
1

Paper SAS3506-2019

Creating and Controlling JSON Output with the JSON Procedure

Adam Linker, SAS® Institute Inc.

ABSTRACT

JSON is continuing to grow as the preferred data interchange format due to its simplicity
and versatility. The JSON procedure gives SAS® users the ability to export SAS® data sets in
JSON, as well as the ability to create custom JSON output. The procedure is simple to use

and gives the user a huge amount of flexibility and control of the JSON output. This paper
gives an overview of how to use the JSON procedure as well as detailed use cases to
highlight the most important options to get the most out of the output generated by the

procedure.

INTRODUCTION

JSON (JavaScript Object Notation) is a text-based data interchange format used to store
information in a simple, easy to understand, and compact way. Because JSON is text based,
it is easy for machines to parse and generate, it can be used across almost any platform,

and it can be read and written easily by a human. In its simplest form, the JSON procedure
allows the user to take a SAS® data set and create a JSON output file from the data. The
user can also customize the JSON output by using a variety of options. In addition to that,
the user can create their own JSON separate from the SAS® data set using the procedure.
The user has control of their JSON output using these options along with the WRITE

statement. This paper will explore how a user can get the most out of their JSON output

using the tools provided by PROC JSON.

The following is a use case that will show how to use PROC JSON in its simplest form along
with how to utilize the options that PROC JSON provides to customize and control the

resulting JSON output file.

Use Case A

• The user has a SAS® data set that they want to convert to the JSON format.

• The JSON must be exactly representative of the SAS® data set (customers) shown in

Figure 1.

2

Figure 1. Customers SAS® Data Set

• The user has a second SAS® data set (employees) that they also want to convert to
JSON, and they want it to be in the same JSON file as the first data set. The second

data set is shown in Figure 2.

Figure 2. Employees SAS® Data Set

• The user does not want to have to modify the SAS® data set, but they want to

change some of the information in the JSON output file:

o Start_Date is a date that is represented as a SAS® data value that they want

to be formatted as DD/MM/YYYY in the JSON output file.

o Only output the observations where the age is less than 45.

o The variable names should be suppressed.

o Specify a table name for the data, “Employees under 45.”

3

This can all easily be accomplished using PROC JSON, and further customization can also be
done to create the exact JSON output file needed by the user. In the next section, we will

see how PROC JSON can be used effectively in this use case.

SIMPLE OVERVIEW OF PROC JSON SYNTAX

Before diving into this use case, consider the syntax used in PROC JSON:

 PROC JSON out=fileref | “external-file” <option(s)>;

 EXPORT <libref.>SAS®-data-set <(SAS®-data-set-option(s))> </option(s)>;

 WRITE value(s) </option(s)>;

 WRITE OPEN type;

 WRITE CLOSE;

 run;

The PROC JSON statement consists of an output file provided by the user where all the

JSON will be written, followed by any options to control the output.

The EXPORT statement identifies the SAS® data set to be exported and allows the user to
control the resulting output by using options that are specific to PROC JSON as well as SAS®

data set options that are applied to the input SAS® data set.

In addition to exporting data sets, PROC JSON gives the user the ability to write custom
information to the output file with the WRITE statement, which allows the user to write one
or more literal values to the JSON output file. The value can be either a string, a number, a
Boolean value (TRUE or FALSE), or NULL. The WRITE OPEN and WRITE CLOSE statements

allow the user to control the containers (more on containers later) in the JSON output file.

For the customers data set in the use case, the desired JSON output file can be created with

a very simple use of PROC JSON:

Output 1 shows the JSON output file that is generated from this statement.

4

Output 1. JSON Output File Generated from the PROC JSON Example

Using default options will allow the user to create the required output for the customers
data set. It is jumbled and hard to read, but it would be easy for a computer to parse. To

create the desired output for the second data set, more work will need to be done.

USING OPTIONS TO CONTROL JSON OUTPUT

PROC JSON options enable the user to control and customize the generated output. Here is

a list of the possible options:

FMTCHARACTER | NOFMTCHARACTER

Determines whether to apply a character SAS® format to the resulting output if a

character SAS® format is associated with a SAS® data set variable.

FMTDATETIME | NOFMTDATETIME

Determines whether to apply a date, time, or datetime SAS® format to the resulting
output if a date, time, or datetime SAS® format is associated with a SAS® data set

variable.

FMTNUMERIC | NOFMTNUMERIC

Determines whether to apply a numeric SAS® format to the resulting output if a numeric

SAS® format is associated with a SAS® data set variable.

KEYS | NOKEYS

Determines whether to include or suppress SAS® variable names in the JSON output file.

