
1

Paper 3807-2019

Puzzle Me, Puzzle You: How a Thought Experiment Became a

Rubik's Cube Among a Set of Fun Puzzles

Amit Patel, Barclays plc; Lewis Mitchell, Barclays plc;

ABSTRACT

How do you help a community of SAS® users become more involved in the software, and

learn new ideas without providing direct training? We decided to answer this question by

designing a series of puzzles, which require the solutions to be run in SAS. This allowed us

to showcase SAS features that were unused by many of our colleagues and at the same

time promote a critical thinking mind set when solving the puzzles. Whether its X marks the

spot using office locations and geolocational data, solving a Rubik’s cube that utilises the

SGPLOT procedure, or a dataset based crossword using SAS Procedure names, each puzzle

requires a different technique to solve. Our aim is to help users expand their SAS knowledge

and develop a different way of thinking that they can apply to their day-to-day work.

INTRODUCTION

The idea of proactively engaging in interactive learning is not a new one, but the methods

and tools which are available depend on the environment in question. In this case it’s not a

classroom, but a SAS® Grid environment with over 1000 users. We want to encourage these

users to use SAS in ways they are not typically exposed to in their day-to-day work. By

showing people different concepts within SAS or challenging their SAS skills in a fun way,

we hope to expand their horizons of what is possible. It is often said that your only limit is

your imagination; we hope these puzzles will help our users imagine something new.

THE PUZZLES

There are 10 unique puzzles that have been created to highlight a variety of concepts.

1) The Crossword Puzzle – Everyone knows the PRINT procedure, FREQ procedure

and SORT procedure - but there are some procedures with far more interesting

names. This crossword puzzle forms the intersection between SAS procedures and

Hollywood movie quotes.

2) The SAS Quiz – A quick bit of knowledge searching for SAS functions, SAS

Dictionary tables and maximum numbers. We encourage internet searching and

even provide a lmgtfy link for those who may struggle with what to search for.

3) The Safe Cracking Puzzle – There's a safe that needs cracking! What more needs

to be said?

4) The Maze Puzzle – Time to escape a digital maze! Just as ominous as it may

sound; the rules are based on mathematical sequences that tell you where you can

and can’t move to.

5) The Joining Puzzle – Can you join the data to get the hidden code? The twist is

only a single value in a single column in each dataset allows them to be merged.

6) The Encrypted Music Puzzle – Can you map and decrypt two datasets in order to

get the information needed to play a tune on a digital keyboard?

2

7) The Graph Puzzle – You’ve got the equations but can you identify the image they

reveal?

8) The Circuit Puzzle – With only 60 seconds and a complex set of instructions can

you defuse the circuit in time?

9) The X Marks the Spot Puzzle – It's often said that X marks the spot; this time it’s

four Barclays offices that give you your X. The answer you seek is the postcode

nearest to the intersection of the X

10) The Rubik’s Puzzle – Can you solve a SAS generated Rubik’s cube?

SETTING UP THE ENVIRONMENT

In order to make things as accessible as possible for all users, a separate directory structure

was set up to store the puzzles together and restrict permissions across the files. Each

individual puzzle directory contains the following:

• A copy of the egp which all users have read

access to. Each egp contains all the relevant notes

and macros the user will need in order to solve it.

• A SAS macro catalogue which holds all the code

to run and solve the puzzles. These were compiled

using the /secure option so users won’t be able to

open up the code directly; it’s still available for them

to call and use within their egp using the SASMSTORE

option, but they are prevented from reading the

source code.

• An ‘admin’ directory with restricted permissions

holding egp’s for the solutions and the raw macro

code to create the SAS macro catalogue. These egp’s

are password protected in addition to the restricted

permissions.

• A hidden ‘.log’ directory that is used to record

when a user successfully completes a puzzle and

enables us to generate usage statistics.

