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ABSTRACT 

If the stability or variation of a model’s performance is important, how would you measure it 

before deploying the model into production? This paper discusses the use of randomization 

test or bootstrap sampling as a post model build technique to understand the variations in a 

model’s performance. This situation may arise if you are vetting a model built by someone 

else for instance. Awareness of the variance in model performance can influence 

deployment decision and/or manage performance expectation when deployed. During model 

build, this method may also be of use in choosing amongst candidate models. 

1. INTRODUCTION  

During model development the performance metrics of a model is calculated on a 

development sample, it is then calculated for validation samples which could be another 

sample at the same timeframe or other time shifted samples. If the performance metrics 

are similar, the model is deemed stable or robust. If a model has the highest validation 

performance amongst candidate models, it is deemed to be the Champion and may be 

accepted for use in production. 

These decisions of model stability and performance are based on a single point estimate 

derived from one sample, performance variation is usually ignored. Understanding 

performance variability can assist in choosing alternative models, e.g., less performance 

variability may be preferred over insignificant performance difference. It can also temper 

expectation, for instance, if in-field model performance varies within expectation there is no 

need to raise false alarm. While models built from large datasets generally have stable 

metrics, models from small datasets are more susceptible to performance variation, the 

techniques outlined below are more valuable. 

This paper will use a binary classifier to illustrate the idea, the principle is generally 

applicable. 

2. PERFORMANCE OF A BINARY CLASSIFIER 

The questions of interest are usually of two types: 

1. Did performance hold between development and validation? 

2. Which model performs the best? 

There are two ways to assess the performance of a binary classifier: 

1. Discrimination measures the ability of the model to properly rank order the target 

from low to high, the degree of agreement between predicted rank order and actual 

class is an indication of a model's discrimination power, ROC and KS are example 

metrics for binary classifiers. Discrimination is important when your usage is based 

on prediction rank ordering rather than the value of the prediction, e.g., selecting the 

most likely to respond 10% of customer depend only on rank ordering. 

2. Accuracy measures the ability of the model to provide accurate point estimates of 

the probability of event, models with systemic bias in accuracy may indicate lack of 

fit. Accuracy is also important when you need to use the prediction value directly, for 

example, the expected return can be calculated as probability of purchase x sales 
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price. Accuracy is viewed on a Calibration Curve (described later). It is possible for a 

model to provide high discrimination power without being accurate, e.g., translation 

and/or scaling will affect accuracy but not discrimination. 

Binary classifier is usually built using PROC LOGISTIC, ROC is calculated by the procedure 

directly. To draw calibration curves, the prediction and target need to be stored and plotted 

separately. The following code simulates a development and a validation dataset, ROC and 

Calibration curve for the development dataset are produced: 

 

title;  ods noproctitle;  ods graphics / width=6in height=4in noborder; 

 

%let nobs = 500; 

%let splt = 0.6; 

data Dev Val; 

    call streaminit(5678); 

    do i = 1 to &nobs; 

        x = rand("Uniform", -3, 3); 

        logit = -2.5 + 0.8*x + 0.3*x**2 + rand("Normal", 0, 0.1); 

        prob = logistic(logit); 

        Y = rand("Bernoulli", prob); 

        if rand('uniform') <= &splt then output Dev; 

                                    else output Val; 

    end; 

    keep y x; 

run; 

 

ods select ROCCurve; 

proc logistic data=Dev plots(only)=roc;                              

    Development_Quadratic: model Y(event='1') = x x*x; 

    output out=DQScore predicted=Prob; 

    score data=Val out=VQScore(keep=y x p_1 rename=(P_1=Prob)); 

run; 
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title 'Calibration Curve for Development Quadratic'; 

proc sgplot data=DQScore noautolegend aspect=1; 

    loess x=Prob y=y / interpolation=cubic clm nomarkers;    

    lineparm x=0 y=0 slope=1 / lineattrs=(color=grey pattern=dash); 

    yaxis grid values=(0 to 1 by 0.2);  xaxis grid values=(0 to 1 by 0.2); 

run; 

 

3. VALIDATION PERFORMANCE 

 

When assessing the performance of a binary classifier on another dataset, we only need the 

actual target and the prediction of the model. The code above scored the validation dataset 

at the same time as model development for convenience, but scoring can be accomplished 

in many ways, e.g., the code statement can be used to store the equation and score other 

datasets later. 