PRETTY | NOPRETTY

Determines how to format the JSON output. (Valid in PROC JSON statement only.)

5

SASTAGS | NOSASTAGS

Determines whether to include or suppress SAS® metadata at the top of the JSON

output file.

SCAN | NOSCAN

Determines whether PROC JSON scans and encodes input strings to ensure that only

characters that are acceptable are exported to the JSON output file.

TRIMBLANKS | NOTRIMBLANKS

Determines whether to remove or retain trailing blanks from the end of character data in

the JSON output.

TABLENAME = “name”

Specifies a name for the exported SAS® data set. (Valid in EXPORT statement only.)

(SAS®-data-set-option(s))

Specifies SAS® data set options that apply to the input SAS® data set. (Valid in EXPORT

statement only.)

Most of the options can be specified in the PROC JSON statement as well as in the EXPORT
statement. If they are specified in both, the EXPORT statement takes precedence. Because
of this, each data set can have its own options. Specify any common options to be used for

each data set in the PROC JSON statement, and then specify options specific to each data

set in the corresponding EXPORT statements.

Here is what PROC JSON will look like to produce the desired JSON output file:

In the previous example, the output file looks messy and is not very easy to read. It will
work fine if the user does not need to or want to look at the JSON file, but if the user
specifies the PRETTY option, the JSON output will be formatted in much more human-
readable and structured way. This makes it much easier to make sure the user has the

JSON exactly the way they want it.

PROC JSON allows users to export multiple data sets in the same JSON output file. The first

export statement will remain the same for the first data set. In the second export
statement, the WHERE= data set option specifies which observations will be written to the
JSON output file, and the SAS® datetime format is applied to the Start_Date column of the

employees data set by adding the FMTDATETIME option.

The TABLENAME= option specifies the new table name to use in the output file. The last

option, NOKEYS, will suppress the variable names as well.

6

Below is the resulting output from the PROC JSON example code. The left column shows the
beginning of the JSON output file containing the first data set (only a few observations are
shown). The second column shows the end of the JSON output file containing the second

data set (a portion of the JSON output file is not shown). Only the observations with an age

greater than 45 were exported.

Output 2. Portions of the JSON Output File Created with PROC JSON Using Options to Control the
Output

7

Just a few options change the entire format of the JSON output file and give the user control
of how the output file will look. This is extremely useful for applications that have very

specific requirements for how the JSON must be formatted.

CONTROLLING CONTAINERS WITH THE WRITE STATEMENT

JSON itself consists of two types of data structures: arrays and objects. These are
containers. In JSON, an array is opened and closed with a bracket [] and contains a list of

values separated by a comma. An object is opened and closed with a brace {} and contains
a list of key:value pairs. Keys and their corresponding values are separated with a colon,

and each key:value pair within the object is separated by a comma.

The WRITE VALUES statement and the WRITE OPEN/CLOSE statements allow the user to
open, close, and nest containers in the JSON output file as well as write separate values to

the JSON output file.

A note about how implicit containers work with PROC JSON: In order for the JSON to be
valid, it must all be included in a top-level container at the very least. When the user does
not explicitly specify which type of container to open at the top level, PROC JSON will
choose what type of container to open. If the EXPORT statement is the first statement after

the PROC JSON statement, the top-level container is a JSON object. However, if the
NOSASTAGS option is specified in either the PROC JSON statement or the EXPORT
statement, the top-level container is a JSON array. PROC JSON will automatically close the
implicitly opened top-level container. If the WRITE VALUES statement is the first statement
after the PROC JSON statement, PROC JSON opens a JSON object as the top-level

container, and likewise, PROC JSON will close the implicitly opened top-level container.

The previous two examples give a good indication of how this works. In the first example,
the EXPORT statement is the first statement after the PROC JSON statement, and the top-

level container is an object. (It opens and closes with a brace {} and contains a comma-
separated list of key:value pairs.) In the second example, once again the EXPORT statement
is the first statement after the PROC JSON statement, but this time, the NOSASTAGS option
is used, so the top-level container is an array. (It opens and closes with brackets [] and

contains a comma-separated list of values.)

The following use case will show how the WRITE VALUES and WRITE OPEN/CLOSE

statements can be used to control the containers in the JSON output file.

Use Case B

• The user needs to create a JSON file to use in an application that has very specific

requirements regarding the JSON format.

• The requirements are:

o The top-level container must be an array.

o Title and Description are two attributes that must come before the actual data

from the table.

o The data from the table should be in an array container.

o The data comes from the employee SAS® data set from the second example.

