Paper SAS3506-2019

Creating and Controlling JSON Output with the JSON Procedure
Adam Linker, SAS® Institute Inc.

JSON is continuing to grow as the preferred data interchange format due to its simplicity
and versatility. The JSON procedure gives SAS® users the ability to export SAS® data sets in
JSON, as well as the ability to create customJSON output. The procedure is simple to use
and gives the user a huge amount of flexibility and control of the JSON output. This paper
gives an overview of how to use the JSON procedure as well as detailed use cases to
highlight the most important options to get the most out of the output generated by the
procedure.

JSON (JavaScript Object Notation) is a text-based data interchange format used to store
information in a simple, easy to understand, and compact way. Because JSON is text based,
it is easy for machines to parse and generate, it can be used across almost any platform,
and it can be read and written easily by a human. In its simplest form, the JSON procedure
allows the user to take a SAS® data set and create a JSON output file from the data. The
user can also customize the JSON output by using a variety of options. In addition to that,
the user can create their own JSON separate from the SAS® data set using the procedure.
The user has control of their JSON output using these options along with the WRITE
statement. This paper will explore how a user can get the most out of their JSON output
using the tools provided by PROC JSON.

The following is a use case that will show how to use PROC JSON in its simplest form along
with how to utilize the options that PROC JSON provides to customize and control the
resulting JSON output file.

Use Case A
e The user has a SAS® data set that they want to convert tothe JSON format.

e The JSON must be exactly representative of the SAS® data set (customers) shownin
Figure 1.

First_Name | Last_Name | Email | Phone_Number |
1 jared ells jells@Etest com 313111-1111
2 mark popping mpopp @test.com 919-222-2332
3 sty gotz sgotz(@test com 919-333-3333
4 cara simmons ceimms@test.com 519-444-4444
b tom ford tford @test.com 519-555-5655
& jermy black jblaci@test.com 519-666-6666
7 susan brown subro@test.com S19-77F-TTTT
g elize lane elane@test.com 515-288-8883
9 gabi stone gstone@test.com 919-5959-5535
10 jason fitz ffitzi@test com 9191234567
11 pat aires paires@test com 91595876543

Figure 1. Customers SAS® Data Set

The user has a second SAS® dataset (employees) that they also want to convert to
JSON, and they want it to be in the same JSON file as the first data set. The second

data set is shown in Figure 2.

First_Mame | Last_Mame | I0_Mumber | Age | Start_Date | Job_Title

1 adam linker 123456 23 20510 programmer
2 bob smith 584532 KX] 16284 sales

3 sue stevens 258432 7 10774 sales

4 paul mills 3155733 42 15066 marketing
5 gally johnson 443767 43 14518 manager

& max hart 793424 50 13939 =ales

¥ casey jones 648235 3 17014 programmer
g blair carter 363245 36 15522 marketing
5 drew williams 7783 63 10471 manager
10 kate lockett Th33h6 25 15145 programmer
11 enc gtuart 113547 43 14515 programmer
12 dan baker RETE21 40 16162 programmer
13 ella walsh 533753 26 18383 =ales

Figure 2. Employees SAS® Data Set

e The userdoes not want to have to modify the SAS® data set, but they want to
change some of the information in the JSON output file:

O Start_Date is a date that is represented as a SAS® data value that they want
to be formatted as DD/MM/YYYY in the JSON output file.

O Only output the observations where the age is less than 45.
O The variable names should be suppressed.

O Specify a table name for the data, "Employees under45.”

This can all easily be accomplished using PROC JSON, and further customizationcan also be
done to create the exact JSON output file needed by the user. In the next section, we will

see how PROC JSON can be used effectively in this use case.

Before diving into this use case, consider the syntax used in PROC JSON:

PROC JSON out=fileref | “external-file” <option(s)>;
EXPORT <libref.>SAS®-data-set <(SAS®-data-set-option(s))></option(s)=>;
WRITE value(s) </option(s)>;
WRITE OPEN type;
WRITE CLOSE;

run;

The PROC JSON statement consists of an output file provided by the user where all the
JSON will be written, followed by any options to control the output.

The EXPORT statement identifies the SAS® data set to be exported and allows the user to
control the resulting output by using options that are specific to PROC JSON as well as SAS®
data set options that are applied to the input SAS® data set.

