the faces (front, up, left, right, ..
down, back) in either direction (clock-wise or .

anti-clockwise). Every option has a definition for

how to manipulate the 54 macro variables to
represent that rotation.

For those who already know how to solve a Rubik’s cube the puzzle will be relatively simple.
For those less well versed with the Rubik’s cube, if they can muster up some search engine
skills they will easily find websites that offer to solve Rubik’s cubes in the minimum number
of moves necessary.[®! For those looking to solve this purely in SAS but lacking the skills to
do, there is the “pull the stickers off method”. With the Rubik’s cube being tracked using 54
macro variables, if the users can figure out which macro variables to change and update
then they too will solve the cube and beat the puzzle.

20

CONCLUSION

The puzzles in this paper were designed with two purposes in mind. First off, we wanted to
find a fun way to help people learn and explore some of the classic programming features
within SAS. There is nothing new about getting people to use loops, arrays or macros but
that doesn’t mean we should stop trying to find new ways to teach old techniques. The
second reason for doing this was to try and teach people a new way of thinking. Our hope is
that once they’ve seen a dataset displayed as a crossword, maze or a Rubik’s cube, that
they will start to visualise and think of data differently.

Like all other software, SAS has limitations; but far too often, what users perceive to be a
limitation in the software is actually a limitation in their own imagination. The functions
needed to generate a Rubik’s cube have existed within SAS for years but we didn’t imagine
it was possible to construct one until we challenged ourselves to create these puzzles. In
that same way I hope the puzzles will help expand other people’s perceptions of what is
possible so they too can create things they wouldn't have otherwise imagined.

21

REFERENCES

Let me google that for you, https://Imgtfy.com/

Wikipedia, https://en.wikipedia.org/wiki/Maze solving algorithm

Virtual Piano, https://virtualpiano.net/

Stack Exchange, https://math.stackexchange.com/questions/54506/is-this-batman-equation-
for-real

GitHub, https://github.com/dwyl/uk-postcodes-latitude-longitude-complete-csv

Rubiks Cube Solver, https://rubiks-cube-solver.com/

e

Y

22

https://lmgtfy.com/
https://en.wikipedia.org/wiki/Maze_solving_algorithm
https://virtualpiano.net/
https://math.stackexchange.com/questions/54506/is-this-batman-equation-for-real
https://math.stackexchange.com/questions/54506/is-this-batman-equation-for-real
https://github.com/dwyl/uk-postcodes-latitude-longitude-complete-csv
https://rubiks-cube-solver.com/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Amit Patel, Email: amit.xc.patel@barclayscorp.com

Amit Patel has been developing solutions across a range of SAS products since 2011 and
has worked as a SAS technical lead within several organisations including two of the big four
banks in the UK.

Lewis Mitchell, Email: lewis.mitchell@barclayscorp.com

Lewis Mitchell has been developing solutions across a range of SAS products since 2009 and
has worked as a SAS technical lead within several organisations including three of the big
four banks in the UK.

23

mailto:amit.xc.patel@barclayscorp.com
mailto:lewis.mitchell@barclayscorp.com