Within each of the egp’s there is a standard initialisation piece of code which allows the

puzzle macro catalogue to be loaded and then be available for the individual macro calls to

solve that puzzle:

%sysmstoreclear;

%let puzzle_root = /sas/Prod/Data/GrpPCB/Shared/sas_challenge;

%let puzzle = puzzle01;

libname &puzzle. "&puzzle_root./&puzzle.";

options mstored sasmstore=&puzzle. pagesize=1024;

3

PUZZLE 1 – THE CROSSWORD PUZZLE

The crossword is built up by using a dataset as a template with a format applied to colour

certain cells black. This dataset is displayed using proc report. One version of the dataset,

which is blank except for the clue numbers, is displayed on the left-hand side. On the right-

hand side, the version of the dataset with the answers the user has entered is shown. Any

answer the user enters which is the correct length is displayed, but if the user enters two

answers which overlap and have different characters in the overlapping cell, then a ‘*’ is

displayed instead of either character to highlight the conflict.

The users enter the answers using the %puzzle_crossword macro.

By default, the parameter CLUE is populated with the value SAS, which means that the

clues which are generated all relate to SAS procedures.

%puzzle_crossword(

clue=SAS,

down1=,

down2=,

across3=,

down4=,

across5=,

down6=,

down7=,

across8=,

down9=

);

4

However, there are hints in the background information and log that let users know they

can change the CLUE parameter to have a value of MOVIE. If the user feels their pop culture

knowledge is better than their SAS procedure knowledge they can instead generate clues

that will lead to the same answers based on movie quotes.

Once the macro has been executed with the parameters containing a full set of correct

answers, the user will be congratulated in the log and informed that their success has been

recorded. This is the same for all 10 puzzles.

5

PUZZLE 2 – THE SAS QUIZ

The SAS quiz is based around providing questions on key techniques or areas of SAS we

have found useful to know ourselves. On running the script, the first question is available:

The user enters their answer using the macros provided below and a response is given each

time a macro is called.

In the event of three incorrect answers for any of the questions, a hint will be provided. For

the first few easier questions the hint is a link to “let me google that for you” to promote

looking online for SAS queries which may arise.[1] For the trickier questions, more detailed

hints are provided.

Once a question is correctly answered (in numerical order) then the next question is

provided in the log.

%puzzle_quiz_answer_01(answer_01=UNKNOWN);

%puzzle_quiz_answer_02(answer_02=);

%puzzle_quiz_answer_03(answer_03=);

%puzzle_quiz_answer_04(answer_04=);

%puzzle_quiz_answer_05(answer_05=);

%puzzle_quiz_answer_06(answer_06=);

%puzzle_quiz_answer_07(answer_07=);

%puzzle_quiz_answer_08(answer_08=);

%puzzle_quiz_answer_09(answer_09=);

%puzzle_quiz_answer_10(answer_10=);

Question 01: Which function compresses multiple blanks to a single blank?

Question 01: Which function compresses multiple blanks to a single blank?

ERROR: UNKNOWN is incorrect!

HINT: http://lmgtfy.com/?q=Which+function+compresses+multiple+blanks+to+a+single+blank%3F

Question 01: Which function compresses multiple blanks to a single blank?

Answer 01: compbl is correct!

Question 02: Which single function produces the same output as combining TRIM and LEFT?

6

PUZZLE 3 – THE SAFE CRACKING PUZZLE

The safe cracking macro is designed to motivate people into using macros and do loops, and

will test their ability to implement them correctly. The code to generate the query is

relatively simple and only requires three nested loops from 1 to 50 to solve. The three

loops will need to cycle through until the values for parameters turn1, turn2 and turn3 are

correct; at that point a global macro variable will be populated indicating the correct

combination has been found. In the code below the put statements that print the text art for

‘Congratulations’ to the log are shown using a reduced font size for readability.

The macro call the users are given to solve this puzzle only relies on three parameters being

passed to it.

