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ABSTRACT  
No	one	knows	all	of	SAS®	or	all	of	statistics.	There	will	always	be	some	technique	that	you	don’t	know.	
However,	there	are	a	few	techniques	that	anyone	in	biostatistics	should	know.		Make	your	life	easier	by	
learning	to	calculate	those	with	SAS.	In	this	session	you	will	learn	how	to	compute	and	interpret	12	of	
these	techniques,	including	several	statistics	that	are	frequently	confused.	The	following	statistics	are	
covered:	prevalence,	incidence,	sensitivity,	specificity,	attributable	fraction,	population	attributable	
fraction,	risk	difference,	relative	risk,	odds	ratio,	Fisher’s	exact	test,	number	needed	to	treat,	and	
McNemar’s	test.	The	13th,	extra	bonus	tool,	is	SAS	statistical	graphics.	With	these	13	tools	in	their	tool	
chest,	even	non-statisticians	or	statisticians	who	are	not	specialists	will	be	able	to	answer	many	common	
questions	in	biostatistics.	You’re	in	luck	because	each	of	these	can	be	computed	with	a	few	statements	
in	SAS.	 
 

INTRODUCTION  
No one can know all of SAS or all of statistics, no, not even that annoying guy down the 
hall. Especially not that annoying guy down the hall. However, certain statistics are so 
commonly used that every biostatistician should know them. All of these can be computed 
easily with SAS.  
 
Biostatistics, broadly defined, is the application of statistics to topics in biology. However, 
most people when discussing biostatistics are really focused on biomedical topics, and not, 
say, the average lifespan of a particular species of ant-decapitating fly.  
There are five ways (at least) statistics can be applied to the study of disease: 

1. How common is it? This is a question of prevalence (how likely you are to have it) 
and incidence (how likely you are to get it). If you think those two are the same, you 
should take a course in epidemiology, or just finish reading this paper.  

2. What causes it? What are the factors that increase (or decrease) your risk of 
contracting a disease?  

3. What pattern(s) does it follow? What is the prognosis? Are you likely to die of it 
quickly, eventually or never? To determine if a treatment is effective for cancer of 
the eyelashes, we need to first have an idea of what the probability of disability or 
death is when one is left untreated and over how long of a period of time, that is, 
what is the “natural progression” of a disease 

4. How effective are attempts to prevent or treat a disease?  
5. Developing policies to minimize disease. 

 
This paper covers basic statistics to address the first four questions. Policy should be 
developed based on the application of answers to those questions. While there is obviously 
a lot to be learned in the field of biostatistics, and a wide range of SAS procedures that can 
be applied, there are a basket of techniques that ought to be in everyone’s hand, 
computable with SAS. These are prevalence, incidence, sensitivity, specificity, attributable 
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fraction, population attributable fraction, risk difference, relative risk, odds ratio, Fisher’s 
exact test, number needed to treat, and McNemar’s test. That’s only 12. What’s the extra? 
Graphs. I admit, I cheated by including a whole category, but you’ll find that ROC curves, 
survival curves, maps and odds ratio plots are invaluable in explaining results to a non-
technical audience. 

PREVALENCE AND INCIDENCE – TWO DIFFERENT ANSWERS TO THE 
SAME (MORE OR LESS) QUESTION 
Policy makers have very good reasons for wanting to know how common a condition or 
disease is. It allows them to plan and budget for treatment facilities, supplies of medication, 
rehabilitation personnel. There are two broad answers to the question, “How common is 
condition X?” and, interestingly, both of these use the exact same SAS procedures.  

HOW TO COMPUTE PREVALENCE USING SAS 
Prevalence rate is the proportion of persons with a condition divided by the number in the 
population. It’s often given as per thousand, or per 100,000, depending on how common 
the condition is. In brief, prevalence is how likely a person is to have condition X. 
 
Assuming that your data are already cleaned and you have a variable with a binary coding 
for “has disease”,  “doesn’t have disease”, (pretty big assumptions) you can simply do a 
PROC FREQ.  

 
PROC FREQ DATA = yourdatasetname ; 
 TABLES variable ; 

 

In the example below, from the California Health Interview Survey, approximately 11% of 
the respondents had been told they had Diabetes, giving a prevalence of 110 per 1,000. 

Diabetes- ever 

AB22 Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

1 4701 10.95 4701 10.95 

2 38234 89.05 42935 100.00 

Table 1. Output from PROC FREQ for Prevalence of Diabetes 

HOW TO COMPUTE INCIDENCE USING SAS 

INCIDENCE RATE is the rate at which new cases are occurring. Incidence is computed by 
dividing the number of new cases that occur in a specified period by the number of people 
in the population at risk.  

The population at risk in the next example was defined as all infants born in 2014. If you 
are interested in birth statistics, the National Center for Health Statistics is highly 
recommended as a source. This example is from a public use data set of all 40,002 births in 
U.S. territories in the year 2014. (Winning trivial pursuit fact: The United States has 16 
territories.)   