When given a dataset with target and prediction, ROC and accuracy can be assessed using 

PROC LOGISTIC. The nofit option will suppresses model fitting, the roc statement will 

produce the roc curve using the predictor as is: 

 

ods select ROCCurve; 

proc logistic data=VQScore plots(only)=roc; 

    model Y(event='1') = Prob / nofit; 

    roc 'Validation Quadratic' pred=Prob; 

run; 
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title 'Calibration Curve for Validation Quadratic'; 

proc sgplot data=VQScore noautolegend aspect=1; 

    loess x=Prob y=y / interpolation=cubic clm nomarkers;    

    lineparm x=0 y=0 slope=1 / lineattrs=(color=grey pattern=dash); 

    yaxis grid values=(0 to 1 by 0.2);  xaxis grid values=(0 to 1 by 0.2); 

run; 
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4. LINEAR MODEL 

 
Using a linear model leads to loss of accuracy with similar performance: 
 

ods select ROCCurve; 

proc logistic data=Dev plots(only)=roc; 

    Development_Linear: model Y(event='1') = x; 

    output out=DLScore predicted=Prob; 

    score data=Val out=VLScore(keep=y x p_1 rename=(P_1=Prob)); 

run; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

title 'Calibration Curve for Development Linear'; 

proc sgplot data=DLScore noautolegend aspect=1; 

    loess x=Prob y=y / interpolation=cubic clm nomarkers;    

    lineparm x=0 y=0 slope=1 / lineattrs=(color=grey pattern=dash); 

    yaxis grid values=(0 to 1 by 0.2); xaxis grid values=(0 to 1 by 0.2); 

run; 
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ods select ROCCurve; 

proc logistic data=VLScore plots(only)=roc; 

    model Y(event='1') = Prob / nofit; 

    roc 'Validation Linear' pred=Prob; 

run; 
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title 'Calibration Curve for Validation Linear'; 

proc sgplot data=VLScore noautolegend aspect=1; 

    loess x=Prob y=y / interpolation=cubic clm nomarkers;    

    lineparm x=0 y=0 slope=1 / lineattrs=(color=grey pattern=dash); 

    yaxis grid values=(0 to 1 by 0.2);     xaxis grid values=(0 to 1 by 

0.2); 

run; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It's interesting to note that, for both development and validation, the linear model has what 

appears to be better discrimination power while being less accurate. The calibration curve is 

giving us insight into model behaviour that is not visible from ROC alone. 

 

5. COMPARISON BETWEEN DEVELOPMENT AND VALIDATION 

At this point we have four point estimates of model performance, 

 

 

 

 

 

It looks like the linear model is slightly better than the quadratic model, and both model 

perform better on validation than development. But, without an understanding of the 

variability of performance, we can't really be sure. 

ROC Development Validation 

Quadratic  0.8488 0.8541 

Linear 0.8541 0.8602 
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One way to obtain more robust estimate of model performance is to evaluate its 

performance on a large number of bootstrap samples. Using a macro loop to take a sample, 

compute ROC, append to a dataset is slow and ill-advised when you can leverage by-group 

processing built into SAS. The code below use PROC SURVEYSELECT with reps= to create 

many bootstrap samples and runs PROC LOGISTIC with a by statement to calculate ROC for 

each replicate: 

proc surveyselect data=DQScore out=DQReps samprate=0.5 method=urs 

seed=1234 reps=400 noprint;  run; 

ods select none;                       *--- suppress output ---; 

ods table ROCAssociation=DQAssoc;      *--- capture table   ---; 

proc logistic data=DQReps plots=none; 

    by replicate; 

    model Y(event='1') = Prob / nofit; 

    roc 'Development Quadratic' pred=Prob; 

run; 

ods select all; 

 

title 'ROC Distribution of Development Quadratic'; 

proc means  data=DQAssoc(keep=Area rename=(Area=ROC)) n min p5 p10 mean std 

p90 p95 max;  run; 

 