In addition to exporting data sets, PROC JSON gives the user the ability to write custom
information to the output file with the WRITE statement, which allows the user to write one
or more literal values to the JSON output file. The value can be either a string, a number, a
Boolean value (TRUE or FALSE), or NULL. The WRITE OPEN and WRITE CLOSE statements

allow the user to control the containers (more on containers later) in the JSON output file.

For the customers datasetin the use case, the desired JSON output file can be created with
a very simple use of PROC JSON:
proc Jjson out="samplel.json";
E}Lpl:l’t. Customers;
TN,

Output 1 shows the JSON output file that is generated fromthis statement.

{"SASJSONExport™:"1.0", "SASTableData+CUSTOMERS™: [{"First HName™:"jared",
"Last_Name":"e;;s","Emai;":"je;;s@test.cnm","Phn:e_N:nber":"QlQ—lll—lll
"},{"First_Name":"mark","Last_Name":"pnppins","Email":"mpnpp@test.cnm"
, "Phone Number™:"919-223-32222"}, {"First Name":"stu","Last Name":"gotz",
"Emai;":"sgntz@test.cnm","Phn:e_N:nber":"9;9—555—5555"},{"First_Name":"
cara","Last_Name":"simmnns","Email":"csimms@test.cnm","Phnne_Nanber":"
- - "},{"First_Name":"tnm","Last_Name":"fnrd","Email":"tfnrd@tes
t.com", "Phone MNumber™:" - - "}, {"First Name":"jerry", "Last Nams"
:"b;ack","Emai;":"jb;ac@test.cnm","Phn:e_N:mber":"9;9—666—6666"},{"Firs
t_Name":"sasan","Last_Name":"brnwn","Email":"sabrn@test.cnm","thne_Nam
bher™: ™ - - "}, {"First MName":"elise", "Last Names":"lane", "Email™:"
elane@test.cnm","Phnne_Nanber":" - - "}, {"First Mame":"gaki", "La
st_Name":"stnne","Email":"gstnne@test.cnm","thne_Nuﬂber":" - -
"},{"First_Name":"jasnn","Last_Name":"fitz","Email":"jfitz@test.cnm","F
hone Humber™:" - - "}, {"First MName":"pat", "Last Name":"aires",6 "E
mail":"paires@test.cnm","thne_Nanber":" - - 1}

Output 1. JSON Output File Generated from the PROC JSON Example

Using default options will allow the user to create the required output for the customers
data set. It is jumbled and hard to read, but it would be easy fora computer to parse. To
create the desired output for the second data set, more work will need to be done.

PROC JSON options enable the user to control and customize the generated output. Here is
a list of the possible options:

FMTCHARACTER | NOFMTCHARACTER

Determines whether to apply a character SAS® format to the resulting output if a
character SAS® format is associated with a SAS® data set variable.

FMTDATETIME | NOFMTDATETIME

Determines whether to apply a date, time, or datetime SAS® format to the resulting
output if a date, time, or datetime SAS® format is associated with a SAS® data set
variable.

FMTNUMERIC | NOFMTNUMERIC

Determines whether to apply a numeric SAS® format to the resulting output if a numeric
SAS® format is associated witha SAS® data set variable.

KEYS | NOKEYS
Determines whether to include or suppress SAS® variable names in the JSON output file.

PRETTY | NOPRETTY
Determines how to format the JSON output. (Valid in PROC JSON statement only.)

SASTAGS | NOSASTAGS

Determines whether to include or suppress SAS® metadata at the top of the JSON
output file.

SCAN | NOSCAN

Determines whether PROC JSON scans and encodes input strings to ensure that only
characters that are acceptable are exported to the JSON output file.

TRIMBLANKS | NOTRIMBLANKS

Determines whether to remove or retain trailing blanks from the end of character data in
the JSON output.

TABLENAME = “"name”
Specifies a name for the exported SAS® data set. (Valid in EXPORT statement only.)
(SAS®-data-set-option(s))

Specifies SAS® data set options that apply to the input SAS® dataset. (Valid in EXPORT
statement only.)

Most of the options can be specified in the PROC JSON statement as well as in the EXPORT
statement. If they are specified in both, the EXPORT statement takes precedence. Because
of this, each data set can have its own options. Specify any common options to be used for
each dataset in the PROC JSON statement, and then specify options specific to each data
set in the corresponding EXPORT statements.