Both incidence and prevalence estimates assume an accurate definition of cases, which 
requires understanding the data and the diagnosis. This data set required a very slight 
amount of coding because the Down syndrome variable at birth is coded as C for Confirmed, 
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N for No and P for Pending (Center for Disease Control, 2014).  “Pending” means that the 
medical personnel suspect Down syndrome but they are waiting for the results of a 
chromosomal analysis. “Confirmed” means the analysis has confirmed a diagnosis of Down 
syndrome. Based on the presumption that most experienced medical personnel recognize 
Down syndrome, these two categories were combined, using IF/THEN and ELSE statements. 

LIBNAME  out “C:\Users\me\mydir\” ; 
DATA  incidence ; 
      SET out.birth2014 ; 
      IF ca_down in (“C”,”P”) THEN down = “Y” ; 
       ELSE down = “N” ; 

Again, a PROC FREQ is used. The difference between incidence and prevalence is not in the 
computation but in the selection of the population and definition of the numerator. Because 
Down syndrome is present at birth and never acquired afterward, the new cases are going 
to be those children born in the year 2014 who have a diagnosis of Down syndrome and the 
denominator will be all births during the year. 

PROC FREQ DATA =  out.birth2014 ; 
        TABLES down ; 

Results are shown in Table 2 below. 

Down Syndrome 

Down Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

N 39963 99.90 39963 99.90 

Y 39 0.10 40002 100.00 

Table 2. Output from PROC FREQ for Incidence of Down syndrome 

The incidence rate is .10 or 1 per 1,000. Since this estimate falls perfectly in line with the 
World Health Organization (2016) estimate of between 1 in 1,000 to 1,100 live births, it 
appears that the case definition was appropriate. 

SENSITIVITY AND SPECIFICITY – TWO ANSWERS TO A SECOND 
QUESTION: DO YOU HAVE A DISEASE? 
Both sensitivity and specificity address the same question – how accurate is a test for 
disease – but from opposite perspectives. Sensitivity is defined as the proportion of those 
who have the disease that are correctly identified as positive. Specificity is the proportion of 
those who do not have the disease who are correctly identified as negative.  Specificity and 
sensitivity can be computed simultaneously, as shown in the example below using a 
hypothetical Disease Test. The results are in and the following table has been obtained: 

	 Disease	 No	Disease	
Test	Positive	 240	 40	
Test	Negative	 60	 160	

Table 3 Results from Hypothetical Screening Test 
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COMPUTING SENSITIVITY AND SPECIFICITY USING SAS 

Step 1 (optional): Reading the data into SAS.  If you already have the data in a SAS data 
set, this step is unnecessary. The example below demonstrates several SAS statements in 
reading data into a SAS dataset when only aggregate results are available.  
 
The ATTRIB statement sets the length of the result variable to be 10, rather than accepting 
the SAS default of 8 characters.  
 
The INPUT statement uses list input, with a $ signifying character variables. 
 
DATALINES;    
a statement on a line by itself, precedes the data. (Trivial pursuit fact #2: CARDS; will also 
work, dating back to the days when this statement was followed by cards with the data 
punched on them.) A semi-colon on a line by itself denotes the end of the data. 
	

DATA diseasetest; 
 ATTRIB result LENGTH= $10; 
 INPUT result $ disease $ weight; 
 DATALINES; 
 positive present 240 
 positive absent 40 
 negative present 60 
 negative absent 160  
; 

Step 2: PROC FREQ 
 

PROC FREQ DATA= diseasetest ORDER=FREQ ; 
 TABLES result* disease; 
 WEIGHT weight; 
 

Yes, another PROC FREQ. The ORDER = FREQ option is not required but it makes the data 
more readable, in my opinion, because with these data the first cell will now be those who 
had a positive result and did, in fact, have the disease and this is the format in which 
sensitivity and specificity data are typically presented. The total for column 1 is the 
numerator for the formula for sensitivity, which is: 
 

Sensitivity =   (Number tested positive)/ (Total with disease). 
 
TABLES variable1*variable2   will produce a cross-tabulation with variable1 as the row 
variable and variable2 as the column variable. 
 
Weight weightvariable  will weight each record by the value of  the weight variable. The 
variable was named ‘weight’ in the example above but any valid SAS name is acceptable.  
Leaving off this statement will result in a table that only has 4 subjects, 1 subject for each 
combination of result and disease, corresponding to the data lines above.  
 
Results of the PROC FREQ are shown below. The bottom value in each box is the column 
percent. Because the first category happens to be the “tested positive” and the first column 
is “disease present”, the column percent for the first box in the cross-tabulation – positive 
test result, disease is present – is the sensitivity, 80%. This is the proportion of those who 
have the disease (the disease present column) who had a positive test result. 
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Table	of	result	by	disease	

result	 disease	

Frequency	
Percent	
Row	Pct	
Col	Pct	 present	 absent	 Total	

positive	 240	
48.00	
85.71	
80.00	

40	
8.00	

14.29	
20.00	

280	
56.00	

	

negative	 60	
12.00	
27.27	
20.00	

160	
32.00	
72.73	
80.00	

220	
44.00	

	
	

Total	 300	
60.00	

200	
40.00	

500	
100.00	

Table 3. Output from PROC FREQ for Sensitivity and Specificity 

The column percentage for the box corresponding to a negative test 
result and absence of disease is the value for specificity. In this 
example, the two values, coincidentally, are both 80%.  