%macro puzzle_safe_crack(turn1,turn2,turn3) / store secure;

 options nonotes nomlogic nomprint nosymbolgen nosource nosource2;

 %local solved sysmacrolog;

 %let solved = 0;

 %let sysmacrolog = &sysmacroname.;

 %global unlocked;

 %if &turn1. = 37 and &turn2. = 19 and &turn3. = 11 %then %do;

 %let solved = 1;

 %let unlocked = 1;

 %put ;

%put %str() ##### ;

%put %str() # # #### # # #### ##### ## ##### # # # ## ##### # #### # # #### ;

%put %str() # # # ## # # # # # # # # # # # # # # # # # ## # # ;

%put %str() # # # # # # # # # # # # # # # # # # # # # # # # #### ;

%put %str() # # # # # # # ### ##### ###### # # # # ###### # # # # # # # # ;

%put %str() # # # # # ## # # # # # # # # # # # # # # # # # ## # # ;

%put %str() ##### #### # # #### # # # # # #### ###### # # # # #### # # #### ;

 %put ;

 %put Your successful completion of Puzzle03 has been recorded ;

 %put ;

 %puzzle_log(puzzle=puzzle03, log=log03, sysmacro=&sysmacrolog., solved=&solved.);

 %end;

 %else %do;

 %let unlocked = 0;

 %end;

%mend puzzle_safe_crack;

%puzzle_safe_crack(turn1=,turn2=,turn3=);

7

PUZZLE 4 – THE MAZE PUZZLE

The maze puzzle represents a step up in complexity and requires the users to use a little

more out of the box thinking. The rules for crossing the maze are explained in a rhyme,

which details how to move around the maze and which numbers not to move to. Most of the

restrictions are based on mathematical sequences.

Once the user runs the %puzzle_maze_initialise macro they will be presented with the

digital maze and a starting position of location 1. As described in the rhyme they need to

move to location 400.

/***/

/*** The next puzzle you face is a maze of sorts, ***/

/*** where the walls are the numbers and will mess with your thoughts. ***/

/*** ***/

/*** From one to four-hundred you must go, ***/

/*** up, down, left and right are the moves that you know. ***/

/*** ***/

/*** By applying the rules in the order they come, ***/

/*** you will escape from this maze and avoid feeling glum. ***/

/*** ***/

/*** Rule 1 says you're safe on prime, fibonnaci or square, ***/

/*** unless one of those, for one more or one less don't go there. ***/

/*** ***/

/*** Rule 2 says the rest are safe to begin, ***/

/*** although 272 has now changed, to make it harder to win. ***/

/*** ***/

/*** Rule 3 says perfect numbers will give you a chance, ***/

/*** on three lots of the second plus the first you can dance. ***/

/*** ***/

/*** Rule 4 says first 17 then 19 make the complexity worse, ***/

/*** for all multiples, their safety will be the reverse. ***/

/***/

8

The rhyme should help the user identify that they need to specify up, down, left or right in

order to move in those directions. Any illegal moves will be prevented by the macro when it

is executed.

In order to solve this puzzle the user first needs to understand which of the numbers

represent the walls in the digital maze; they will soon discover if they move onto a space

that is defined as a wall they will be reset to the starting location. By following the rules laid

out they should be able to generate a formatted dataset that highlights the walls.

* Run the puzzle_maze_move to move orthogonally;

%puzzle_maze_move(move=up, display=YES);

%puzzle_maze_move(move=down, display=YES);

%puzzle_maze_move(move=left, display=YES);

%puzzle_maze_move(move=right, display=YES);

9

At this point the user can manually enter the directions to navigate from 1 to 400 based on

their observations. An alternate strategy to solve this automatically would be to use the

classic maze solving technique of placing one of your hands on the maze wall and not

removing it until you reach the exit. This is more of a brute force approach and will mean

you explore a lot of dead ends as you traverse the maze, but eventually through an

exhaustive approach you will reach the destination. This method is often called ‘wall

follower’ but there are various algorithms for solving mazes.[2] The below diagram is the

implementation of a macro to replicate the ‘wall follower’ method. The first twenty moves of

the route it took were 1 -> 2 -> 3 -> 4 -> 5 -> 25 -> 45 -> 25 -> 5 -> 4 -> 3 -> 23 -> 43

-> 23 -> 3 -> 2-> 1-> 21 -> 41 -> 61 -> etc. Once you understand how it is moving it is

easy to see how it ended up at this solution.