Here is what PROC JSON will look like to produce the desired JSON output file:

proc json ocut="sampleZ.json" pretty;
eXpOrt X.CusStomers;
export X.employees (where=(age>45)) /*5A5 data set option - onl
/ nokeys fmtdatetime tablename="Employees under 457; /=

ran;

In the previous example, the output file looks messy and is not very easy to read. It will
work fine if the user does not need to or want to look at the JSON file, but if the user
specifiesthe PRETTY option, the JSON output will be formatted in much more human-
readable and structured way. This makes it much easier to make sure the user has the

JSON exactly the way they want it.

PROC JSON allows users to export multiple data setsin the same JSON output file. The first
export statement will remain the same for the first data set. In the second export
statement, the WHERE= data set option specifies which observations will be written to the
JSON output file, and the SAS® datetime format is applied to the Start_Date column of the
employees data set by adding the FMTDATETIME option.

The TABLENAME=option specifies the new table name to use in the output file. The last
option, NOKEY S, will suppress the variable names as well.

Below is the resulting output fromthe PROC JSON example code. The left column shows the
beginning of the JSON output file containing the first data set (only a few observations are
shown). The second column shows the end of the JSON output file containing the second
data set (a portion of the JSON output file is not shown). Only the observations with an age

greater than 45 were exported.

{

"SASJSONExport™: "1.0 PRETTY",
"545TableData+CUSTOMERS™ @ [

i
"First Name": "jared",
"Last_ MName": "ells",
"Email™: "jells@test.com",
"Phone Number®™: "5§15-111-1111"
}f
{
"First Name": "mark",
"Last MName": "poppins",
"Email™: "mpopp@test.com”,
"Phone Number®™: "&§15-222-2222%
}f
i
"First Name": "stu",
"Last_ MName": "gotz",
"Email™: "sgotz@test.com",
"Phone Number®™: "515-333-3333"
}f
{
"First Name": "cara",
"Last Name": "simmons",
"Email™: "csimms@Etest.com™,
"Phone Number®™: "&515-444-4444"7
}f
i
"First Name": "tom",
"Last_Name": "ford",
"Email™: "tford@test.com™,
"Phone Number®™: ™515-555-5555"
}f
{
"First Name": "jerry",
"Last Name": "black",
"Email™: "jblac@test.com",
"Phone Number®: "S15-666-6666"
}f
i
"First Name": "susan",
"Last Name": "brown",
"Email"™: "subroftest.com",
"Phone HNumber™: "918-777-T7777T"
|

}

"SASJSONExport™:
"SASTableData+Employvees under 45™: [

"1.0 NOEEYS PRETTY",

HS-J.E n .
"stevens"™,

"O7S 0L 1539,
"zales™

".Sﬂll:y’",
"johnson™,

r

==
m10f0L1a9am,
"manager™

"max™,
"hart™,
793424,

-
"O3/01/5 1558,
"zales™

"dl’EW",

"williams"™,
A773 : .

: .

"O09f01/1988™,
"manager™

Meyrio™ .
"stuart™,

— =2y

"11/01/2000™,
"programmer™

Output 2. Portions of the JISON Output File Created with PROC JSON Using Options to Control the

Output

Just a few options change the entire format of the JSON output file and give the user control
of how the output file will look. This is extremely useful for applications that have very
specific requirements for how the JSON must be formatted.

JSON itself consists of two types of data structures: arrays and objects. These are
containers. In JSON, an array is opened and closed with a bracket [] and contains a list of
values separated by a comma. An object is opened and closed with a brace {} and contains
a list of key:value pairs. Keys and their corresponding values are separated with a colon,
and each key:value pair within the objectis separated by a comma.

The WRITE VALUES statement and the WRITE OPEN/CLOSE statements allow the user to
open, close, and nest containers in the JSON output file as well as write separate values to
the JSON output file.

A note about how implicit containers work with PROC JSON: In order for the JSON to be
valid, it must all be included in a top-level container at the very least. When the user does
not explicitly specify which type of container to open at the top level, PROC JSON will
choose what type of container to open. If the EXPORT statement is the first statement after
the PROC JSON statement, the top-level containeris a JSON object. However, if the
NOSASTAGS option is specified in either the PROC JSON statement or the EXPORT
statement, the top-level containeris a JSON array. PROC JSON will automatically close the
implicitly opened top-level container. If the WRITE VALUES statement is the first statement
after the PROC JSON statement, PROC JSON opens a JSON object as the top-level
container, and likewise, PROC JSON will close the implicitly opened top-level container.