Three points are worthy of emphasis here: 

1. While the location of specificity and sensitivity in the table may vary based on how 
the data and PROC FREQ are coded, the values for sensitivity and specificity will 
always be diagonal to one another. 

2. This exact table produces four additional values of interest in evaluating screening 
and diagnostic tests; positive predictive value, negative predictive value, false 
positive probability and false negative probability. Further details on each of these, 
along with how to compute the confidence intervals for each can be found in Usage 
Note 24170 (SAS Institute, 2015).  

3. The same exact procedure produces six different statistics used in evaluating the 
usefulness of a test. Yes, that is pretty much the same as point number 2, but it 
bears repeating.  

RELATIVE RISK, RISK DIFFERENCE AND ODDS RATIO – THREE 
ANSWERS TO A THIRD QUESTION: DOES THIS CAUSE A DISEASE? 
Using the sashelp.heart data set, let’s look at the difference in risk of cancer between 
smokers and non-smokers. If you’d like to try this at home, the code below creates a data 
set with variables for age group, smoking status and cancer death. 
	
     DATA attributable ; 

SET sashelp.heart ; 
IF ageatstart < 36 THEN agegroup = "28-35" ; 

  ELSE IF ageatstart < 46 THEN agegroup = "36-45" ; 
  ELSE IF ageatstart < 56 THEN agegroup = "46-55" ; 

Sensitivity	

Specificity	
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  ELSE IF ageatstart > 55 THEN agegroup = "56-62" ; 
 IF MISSING(smoking_status) = 0 AND (smoking_status) NE "Non-smoker" 

       THEN smoker = "Yes" ; 
ELSE IF MISSING(smoking_status) = 0 THEN smoker = "_No" ; 

IF deathcause = "Cancer" THEN cancer = "Yes" ; 
  ELSE cancer = "_No" ; 
IF cancer = "" OR smoker = "" or agegroup = "" THEN DELETE ; 
 

The risk difference is the difference in risk between the exposed and non-exposed group 
and is an option in PROC FREQ. The relative risk is the ratio of the risk of the exposed group 
and non-exposed group and can also be requested from (you guessed it) PROC FREQ. The 
code is simply: 

 
PROC FREQ DATA = attributable ; 
 TABLES smoker*cancer / RELRISK RISKDIFF ; 

	
and produces the following output. 

Table of smoker by cancer 

smoker cancer 

Frequency 
Percent 
Row Pct 
Col Pct Yes _No Total 

Yes 302 
5.84 

11.30 
56.34 

2370 
45.81 
88.70 
51.11 

2672 
51.65 

 
 

_No 234 
4.52 
9.36 

43.66 

2267 
43.82 
90.64 
48.89 

2501 
48.35 

 
 

Total 536 
10.36 

4637 
89.64 

5173 
100.00 

Table 4. Output from PROC FREQ showing cross-tabulation 

Notice that smoker and cancer were coded “_No” with an underscore to insure that the first 
column is prevalence in the exposed group (Yes for smoking and Yes for cancer). Note the 
highlighted numbers because these will look familiar in the next table. 
 

As you can see from Table 5 below, the risk of the disease for row 1, the exposed group, of 
.1130 is simply the row percentage of the exposed group (in this case, smokers) with the 
disease. In the second row, the risk of the non-exposed is the percentage of non-smokers 
with the disease. The risk difference is subtracting the second row from the first. So, yes, I 
use the RISKDIFF option to avoid the need for subtraction (don’t judge me!). The RISKDIFF 
option also gives 95% confidence intervals for the risk for each group and for the risk 
difference. 
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Column 1 Risk Estimates 

 Risk ASE 
(Asymptotic) 95% 
Confidence Limits 

(Exact) 95% 
Confidence Limits 

Row 1 0.1130 0.0061 0.1010 0.1250 0.1013 0.1256 

Row 2 0.0936 0.0058 0.0821 0.1050 0.0824 0.1057 

Total 0.1036 0.0042 0.0953 0.1119 0.0954 0.1122 

       Difference 0.0195 0.0085 0.0029 0.0360   

Difference is (Row 1 - Row 2) 

Table 5. Output from PROC FREQ showing risks and risk difference 

As you can also see above, that interval is somewhat wide, but does not include zero. 

The third table produced by this analysis, not shown, is simply risk estimates for Column 2, 
in this case not having the disease and is the inverse of the risk difference of column 1. The 
fourth table, below, gives odds ratio and relative risks.  