10

PUZZLE 5 – THE JOINING PUZZLE

The joining puzzle touches some of the same areas as the safe puzzle, requiring an

understanding of loops and macros to solve. However, there is an added degree of

complexity that will mean users have to push their technical skills a little further this time.

The code the user is initially presented with is as follows:

By running the %puzzle_join_initialise macro the users will randomly generate three

datasets, each with 100 columns and 1000 rows. Every cell will contain a 6-digit number but

only a single 6-digit number is repeated across all three datasets. This means there is only a

single cell that belongs to a single column in each dataset that can actually be joined. The

users need to develop a way of finding out what columns can be joined in order to

determine the code and solve the puzzle.

/***/

/*** Run the puzzle_join_initialise to build the join datasets. There are three ***/

/*** datasets each with 100 columns and 1000 rows. ***/

/*** ~ Only one column in each dataset will allow the datasets to be joined ***/

/*** ~ Once the data is joined the columns will reveal the positive code ***/

/***/

%puzzle_join_initialise();

/***/

/*** Enter the positive code into puzzle_join_check_code to solve the puzzle ***/

/***/

%puzzle_join_check_code(code=???);

11

PUZZLE 6 – THE ENCRYPTED MUSIC PUZZLE

There are two key components to this puzzle. Firstly, the puzzle is designed to test a user’s

knowledge of arrays and ability to find the functions they need to resolve an issue.

Secondly, once they’ve cracked the code, they then have to be able to follow the

instructions in order to play a tune on a virtual piano before identifying the tune. If they

don’t recognise the tune themselves they may have to reach out to someone else to see if

they can help them identify it – knowing when to ask for help is also a skill!

The encryption part of this puzzle requires the user to convert hexadecimal codes to ASCII

and then use the mapping dataset to only keep the values from the hexadecimal array,

which have a 1 in their mapping column counterpart. There is only one mapping column

with a value of 1 per row.

/***/

/*** Run the puzzle_music macro as many times as you like. ***/

/*** ***/

/*** Your aim is combine the SOURCE and MAPPING datasets in such a way that you: ***/

/*** ~ a) Find which website you need to access (recommended browser is Chrome) ***/

/*** ~ b) Enter the code into the website (using the recorder function within the ***/

/*** website) ***/

/*** ~ c) Identify the resultant tune that is played and submit your answer using ***/

/*** the macro ***/

/*** ***/

/***/

%puzzle_music(tune_name=);

12

Once the users have resolved the encryption part, they then need to go to the URL they are

directed to and enter the code as instructed to be played on the virtual piano.[3] The name

of the tune is the puzzles answer.

13

PUZZLE 7 – THE GRAPH PUZZLE

As expected of any SAS education piece we couldn’t not include graphs. The GPLOT

procedure and SGPLOT procedure are extremely useful when wanting to quickly view trends

of data; so we wanted to make use of them within a puzzle. In order to solve this puzzle,

users will need to utilise the equations provided and plot a graph that reveals an image.

Only the equations for the first image are provided initially.

Once the users have identified the first image they will be presented with a series of more complex
equations that they will need to graph.[4]

Once the equations have successfully been graphed, it should be clear what the second

image is.

/***/

/*** 1) The answer to image1 is what you see when you plot the below equations: ***/

/*** x = 16sin(t)^3 ***/

/*** y = 13cos(t)-5cos(2t)-2cos(3t)-cos(4t) ***/

/*** for 0<t<6.3 ***/

/*** ***/

/*** 2) To be able to get the answer to image2 you will need to await further ***/

/*** instructions! ***/

/***/

%puzzle_graphs(image1=???,image2=???);

INFO: The answer to image2 is what you see when you plot the below equations:

y1 = 2sqrt(-abs(abs(x)-1)*abs(3-abs(x))/((abs(x)-1)*(3-abs(x))))*(1+abs(abs(x)-3)/(abs(x)-