The previous two examples give a good indication of how this works. In the first example,
the EXPORT statement is the first statement after the PROC JSON statement, and the top-
level container is an object. (It opens and closes with a brace {} and contains a comma-
separated list of key:value pairs.) In the second example, once again the EXPORT statement
is the first statement after the PROC JSON statement, but this time, the NOSASTAGS option
is used, so the top-level containeris an array. (It opens and closes with brackets [] and
contains a comma-separated list of values.)

The following use case will show how the WRITE VALUES and WRITE OPEN/CLOSE
statements can be used to control the containers in the JSON output file.

Use Case B

e The user needs to create a JSONfile to use in an application that has very specific
requirements regarding the JSON format.

e The requirements are:

The top-level container must be an array.

Title and Description are two attributes that must come before the actual data
from the table.

o The data fromthe table should be in an array container.

o The data comes fromthe employee SAS® data set fromthe second example.

All these requirements can be met using PROC JSON’s WRITE statements. Here is the PROC
JSON code that can be used to create the desired JSON output file:

proc json out="gample3.json" pretty nosastags:
write open array; J/*open top level container as an array®/

write open object; f*0pen an object container for the data*/
write values "Title" "Employees"; /*These wvaluss will be written to the output file*/

write walues "Description™

"Information akout employees for the company™;

wWrite open array; f*0Open an array container to and export the data set withing it*/
export employvees [fmtdatetime;

write close:;

write close;

write close; /*Rlways close any container that has been explicitly opened?*/

ran;

With this SAS® code using the PROC JSON statement, the resulting JSON output file will

look like this:
[

"Title™: "Employees™,

"Description™: "Information about employees for the company™,

"Employvees™: [

i
"First MName": "adam",
"Last Name": "linker",
"ID Humber™: 123456
"Roge™: 232,
"Start Date™: "04/01/2017",
"Job Title"™: "programmer"
}I‘
i
"First MName": "bob",
"Last Name™:
"ID Mumber™:
"Roe™: 22,
"Start Date™: "03/01/2004",
"Job Title™: "sales"
}I‘

"First MNames": "eric",

"Last MName": "stuart",

"ID Mumber™: P

"hge™: P

"Start Date™: "11/01/20007,

"Jok Title": "programmexr"
|
{

"First MNames": "dan",

"Last MName": "kaker",

"ID Mumber™: P

"hge™: P

"Start Date™: "04/01/2004"7,

"Jok Title": "programmexr"
|
{

"First MNames": "ella",

"Last MName": "walsh",

"ID Mumber™: P

"hge™: P

"Start Date™: "O05/01/20107,

"Jok Title": "sales"

1

Output 3. Portions of the JISON Output File Created with the PROC JSON Example Using the
WRITE Statement to Control Containers

The WRITE OPEN statement will open a container and the WRITE CLOSE statement will
close it. The top-level container in this example is an array (enclosed in brackets) because
of the WRITE OPEN ARRAY statement. Next an object is opened with WRITE OPEN OBJECT.
This is an example of a nested container (a container inside another container). The two
attributes that were required to come before the datatable are written to the output file
with the WRITE VALUES statements. Another container is opened, this time an array where
the exported data set will be. Lastly, all the opened containers are closed. When using
WRITE OPEN to control containers, users must always remember that a corresponding
WRITE CLOSE statement must be included for any container that is explicitly opened, or it
will result in an error.

A lot of architecturesrequire JSON data in a hierarchical format. What this means is the
datais arranged in a series of “levels” in the JSON file. For example, if a user had data of
regions in North America, it could be arranged in a hierarchical fashion such as:

e Continent
o Country
= State/Province
e City
Continent would be the highest level of the hierarchy. Next would be Country, then
State/Province, and finally City.

It is possible to get JSON data into this form using PROC JSON by utilizing the WRITE
statements to control the containers as shown above. The hierarchical structure is shown in
the JSON output below with North America being in the outermost container as the highest
level of the hierarchy.

Next, you can see the countries within North America in the second level of the hierarchy
enclosed in a container nested within the top-level container. State/Provinceis in a level
below that (North Carolina and South Carolina), and the lowest levelis City, which shows
the cities in North Carolina and South Carolina. Each container opened within another
represents a new levelin the hierarchy.