Odds Ratio and Relative Risks 

Statistic Value 95% Confidence Limits 

Odds Ratio 1.2345 1.0310 1.4782 

Relative Risk (Column 1) 1.2080 1.0276 1.4201 

Relative Risk (Column 2) 0.9785 0.9606 0.9968 

Table 6. Output from PROC FREQ showing relative risk and odds ratio 

The relative risk is the risk in the exposed divided by the risk in the non-exposed group. 
That is, the .1130 from Row 1 above divided by the .0936 from Row 2. Table 6 gives that 
value of 1.208 as well as 95% confidence limits for the relative risk.  

When the RELRISK option is specified for PROC FREQ, as can be seen above, the odds ratio 
is quite close to the relative risk, with a value of 1.2345. 

PROC FREQ is not the only SAS procedure that will compute odds ratios. For example: 
PROC LOGISTIC  data= attributable ; 

 MODEL cancer = smoker ; 

will produce the identical odds ratio. 

ODDS RATIO VS RELATIVE RISK 

Think of a cross-tabulation of risk factor and disease like the table below 

  DISEASE 

RISK FACTOR YES NO 

YES A B 

NO C D 

Table 7. Output from PROC FREQ showing relative risk and odds ratio 

Risk of exposed population = A/ (A + B) 

Risk of non-exposed population = C/ (C + D) 
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The relative risk is, then  

 
A / (A +B) 

C/(C+D) 

The odds ratio, in contrast, is, as the name implies, the ratio of the odds for the exposed 
group and the odds of the non-exposed group. The formula for odds ratio is 

A/B 

C/D 

Why are these usually so close? Because most diseases, whether a person is exposed (A) or 
not exposed (C) have a pretty low risk relative to the total population. Let’s say the risk of a 
disease is 1% in the exposed population and .5% in the unexposed. In a sample of 200 
people in each group, exposed and unexposed, whether dividing 2/200 by 1/200 or 2/198 
by 1/199, the result is going to be pretty similar. 

NOTE: The above analysis is for unmatched pairs. SAS also can compute matched pairs 
odds ratios, see SAS Institute (2005). 

ATTRIBUTABLE FRACTION AND POPULATION ATTRIBUTABLE FRACTION – TWO 
ANSWERS TO A FOURTH QUESTION: WHAT IS THE IMPACT ON PUBLIC HEALTH? 
While relative risk and odds ratio are useful statistics for assessing the strength of a 
relationship, an important consideration in determining causality, two other statistics are 
equally or more important for public health issues (Gordis, 2014). The attributable fraction 
statistic answers the question, “What fraction of the disease cases in the exposed population 
is attributable to risk factor X?”  The formula for computation is: 

Prevalence of exposed group – Prevalence of unexposed 

                    Prevalence of exposed group 

If the prevalence of the exposed group is equal to the prevalence of the unexposed then the 
attributable fraction is zero. In other words, none of the disease cases can be attributable to 
the risk factor. Conversely, if the prevalence in the unexposed group is zero, then the 
attributable fraction is 1.0, i.e., 100% of the prevalence in the exposed group is due to the 
risk factor. Of course, the obtained fraction almost always falls between these two 
extremes. 

The population attributable fraction statistic answers the question, “What fraction of the 
disease cases in the total population is attributable to risk factor X?”  The computation 
formula is 

Prevalence overall – Prevalence of unexposed 

                      Prevalence overall 

The attributable fraction can be high while the population attributable fraction is low, and 
the population attributable fraction should always be lower than the attributable fraction. 
Why is this? Because not everyone will be exposed to the risk factor. 

SAS can be useful in computing both statistics on two fronts. First, directly, via the use of 
the STDRATE procedure, which computes both attributable fraction and the population 
attributable fraction. Second, indirectly, by creating a data set that can be used as input to 
the procedures, in the likely case that you don’t have a data set lying around with cases in 
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the exposed population, total count of the exposed population and cases in the non-exposed 
population. 

COMPUTING ATTRIBUTABLE FRACTION AND POPULATION ATTRIBUTABLE 
FRACTION USING SAS: PROC STDRATE 

The code for computing the example attributable fraction and population attributable 
fraction is shown below. First, I created a data set, and if those numbers look familiar, it is 
because they are from Table 4 above. The events (cancer) in the exposed (smoking) group 
= 302 and the total count in that group = 2,672.  The events in the non-exposed group = 
234 and the total count for the non-exposed group = 2,501. 

DATA std3 ; 
 INPUT event_e count_e event_ne count_ne ; 
 DATALINES ; 
 302 2672 234 2501 
 ; 

Now that we have the data, let’s code the analysis. Surprisingly, it is not another PROC 
FREQ, but PROC STDRATE which computes standardized rates and risks of various types.  
The code below is an example of one of the simplest analyses. 

PROC STDRATE DATA=std3 
             REFDATA=std3 
             METHOD=INDIRECT(AF) 
             STAT=risk; 
   POPULATION EVENT=event_e  TOTAL=count_e; 
   REFERENCE  EVENT=event_ne TOTAL=count_ne; 

 
This example uses the same data set for the exposed data and the reference data, but it 
should be noted that separate data sets can be specified. The method used for 
standardization is indirect. If you're interested in the different types of standardization, I 
highly recommend the 2013 SAS Global Forum paper by Yuan (2013). 
 