3))*sqrt(1-(x/7)^2)+(5+0.97*(abs(x-.5)+abs(x+.5))-3(abs(x-.75)+abs(x+.75)))*(1+abs(1-

abs(x))/(1-abs(x)))

y2 = -3sqrt(1-(x/7)^2)*sqrt(abs(abs(x)-4)/(abs(x)-4))

y3 = abs(x/2)-0.0913722(x^2)-3+sqrt(1-(abs(abs(x)-2)-1)^2)

y4 = (2.71052+(1.5-.5abs(x))-1.35526sqrt(4-(abs(x)-1)^2))*sqrt(abs(abs(x)-1)/(abs(x)-1))+0.9

for -7<x<7

14

PUZZLE 8 – THE CIRCUIT PUZZLE

The circuit puzzle involves a change of pace with it being the only timed puzzle. Like several

of the other puzzles, you begin by initialising a start position and then have a second macro

to interact with the output produced by the first.

Once you have initialised a circuit you will have 60 seconds to deactivate it before it is

destroyed. When the circuit is initialised, an rsubmit is used to spawn an additional session

that will output a file after 60 seconds that prevents the user from being able to solve the

circuit at that point. Each circuit is randomly generated. There are always 8 wires but those

wires can cross one or more of their neighbours. Each wire has a chance of randomly being

assigned 1 of 8 colours. After the 60 seconds are up the user can initialise another circuit.

/***/

/*** Run puzzle_circuit_initialise to generate a circuit and start the countdown ***/

/***/

%puzzle_circuit_initialise();

/***/

/*** Run puzzle_circuit_cut_wires to cut (Y) or not (N) wires for an active circuit ***/

/***/

%puzzle_circuit_cut_wires(cut_wire1=N,cut_wire2=N,cut_wire3=N,cut_wire4=N,

 cut_wire5=N,cut_wire6=N,cut_wire7=N,cut_wire8=N);

15

The puzzle gives the user a comprehensive set of instructions to disarm the circuit.

However, the design is such that it should be near impossible to manually apply all 17

instructions in 60 seconds. The developer will have to use the WIRES and COLOURS

datasets output on initialisation to develop an automated solution. The instructions are as

follows:

1) Cut wire 1 if at least two of the following colours are not present in the circuit:

BLACK, BLUE, BROWN & GREEN

2) Cut wire 2 if at least two of the following colours are not present in the circuit:

ORANGE, PURPLE, RED & YELLOW

3) Cut wire 3 if there is exactly one BLACK wire and one BROWN wire in the circuit

unless there is also exactly one ORANGE wire and one RED wire in the circuit

4) Cut wire 4 if there is exactly one BLUE wire and one GREEN wire in the circuit unless

there is also exactly one PURPLE wire and one YELLOW wire in the circuit

5) Cut wire 5 if at least two of the following colours have exactly two wires present in

the circuit: BLACK, GREEN, ORANGE & YELLOW

6) Cut wire 6 if at least two of the following colours have exactly two wires present in

the circuit: BLUE, BROWN, PURPLE & RED

7) Cut wire 7 if any of the following colours have three or more wires present in the

circuit: BLACK, BLUE, ORANGE & PURPLE

8) Cut wire 8 if any of the following colours have three or more wires present in the

circuit: BROWN, GREEN, RED & YELLOW

9) If wire 1 crosses a BLACK or PURPLE wire then do the opposite of what you would

have done to wire 1 based on the previous instructions (e.g. cut becomes don't cut)

10) If wire 2 crosses exactly 1 wire then do the opposite of what you would have done to

wire 2 based on the previous instructions (e.g. cut becomes don't cut)

11) If wire 3 crosses a BLUE or RED wire then do the opposite of what you would have

done to wire 3 based on the previous instructions (e.g. cut becomes don't cut)

12) If wire 4 crosses exactly 2 wires then do the opposite of what you would have done

to wire 4 based on the previous instructions (e.g. cut becomes don't cut)

13) If wire 5 crosses a BROWN or YELLOW wire then do the opposite of what you would

have done to wire 5 based on the previous instructions (e.g. cut becomes don't cut)