Below is the desired JSON output for a list of cities in North Carolina and South Carolina
with populations greater than 100,000:

10

"North 2merica™: {
"Tnited States of RAmerica"™: |
"Morth Carolima™: [

[
"Charlotte"™,

"Raleigh",

"EFreensboro",

"Durham™,

"Winston-Salem",

1,
[
"Fayetteville™,
1,
[
"Cary"
1,
[
"Wilmington™,
1,
[
"High Point™,
1
1.
"South Caroclima™: [
[
"Columbia™,
1,
[
"Charleston™
1,
[
"Horth Charleston"
1
1

"Mexico™: mull,
"Canada": null

}

Output 4. JSON Output File Generated in a Hierarchical Format with PROC JSON

11

The SAS® code to create this output requires a series of nested containers to be opened.
The top-level container is opened and North America (the highest level in the hierarchy) is
written to the JSON output file. Each time an object is opened using WRITE OPEN OBJECT,
that represents a new level below the previous.

In the second level, which represents the Country, United States of America is written to the
output file as well as Mexico and Canada. For the purposes of this example, only United
States will have data in the level below.

The third level (State) is created by opening a third object within the Country level. Inthe
third level, arrays are opened as the fourth level to output the data for both the North
Carolina and South Carolina data sets. The WHERE= option outputs only the cities within
the data setsthat have a population greater than 100,000. The NOKEY S option suppresses
the variable names.

Below is the SAS® code that was used to create that JSON output:

progc json out="hierarchy.json" pretty nosastags;

write open object; Jf*Top-level container for Level 1 - Continent®/f

write wvalues "North America™;

Wwrite open object; J/*Lewvel 2 - Country*/f
write wvalues "United States of America™;

write open object; JS¥Lewel 3 - State
write wvalues "Horth Carolina™;
write open array:; SfLevel 4 - City*®/

export x.north carolina cities |

where=(population > 100000))} / nokeys:
write closer /[*Close L

1]

vel 4%/

write walues "South Carolina™;

write open array,s /f*Rlso Level 4 — City*/f
SXport x.south carclina cities |
where=(population > 100000))} / nokeys:
write close; f*Close Lewvel 4
write close; /J*Close Lewvel 3

write walues "Mexico™ NULL;
write walues "Canada™ NULL:

write close; S *Close Lewvel 2%/

write close; [Sf*Close top-level (Level 1)*/f

rans

12

For SAS® users who need a way to convert SAS® data setsinto JSON or create their own
unique, customized JSON from scratch, thereis no better and easier solution than using
PROC JSON. It gives the user control of the JSON output file through the utilization of
options as well as the ability to control containers, write directly to the output file, and

choose exactly what toinclude or not include in the resulting JSON file.

The options provided by PROC JSON are powerful because of the ease of use and versatility.
A user can format an entire JSON output file with just a few simple options. There is no

need to manually write or edit a JSON file.

Along with the WRITE OPEN statement, which allows users to control the containers in the
JSON output file, the WRITE VALUES statement gives users customization beyond just the
ability to output datain SAS® data sets by giving the user the ability to write custom
information to the JSON output file.

Organizing data in a hierarchical fashion in JSON is a common way of re presenting the data.
PROC JSON gives the user the ability to create this type of structure in the resulting output
file using the WRITE OPEN and WRITE CLOSE statements to control the containers.

The features of PROC JSON combined make it a great tool for SAS® users that want to get
the most out of their JSON output.

SAS® Institute Inc. 2017. *JSON Procedure” In Base SAS® 9.4 Procedures Guide, Seventh
Edition. Cary, NC: SAS® Institute Inc. Available at
https://documentation.sas.com/?docsetld=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40
fOby.htm&docsetVersion=9.4&locale=en (accessed January 31, 2019).

e PROC JSON Tip Sheet at https://support.sas.comvrnd/base/Tipsheet PROC_JSON.pdf

e JSON category of sasCommunity.org Planet at
http://www.sascommunity.org/planet/blog/category/json/

Your comments and questions are valued and encouraged. Contact the author at:

Adam Linker
919-531-1940
Adam.Linker@sas.com

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks
or trademarks of SAS® Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

13

https://documentation.sas.com/?docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&docsetVersion=9.4&locale=en
https://support.sas.com/rnd/base/Tipsheet_PROC_JSON.pdf
http://www.sascommunity.org/planet/blog/category/json/