The POPULATION and REFERENCE statements are required to compute attributable 
fractions. The POPULATION statement requires two parameters EVENT = followed by a 
variable with the number of cases in the exposed group and TOTAL = followed by the total 
number of subjects in the exposed population. The REFERENCE statement also requires two 
parameters, EVENT = followed by a variable with the number of cases in the non-exposed 
group and TOTAL = followed by the total number of subjects in the non-exposed population. 

Relevant results from the PROC STDRATE are shown in Tables 8 and 9 below. 

Indirectly Standardized Risk Estimates 

Study Population 

Reference 
Crude 

Risk 
Expected 

Events SMR 

Standardized Risk 

Observed 
Events 

Number of 
Observations 

Crude 
Risk Estimate 

Standard 
Error 

95% Normal 
Confidence 

Limits 

302 2672 0.1130 0.0936 249.999 1.2080 0.1130 0.00613 0.1010 0.1250 

Table 8: Partial Output from PROC STDRATE, Reference and Crude Risk 

Note, once again, the risk of the study population is .1130 and of the reference population, 
.0936. The attributable fraction, as shown in Table 9 is .172 – in other words, 17.2% of the 
risk of cancer of smokers is attributable to smoking. If you recall from our first cross-
tabulation, slightly over half of the population were smokers. Thus, as expected, the 
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population attributable risk is slightly over half the attributable risk for the exposed 
population – 9.7% of the risk in the population is attributable to smoking. 

 

Attributable Fraction Estimates 

Parameter Estimate 
95% Confidence 

Limits 

Attributable Risk 0.17219 0.07381 0.25167 

Population Attributable Risk 0.09702 0.03446 0.15552 

Table 9: Partial Output from PROC STDRATE, Attributable Risk and Population Attributable Risk 

From a public health perspective, e.g., in examining potential benefits of an intervention, 
the distinction between attributable fraction and population attributable fraction is 
important. If a risk factor is uncommon, say, working in a coal mine, even if the attributable 
fraction is large, reducing the risk substantially may have little impact on the population 
risk.  
STRATIFIED RISK ESTIMATES: CREATING A DATA SET FOR USE BY PROC STDRATE 

If it seems as if that attributable risk is a little low, it might be because another analysis 
(not shown) found a substantial relationship between age group and smoking status in this 
sample. The younger subjects were much more likely to be smokers, but they were also less 
likely to die, because (Captain Obvious alert) older people are more likely to die. The 
solution, then, is to re-compute the attributable fraction and population attributable fraction 
stratified by age. 

CREATING THE DATA SET OF FREQUENCIES STRATIFIED BY AGE 

PROC STDRATE is great if you happen to have a dataset with the number of cases in the 
exposed group, total in the exposed group, number of cases in the non-exposed group and 
total in the non-exposed group, conveniently sorted by strata. Seriously, though, what is 
the probability you just have that lying around? You could do a PROC FREQ and then type in 
the data in a data step. Another alternative is to follow the steps below.  

There are actually more statements than strictly necessary, but I like things to be neat and 
tidy.  

PROC FREQ DATA=attributable ; 
 TABLES agegroup*smoker*cancer /OUT=freqcount; 

This creates an output dataset with counts and percentages of agegroup (strata) by 
smoking status (risk) by cancer death (event) and outputs it to a dataset named ‘freqcount’. 
The records will be in ascending order by value, the default for PROC FREQ.  

DATA freqcount ; 
 SET freqcount ; 
 DROP PERCENT; 

The step above simply drops percent as a variable in the data set, since we don’t need it.  
PROC TRANSPOSE DATA=freqcount   OUT=transf  ; 
 BY agegroup ; 
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The TRANSPOSE step above transposes the data set by age group so that each age group 
has four variables and outputs the results to a dataset named ‘transf’. The dataset created 
is shown below. 

 
Output Data 1: Data set created by TRANSPOSE procedure 

 

The default name is col1 – col4. Since “Yes” comes before “_No” in SAS alphabetical order, 
the first two columns are for Smoker (Yes) when Cancer = “Yes” and when Cancer = “_No”. 

DATA std4 ; 
 SET transf ; 
 count_e = col1+ col2 ; 
 count_ne = col3 + col4 ; 
 RENAME 

col1 = event_e  
  col3 = event_ne ; 

The final step above creates the count variables needed for PROC STDRATE.  Since col1 and 
col2 are the number of smokers who did die of cancer (cancer = “Yes”) and the number of 
smokers who did not die of cancer (cancer = “_No”) the sum of these is the count of 
smokers, i.e., the count of exposed. Similarly, the sum of col3 and col4 is the count of non-  

exposed. The procedure has two additional statements from the PROC STDRATE above, one 
required and one optional. 