All these requirements can be met using PROC JSON’s WRITE statements. Here is the PROC

JSON code that can be used to create the desired JSON output file:

8

With this SAS® code using the PROC JSON statement, the resulting JSON output file will

look like this:

9

Output 3. Portions of the JSON Output File Created with the PROC JSON Example Using the
WRITE Statement to Control Containers

The WRITE OPEN statement will open a container and the WRITE CLOSE statement will

close it. The top-level container in this example is an array (enclosed in brackets) because
of the WRITE OPEN ARRAY statement. Next an object is opened with WRITE OPEN OBJECT.
This is an example of a nested container (a container inside another container). The two
attributes that were required to come before the data table are written to the output file
with the WRITE VALUES statements. Another container is opened, this time an array where

the exported data set will be. Lastly, all the opened containers are closed. When using
WRITE OPEN to control containers, users must always remember that a corresponding
WRITE CLOSE statement must be included for any container that is explicitly opened, or it

will result in an error.

10

CREATING HIERARCHICAL DATA USING PROC JSON

A lot of architectures require JSON data in a hierarchical format. What this means is the
data is arranged in a series of “levels” in the JSON file. For example, if a user had data of

regions in North America, it could be arranged in a hierarchical fashion such as:

• Continent

o Country

▪ State/Province

• City

Continent would be the highest level of the hierarchy. Next would be Count ry, then

State/Province, and finally City.

It is possible to get JSON data into this form using PROC JSON by utilizing the WRITE

statements to control the containers as shown above. The hierarchical structure is shown in
the JSON output below with North America being in the outermost container as the highest

level of the hierarchy.

Next, you can see the countries within North America in the second level of the hierarchy
enclosed in a container nested within the top-level container. State/Province is in a level
below that (North Carolina and South Carolina), and the lowest level is City, which shows
the cities in North Carolina and South Carolina. Each container opened within another

represents a new level in the hierarchy.

Below is the desired JSON output for a list of cities in North Carolina and South Carolina

with populations greater than 100,000:

11

Output 4. JSON Output File Generated in a Hierarchical Format with PROC JSON

12

The SAS® code to create this output requires a series of nested containers to be opened.
The top-level container is opened and North America (the highest level in the hierarchy) is
written to the JSON output file. Each time an object is opened using WRITE OPEN OBJECT,

that represents a new level below the previous.

In the second level, which represents the Country, United States of America is written to the
output file as well as Mexico and Canada. For the purposes of this example, only United

States will have data in the level below.

The third level (State) is created by opening a third object within the Country level. In the

third level, arrays are opened as the fourth level to output the data for both the North
Carolina and South Carolina data sets. The WHERE= option outputs only the cities within
the data sets that have a population greater than 100,000. The NOKEYS option suppresses

the variable names.

Below is the SAS® code that was used to create that JSON output:

13

CONCLUSION

For SAS® users who need a way to convert SAS® data sets into JSON or create their own
unique, customized JSON from scratch, there is no better and easier solution than using
PROC JSON. It gives the user control of the JSON output file through the utilization of
options as well as the ability to control containers, write directly to the output file, and

choose exactly what to include or not include in the resulting JSON file.

The options provided by PROC JSON are powerful because of the ease of use and versat ility.
A user can format an entire JSON output file with just a few simple options. There is no

need to manually write or edit a JSON file.

Along with the WRITE OPEN statement, which allows users to control the containers in the
JSON output file, the WRITE VALUES statement gives users customization beyond just the

ability to output data in SAS® data sets by giving the user the ability to write custom

information to the JSON output file.

Organizing data in a hierarchical fashion in JSON is a common way of representing the data.
PROC JSON gives the user the ability to create this type of structure in the resulting output

file using the WRITE OPEN and WRITE CLOSE statements to control the containers.

The features of PROC JSON combined make it a great tool for SAS® users that want to get

the most out of their JSON output.

REFERENCES

SAS® Institute Inc. 2017. “JSON Procedure” In Base SAS® 9.4 Procedures Guide, Seventh
Edition. Cary, NC: SAS® Institute Inc. Available at
https://documentation.sas.com/?docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40

f0by.htm&docsetVersion=9.4&locale=en (accessed January 31, 2019).

RECOMMENDED READING

• PROC JSON Tip Sheet at https://support.sas.com/rnd/base/Tipsheet_PROC_JSON.pdf

• JSON category of sasCommunity.org Planet at

http://www.sascommunity.org/planet/blog/category/json/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Adam Linker
919-531-1940
Adam.Linker@sas.com

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks
or trademarks of SAS® Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://documentation.sas.com/?docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&docsetVersion=9.4&locale=en
https://support.sas.com/rnd/base/Tipsheet_PROC_JSON.pdf
http://www.sascommunity.org/planet/blog/category/json/