14) If wire 6 crosses exactly 2 wires then do the opposite of what you would have done

to wire 6 based on the previous instructions (e.g. cut becomes don't cut)

15) If wire 7 crosses a GREEN or ORANGE wire then do the opposite of what you would

have done to wire 7 based on the previous instructions (e.g. cut becomes don't cut)

16) If wire 8 crosses exactly 1 wire then do the opposite of what you would have done to

wire 8 based on the previous instructions (e.g. cut becomes don't cut)

17) If after following all other instructions the solution is to cut no wires then instead cut

all wires

16

In this instance, the instructions are pointing us to cut wires 2, 3, 4 and 7 to disarm the

circuit. Once the user runs the macro and specifies which wires to cut, they will be

presented with a second image of the circuit and their success or failure to disarm the

circuit in 60 seconds will be put to the log.

17

PUZZLE 9 – THE X MARKS THE SPOT PUZZLE

The penultimate puzzle marks a significant increase in difficulty. By this point, the users

should be looking out for any clues that will help them. The background information tells

them that a formation of four Barclays offices will provide them with an X and that the

solution is the postcode nearest to the intersecting lines of that X. It also tells them that the

Earth has been assumed to be a sphere and the value used for the radius of the Earth.

When the users run %puzzle_x_marks_initialise to begin this puzzle they will be provided

with a dataset with 1,762,315 UK postcodes as well as the latitude and longitude points for

those postcodes. This dataset was downloaded from an open source site.[5]

Once the user has seen the dataset they are likely to try and solve this puzzle one of three

ways.

1) Try and genuinely solve the puzzle using some reasonably complex equations which

will involve

a. Finding the great-circle distance between the offices which are diagonal to

each other

b. Finding the initial bearing to travel between the pairs of offices

c. Finding the intersection point based on the start points and bearings

d. Finding the postcode nearest to the intersection point

2) Try and genuinely solve the puzzle but mistakenly use equations for a plane and not

a sphere

3) Try to brute force solve the puzzle

18

The first approach uses equations like the Haversine formula; for some this might be too

much mathematics.

The second approach gets users pretty close to the right answer when they treat the

latitude and longitude as points on a plane. To reward their efforts a special note is put to

the log in this scenario, which lets them know they are within 5km of the correct answer.

The final approach of brute force is something they will have been able to utilise in other

challenges and so this time we’ve made it a little trickier. As per the above message in the

log, every incorrect answer yields an increase in time penalty of a second; as such, it would

take around 49,241 years to brute force all of the postcodes. The key to brute force working

here is the user needs to realise there is something keeping track of their efforts from one

round to the next, it can’t all be local to that one macro call. If they look at the current

global macro variables they will see one called sleep_secs and if they set this to 0 before

every macro call they will sleep for 0 seconds instead of what would have been the penalty

amount.

Calling a macro up to 1,762,315 times is still going to take a little while so there are more

hints available to help speed up the process. When entering most incorrect postcodes you

will get the following message.

INFO: This is the answer if you treat the coordinates as a plane and not a sphere - but

you're within a 5km radius!

 * Increasing time penalty for incorrect answers by a second!

INFO: You're cold!

19

The message “You’re cold!” is meant to serve two purposes; first to tell them they are

incorrect and second to imply if they get in the right ball park they will be told something

like “You’re getting warmer!”. In the UK, there are six different formats a postcode can

come in but they are all made up of an area, district, sector and unit. There are only 125

unique areas and if a postcode containing the correct area is entered, you get.

In total there are 2,983 unique districts, but within the correct area there are only 24. If a

postcode containing the correct area and district is entered, you get.

While there might be 11,241 sectors in the UK, within the correct area and district there are

only 6. If a postcode containing the correct area, district and sector is entered, you get.

Whilst this puzzle is one of the most challenging, the variety of solutions available to people

with a keen eye makes it an interesting addition.

INFO: That's the correct POSTCODE AREA - You're getting warm!

INFO: That's the correct POSTCODE DISTRICT - You're pretty hot!