 
PROC STDRATE DATA=std4 

             REFDATA=std4 

             METHOD=indirect(af) 

             STAT=RISK 

             PLOTS(STRATUM=HORIZONTAL); 

   POPULATION EVENT=event_e  TOTAL=count_e; 

   REFERENCE  EVENT=event_ne TOTAL=count_ne; 

   STRATA agegroup / STATS; 

  
STRATA statement stratifies	by the designated variable, in this case, age group. 
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Indirectly Standardized Risk Estimates 

Study Population 
Reference 

Crude 
Risk 

Expected 
Events SMR 

Standardized Risk 

Observed 
Events 

Number of 
Observations 

Crude 
Risk Estimate 

Standard 
Error 

95% Normal 
Confidence Limits 

302 2672 0.1130 0.0936 201.632 1.4978 0.1401 0.00755 0.1253 0.1549 

Table 10: Partial Output from PROC STDRATE, Reference and Crude Risk with 
STRATA statement 

A close comparison of Table 10 and Table 8 finds some similarities and some differences. 
The observed events, number of observations and crude risk in the study population are all 
the same, as is the reference crude risk for the reference population. However, the expected 
events and Standardized Mortality Rate (SMR) have changed. Given the stratification by 
age, if smokers and non-smokers were distributed equally across age groups, 202 deaths 
would have been expected, not the 302 observed in the study population. 

BONUS STATISTIC: STANDARDIZED MORTALITY RATE 

The Standardized Mortality Rate = Observed Number of Deaths Per Year 

    Expected Number of Deaths Per Year 

 

Attributable Fraction Estimates 

Parameter 
Estimat

e 

95% 
Confidence 

Limits 

Attributable Risk 0.33235 0.253
56 

0.396
09 

Population Attributable 
Risk 

0.18725 0.125
31 

0.244
81 

Table 11: Partial Output from PROC STDRATE, Attributable Risk and Population 
Attributable Risk with STRATA statement 

Taking into account the stratification by age, that is, controlling for the fact that smokers in 
this sample were younger than non-smokers, the attributable risk estimate is now 33.2% 
and the population attributable risk 18.7% 

The PLOTS statement produces plots of the crude estimate of the risk by strata, with the 
reference group risk as a single line. If you look at the graph below you can see several 
useful measures. First, the blue dots are the risk estimate for the exposed group at each 
age group and the vertical blue bars represent the 95% confidence limits for that risk. The 
red crosses are the risk for the reference group at each age group. The horizontal, solid blue 
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line is the crude estimate for the study group, i.e., smokers, and the dashed, red line is the 
crude estimate of risk for the reference group, in this case, the non-smokers. 

 
Figure 1: Graph from PROC STDRATE, PLOTS option, of Risks by Strata 

Several observations can be made at a glance.  

1. The crude risk for non-smokers is lower than for smokers.  

2. As expected, the younger age groups are below the overall risk of mortality from 
cancer.  

3. At every age group, the risk is lower for the non-exposed group.  

4. The differences between exposed and non-exposed are significantly different for the 
two younger age groups only, for the other two groups, the non-smokers, although 
having a lower risk, do fall within the 95% confidence limits for the exposed group. 

NUMBER NEEDED TO TREAT 

Let’s move away from risk factors to protective factors. While it is natural to feel that no 
expense is too much to save a life, the fact is that resources are finite and policy makers 
may need to evaluate relative benefits of treatments. How many people must be treated 
with a medication or other intervention to save a single life or prevent one adverse 
outcome? If there is a PROC NNT, I’ve never found it. Fortunately, computing the number 
needed to treat is simple. The formula is: 

1 

(Rate of untreated group – Rate of treated group) 

 

One simple way to compute number needed to treat using SAS is to use a FREQ procedure 
to create an output data set is to compute the rate of the untreated group and the treated 
group in cross-tabulation and then use a calculator to plug the numbers for rate of 

28-35 36-45 46-55 56-62

agegroup

0.05

0.10

0.15

0.20

Cr
ud

e 
Ri

sk

ReferenceStudyCrude Estimate

Strata Risks with 95% Normal Confidence Limits

28-35 36-45 46-55 56-62

agegroup

0.05

0.10

0.15

0.20

Cr
ud

e 
Ri

sk

Reference
Study

ReferenceStudyCrude Estimate

Strata Risks with 95% Normal Confidence Limits



14 

untreated group and rate of treated group into the equation above, but what fun would that 
be? 

The following code yields both the cross-tabulation and the number needed to treat nicely 
formatted. Tip: If you code the untreated as “_N” or “_No” and treated as “Y” or “Yes”, the 
rate for untreated will always be COL2 and the rate for treated will be COL4. In the code 
below, the LABEL, VAR and ID statements are unnecessary, as is the SPLIT option in the 
PRINT statement. These all simply make the final result look nice. 