 

proc sgplot data=DQAssoc(keep=Area rename=(Area=ROC)) noautolegend; 

    histogram roc / nbins=20; 

    density roc; 

    yaxis grid;     xaxis grid values=(0.7 to 1 by 0.1); 

run;  
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We can repeat the bootstrap process on the validation dataset: 

proc surveyselect data=VQScore out=Reps samprate=0.5 method=urs 

seed=1234 reps=400 noprint;  run; 

ods select none;                       *--- suppress output ---; 

ods table ROCAssociation=VQAssoc;      *--- capture table   ---; 

proc logistic data=Reps plots=none; 

    by replicate; 

    model Y(event='1') = Prob / nofit; 

    roc 'Validation Quadratic' pred=Prob; 

run; 

ods select all; 

 

title 'ROC Distribution of Validation Quadratic'; 

proc means  data=VQAssoc(keep=Area rename=(Area=ROC)) n min p5 p10 mean std 

p90 p95 max;  run; 

 

 

proc sgplot data=VQAssoc(keep=Area rename=(Area=ROC)) noautolegend; 

    histogram roc / nbins=20; 

    density roc; 

    yaxis grid;     xaxis grid values=(0.7 to 1 by 0.1); 

run; 

title; 
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We can compare the quadratic model's performance between development and validation 

with two sample T-test: 

data Combine; 

    set DQAssoc(rename=(Area=ROC)) VQAssoc(rename=(Area=ROC)); 

run; 

 

proc ttest; 

    ods exclude qqplot; 

    class ROCModel; 

    var roc; 

run; 
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T-test says the mean ROC is the same. We can use PROC NPAR1WAY to test for equivalence 

of distribution: 

ods select KSTest KS2Stats EDFPlot; 

proc npar1way edf plots=edf; 

    class ROCModel; 

    var roc; 

run; 
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NPAR1WAY says the two ROC distributions are not identical, T-test shows validation ROC 

has larger variance. If we want to understand how often validation performance is better 

than development performance, we can use PROC LOGISTIC to compute Condordant / 

Discordant pairs: 

ods select Association; 

proc logistic data=Combine plots=none; 

    model ROCModel(event='Validation Quadratic') = roc; 

run; 

 

 

 

 

 

 

 

 

Between these two samples, the quadratic model performed better on validation 53.4% of 

the time while performance on development was better 46.6% of the time. 

 

6. COMPARISON BETWEEN DEVELOPMENT AND VALIDATION 

 

We can compare the two models on validation: 

proc surveyselect data=VLScore out=VLReps samprate=0.5 method=urs 

seed=1234 reps=400 noprint;  run; 

 

ods select none;                       *--- suppress output ---; 

ods table ROCAssociation=VLAssoc;      *--- capture table   ---; 

proc logistic data=VLReps plots=none; 

    by replicate; 

    model Y(event='1') = Prob / nofit; 

    roc 'Validation Linear' pred=Prob; 

run; 

ods select all; 

 

title 'ROC Distribution of Validation of Linear Model'; 

proc means  data=VLAssoc(keep=Area rename=(Area=ROC)) n min p5 p10 mean std 

p90 p95 max;  run; 
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proc sgplot data=VLAssoc(keep=Area rename=(Area=ROC)) noautolegend; 

    histogram roc / nbins=20; 

    density roc; 

    yaxis grid;     xaxis grid values=(0.7 to 1 by 0.1); 

run; 

title; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because this is two models on the same dataset, we can perform paired T-test: 

 

data Combine; 

    set VQAssoc(rename=(Area=ROC_Q)); 

    set VLAssoc(rename=(Area=ROC_L)); 

run; 

 

proc ttest; 

    ods select Statistics ConfLimits TTests SummaryPanel; 

    paired ROC_Q * ROC_L; 

run; 
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The quadratic model has slightly worse discriminatory power than the linear model, however 

it provides more accurate probability estimates. 

The detailed understanding of model performance variability and accuracy now allow us to 

make a more informed decision than the four ROC point estimates. 
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7. DURING MODEL BUILD 

 

The approach illustrated above assists in evaluating model performance post build. The 

same principle can be applied during model build to assess functional form stability: 

1. Perform bootstrap sampling 

2. Build model with the same functional form for each replicate 

3. Calculate performance metric for each replicate 

If there is large variation in parameter estimates or performance, it suggests the functional 

form is not robust and has trouble with certain parts of the predictor space. 
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