INFO: That's the correct POSTCODE SECTOR - You're burning up!

20

PUZZLE 10 – THE RUBIK’S PUZZLE

In time-honoured tradition, we saved the best puzzle until last. For the final puzzle, we have

a fully functional digital Rubik’s cube. In the background, the cube consists of 54 macro

variables that define the current state of the cube. The cube is displayed using a proc sgplot

that is applied to a dataset with tens of thousands of data points. The data points give the

illusion of a cube in the exact same way pixels work on a monitor. The users start by

initialising a randomly generated cube. The default is to display the cube in 3D but it can

also be displayed in 2D.

The objective for this puzzle is what you would

expect, solve the Rubik’s cube. In order to do this

the users are given a couple of tools. The

%puzzle_rubiks_turn macro allows the cube to be

turned up, right, left and down in order to allow

the cube to be viewed from other angles when

displayed in 3D.

The %puzzle_rubiks_rotate macro allows you to

rotate each of the faces (front, up, left, right,

down, back) in either direction (clock-wise or

anti-clockwise). Every option has a definition for

how to manipulate the 54 macro variables to

represent that rotation.

For those who already know how to solve a Rubik’s cube the puzzle will be relatively simple.

For those less well versed with the Rubik’s cube, if they can muster up some search engine

skills they will easily find websites that offer to solve Rubik’s cubes in the minimum number

of moves necessary.[6] For those looking to solve this purely in SAS but lacking the skills to

do, there is the “pull the stickers off method”. With the Rubik’s cube being tracked using 54

macro variables, if the users can figure out which macro variables to change and update

then they too will solve the cube and beat the puzzle.

21

CONCLUSION

The puzzles in this paper were designed with two purposes in mind. First off, we wanted to

find a fun way to help people learn and explore some of the classic programming features

within SAS. There is nothing new about getting people to use loops, arrays or macros but

that doesn’t mean we should stop trying to find new ways to teach old techniques. The

second reason for doing this was to try and teach people a new way of thinking. Our hope is

that once they’ve seen a dataset displayed as a crossword, maze or a Rubik’s cube, that

they will start to visualise and think of data differently.

Like all other software, SAS has limitations; but far too often, what users perceive to be a

limitation in the software is actually a limitation in their own imagination. The functions

needed to generate a Rubik’s cube have existed within SAS for years but we didn’t imagine

it was possible to construct one until we challenged ourselves to create these puzzles. In

that same way I hope the puzzles will help expand other people’s perceptions of what is

possible so they too can create things they wouldn’t have otherwise imagined.

22

REFERENCES

1. Let me google that for you, https://lmgtfy.com/

2. Wikipedia, https://en.wikipedia.org/wiki/Maze_solving_algorithm

3. Virtual Piano, https://virtualpiano.net/

4. Stack Exchange, https://math.stackexchange.com/questions/54506/is-this-batman-equation-

for-real

5. GitHub, https://github.com/dwyl/uk-postcodes-latitude-longitude-complete-csv

6. Rubiks Cube Solver, https://rubiks-cube-solver.com/

https://lmgtfy.com/
https://en.wikipedia.org/wiki/Maze_solving_algorithm
https://virtualpiano.net/
https://math.stackexchange.com/questions/54506/is-this-batman-equation-for-real
https://math.stackexchange.com/questions/54506/is-this-batman-equation-for-real
https://github.com/dwyl/uk-postcodes-latitude-longitude-complete-csv
https://rubiks-cube-solver.com/

23

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Amit Patel, Email: amit.xc.patel@barclayscorp.com

Amit Patel has been developing solutions across a range of SAS products since 2011 and

has worked as a SAS technical lead within several organisations including two of the big four

banks in the UK.

Lewis Mitchell, Email: lewis.mitchell@barclayscorp.com

Lewis Mitchell has been developing solutions across a range of SAS products since 2009 and

has worked as a SAS technical lead within several organisations including three of the big

four banks in the UK.

mailto:amit.xc.patel@barclayscorp.com
mailto:lewis.mitchell@barclayscorp.com