The OUT= and OUTPCT options are required. OUT = creates a dataset and OUTPCT specifies 
that the dataset will include percentages 

PROC FREQ DATA =nnt ; 

 TABLES treated*disease /OUT =nnt2 OUTPCT ; 

 
Output Data 2: Data set created by PROC FREQ with OUTPCT option 

 

The following code transposes the data set, computes the number needed to treat in the 
DATA step and prints it nicely formatted in the PRINT step. 

PROC TRANSPOSE DATA=nnt2 OUT=nnt3 ; 

DATA ans ; 

 SET nnt3 ; 

 IF _name_ = "PCT_ROW" THEN 

 numn = 1/(col2/(col1 + col2) - col4/(col3 + col4)) ; 

LABEL numn = "Number Needed/To Treat" ; 

PROC PRINT DATA= ans SPLIT="/" ; 

ID numn ; 

VAR ; 

WHERE numn NE . ; 

Number Needed 
To Treat 

20 
Table 12: Number Needed to Treat from FREQ, TRANSPOSE, DATA and 
PRINT steps 

FISHER’S EXACT TEST- FOR SMALL SAMPLE SIZES 

These next two statistics apply to some special cases where the typical chi-square just won’t 
do. You have collected data and have a simple design, a control group and treatment group. 
Your variable of interest, though, is low incidence and your SAS printout cautions, you 
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“WARNING: 50% of the cells have expected counts less 
than 5. Chi-Square may not be a valid test.”  
 
What do you do now? Answer: Use Fisher’s exact test. 
How do you get it? If your analysis involves a 2 x 2 table, simply perform a chi-square 
analysis and look at the third table in your output. For 2 x 2 chi-square analyses, SAS 
automatically produces a Fisher exact test. In the example below, the code requests a chi-
square analysis for very low birthweight – less than 1 pound – by marital status of the 
mother.  

PROC FREQ DATA=vlow ; 
TABLES pnd*married / CHISQ ; 

 

Table of pnd by Married 

Pnd 
Married(Married 

Mother) 

Frequen
cy 
Percent 
Row Pct 
Col Pct 0 1 Total 

0 1452 
29.04 
29.06 
99.86 

3545 
70.90 
70.94 
99.97 

4997 
99.94 

 
 

1 2 
0.04 

66.67 
0.14 

1 
0.02 

33.33 
0.03 

3 
0.06 

 
 

Total 1454 
29.08 

3546 
70.92 

5000 
100.0

0 
Table 13: Result of PROC FREQ with 50% of cells having expected counts 
less than 5 

As can be seen in the table above, 50% of the cells have an expected count less than 5. 
Rather than interpret the chi-square, skip over that table and look at the next table SAS 
produced. 

Fisher's Exact Test 

Cell (1,1) Frequency (F) 1452 

Left-sided Pr <= F 0.2045 

Right-sided Pr >= F 0.9754 

  

Table Probability (P) 0.1799 

Two-sided Pr <= P 0.2045 
Table 14: Fisher’s Exact Test produced by PROC FREQ with CHISQ option 
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Although twice as many extremely low birthweight babies were born to unmarried mothers, 
you can see from the Fisher’s result that this difference is not statistically significant from 
zero. 

How to get a Fisher’s Exact Test with more than two categories 

It’s great that SAS automatically produces a Fisher’s Exact Test for 2 x 2 tables but what if 
you have more than two categories? What if your birthweight variable is “very low”,”low” 
and “normal”? Simple. Just replace the CHISQ in your TABLES statement with FISHER. 
You’ll still get the same cross-tabulation , chi-square and a table that gives the exact 
probability of this table. 

PROC FREQ DATA=vlow ; 
TABLES bwt*married / FISHER ; 
 

Fisher's Exact Test 

Table Probability (P) 0.0004 

Pr <= P 0.0051 
Table 14: Fisher’s Exact Test produced by PROC FREQ with FISHER option 
with > 2 categories 

 

 

MCNEMAR (AND, FOR THAT MATTER, KAPPA) FOR MATCHED PAIRS 

Chi-square is an extremely useful test for a wide variety of situations (and so generic that it 
is not reviewed here), but it has a few assumptions. One, addressed above, is that there is 
an expected count of at least five per cell. A second assumption is that the data represent 
independent observations. In many biomedical applications, the latter assumption is 
violated. The same subjects are measured pre- and post-treatment for symptoms. The 
same test results are read by two raters. The same statement in PROC FREQ will address 
both of these situations. 

McNemar Test of Marginal Homogeneity 

Suppose you have a drug that has a side effect of nausea for some patients. You 
hypothesize that eating before taking the drug will reduce these effects. For a sample of 200 
patients, you record whether your patients experience nausea when taking the drug. Then, 
for the next administration, you require them to eat a small meal within five minutes of 
taking the medication. You record any indications of nausea again. Your hypothesis is that 
the distribution of side effects (nausea present or absent) will differ based on whether or not 
they ate food with the medication. That is the marginal probabilities will be different. 

 
PROC FREQ DATA=med_eff ; 

TABLES drug1*drug2; 
TEST AGREE ; 
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Table of drug1 by drug2 

drug1 drug2 

Frequency 
Percent 
Row Pct 
Col Pct nausea normal Total 

nausea 15 
7.50 

71.43 
68.18 

6 
3.00 

28.57 
3.37 

21 
10.50 

 
 

normal 7 
3.50 
3.91 

31.82 

172 
86.00 
96.09 
96.63 

179 
89.50 

 
 

Total 22 
11.00 

178 
89.00 

200 
100.00 

Table 15: Result of PROC FREQ  

Clearly, the above table is no different than the typical PROC FREQ output. However, the 
TEST statement with AGREE keyword produces an additional table, which gives the 
probability of obtaining these results if the null hypothesis is true, that the marginal 
probabilities are in fact equal. As can be seen below, this hypothesis is accepted. 

McNemar's Test 

Statistic (S) 0.0769 

DF 1 

Pr > S 0.7815 
Table 16: McNemar Test produced by PROC FREQ with TEST statement 

In case you were wondering, the equation for the test is very simple (B-C)2 / (B+C)  -  in 
the example above, 1/13. 

Why Kappa results are completely different from McNemar 

Because both are produced by using the same TEST AGREE statement, and both are used 
with matched pairs, it can be confusing when McNemar and Kappa give dramatically 
different results. This confusion can be cleared up, though, when one realizes that these are 
two different tests with different hypotheses that are computed completely differently. While 
McNemar tests the hypothesis that the marginal probabilities are the same, Kappa tests the 
hypothesis that the agreement observed is greater than the agreement expected by chance 
and is not nearly as simple of a computation (although not really all that difficult, either). 

If, in the example above, rather than the same subjects being assessed under two 
conditions, the experiment involved two raters assessing the same subjects, the exact same 
reports of symptoms were rated by two nurse practitioners as either indicating nausea or 
not, the same PROC FREQ would be used with the same TEST statement. The only addition 
is an optional ODS GRAPHICS ON statement and a required KAPPA option on the TABLES 
statement. Actually, leaving off the TEST statement has no effect, the same results will be 
produced. 
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ODS GRAPHICS ON ; 

PROC FREQ DATA=med_eff ; 
TABLES drug1*drug2 / KAPPA; 
TEST AGREE ; 

Results from the Kappa test are shown in Table 16, with a Kappa coefficient of .66 indicating 
a moderate degree of agreement. 

Simple Kappa Coefficient 

Kappa 0.6613 

ASE 0.0873 

95% Lower Conf Limit 0.4901 

95% Upper Conf Limit 0.8324 
Table 17: Kappa coefficient produced by PROC FREQ with KAPPA option 

 

As can be seen from the final table produced by this procedure, the null hypothesis is 
rejected. 

Test of H0: Kappa = 0 

ASE under H0 0.0707 

Z 9.3551 

One-sided Pr >  Z <.0001 

Two-sided Pr > |Z| <.0001 
Table 18: Test of Kappa =0, produced by PROC FREQ with Kappa option 

ODS Statistical Graphics 

Kappa plots can be produced specifically by a PLOTS=KAPPAPLOT option on a TABLES 
statement, or, as in this example, by the use of an ODS GRAPHICS ON statement. ODS 
GRAPHICS ON will not only produce the Kappa plot, shown below, for this particular 
procedure, but will also continue to produce graphics as well as tabular output for all of the 
statistical procedures in your program until you turn it off by specifying ODS GRAPHICS 
OFF.  

Although discussing all of the statistical graphics are far beyond the scope of this paper, the 
reader is strongly encouraged to examine some of the vast number of options produced 
either by default when ODS GRAPHICS ON is specified or by specific request, as in the 
STDRATE procedure above. 

As with the risk plots above, the Kappa plot illustrates multiple statistics simultaneously. 
The size of each square indicates frequency, so it can be seen at a glance that normal 
ratings far outnumber ratings of nausea. The darker areas indicate agreement and it is also 
clear that there is more agreement on normal ratings than on abnormal (nausea) ratings.  

While relatively old in software terms, the paper by Rodriguez (2004) gives an overview to a 
wide range of statistical graphics commonly used and is highly recommended. 
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Figure 2: Graph from PROC FREQ with Kappa option, produced with ODS 
GRAPHICS ON 

CONCLUSION  

It is impossible to know “all of SAS” and anyone who claims to possess such all-
encompassing knowledge is either severely misguided or a pathological liar of such 
proportion that a career in politics is recommended. However, by identifying broad 
questions of interest in research in public health and biomedical research, the biostatistician 
can quickly become adept in using procedures that address common issues. 

 To further expand his or her tool kit and become an even more invaluable member of the 
team, two additional recommendations are: 

1. Become familiar with SAS procedures for data manipulation to create data sets for 
analysis. As we have seen, PROC TRANSPOSE is your friend, and 

2. Take advantage of SAS statistical graphics. In presenting statistical results and 
conclusions to non-technical audiences, a picture is truly worth a thousand words. 
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