
1

Paper SAS3489-2019

Cows or Chickens: How You Can Make Your Models into

Containers

Hongjie Xin, Jacky Jia, David Duling, Chris Toth

SAS Institute Inc.

ABSTRACT

Models are specific units of work that have one job to perform: scoring new data to make

predictions. Containers are self-contained workers that can be easily created, destroyed,

and reused as needed. They are portable and easily integrate into numerous modern cloud

and on-premises execution engines. SAS® users can now follow a recipe to turn advanced

model functions into on-demand containers such as Docker for both on-premises and cloud

deployment. SAS® Model Manager can be used to organize the model content from many

sources, including SAS and open source, to create containers. This presentation presents

the basics and shows you how to turn your SAS analytical models into modern containers.

INTRODUCTION

THE ANALYTICAL LIFE CYCLE

Figure 1 illustrates the analytical life cycle.

Figure 1. Analytical Lifecycle

Discovery environments have encompassed data mining and model training activities in

collaborative workspaces, historically using virtual machines that are manually scaled for

the expected workloads. Today, on-demand use cases are becoming more popular.

Individual workspaces started with locally installed PCs. Data governance initiatives have

evolved the architecture to use containers to provide governed access to data and code, as

opposed to propagating multiple copies of data and code. Containers provide infrastructure

2

and compute usage cost savings, while providing a responsive user experience for the data

scientist.

Organizations are exponentially increasing the number of models that are being built, due to

their digital transformations. Machine learning and automation have lowered the costs to

build a model. However, the cost of model governance has skyrocketed due to deployment

and monitoring complexities. Model code developed in a Discovery environment will be

registered in a Governance environment, such as a SAS Model Manager, or in a source code

management system, such as GitHub.

The digital transformation has also necessitated the need for more robust execution options

to deal with the explosion of data. Vast amounts of data need to be analytically enriched

both at-rest in data lakes and enterprise data warehouses and in-flight in high-performance

real-time business applications. Most organizations using SAS currently deploy their

analytics using virtual machines and grids to manage disparate and on-demand workloads.

Industry-leading organizations now use containers to facilitate on-demand and scalable

processing for both batch and real-time workloads. Containers are providing similar

infrastructure and compute usage cost savings as those experienced in a Discovery

environment.

The feedback loop, providing operational results to the Governance environment, enables

model performance monitoring and triggers automated model retraining in the Discovery

environment. Operational data feedback closes the loop of the analytical life cycle.

A DAY IN THE LIFE OF A DATA SCIENTIST

A data scientist can spend weeks constructing a good model for prediction or classification

using statistical, machine learning, or deep learning techniques. These models can be used

to provide insight and inference into existing processes, or to predict outcomes based on

new data values. These predictions are used to improve the effectiveness of automated

decision making systems such as the next best offer, credit scoring, loan originations, fraud

detection, robotic process automation, and hundreds of other applications. Modern

businesses require the use of predictive models to remain competitive.

The building of predictive models is often termed model training and typically takes place

offline in a development environment with saved historical data. The result of training a

model is a fixed function that can be used for making predictions with new data values. The

deployment of models is often termed model scoring and takes place in a production system

running batch jobs or real-time recommendations. This step is where the model contributes

real business value. However, there are several challenges in model deployment, as noted

below:

• The discrepancy between model training systems and model scoring systems often

results in the need to modify or completely rewrite model score code. This step is time

consuming and requires expert staff resources.

• Delays in model deployment represent a loss of potential benefit derived from using the

new model. This can have a large negative impact on the bottom line of the business.

• Model performance generally degrades over time as data values change with time and

trends. Delays in deploying the model create delays in acquiring new data for model

decay measurements. That period will delay training a new replacement model.

• The model must be deployed accurately. If the original trained model and the

subsequent scoring model have even minor differences in floating-point values, missing

value handling, or sequence of operations, errors can accumulate and create

inaccuracies that will negatively impact model performance.

3

• The model deployment must be scalable. There are typically many models running in a

production system. There can be multiple versions of the same model. Batch processes

are scheduled to run in specific time periods or with constrained service level

agreements. The load on real-time systems will vary by time of day, season, or external

events, such as product discount sales.

• The model deployment must use standard information technology tools. The business’s

model production systems are often managed by staff that does not have experience

with analytical tools. They are reluctant to add new processes every time the data

scientists produce a new model. IT departments are also looking to reduce costs

associated with maintaining too much hardware or acquiring upgraded hardware.

One remedy to these problems can be the use of modern light-weight containers. These

devices are rapidly growing in popularity for systems and process management. The most

popular container technology is Docker. A container is a compressed file that contains all the

resources needed to execute a computational process. In this case we are creating

containers to execute model scoring steps for both batch and real-time applications. The

containers include the model score code and all the software that is needed to execute the

model. This provides several benefits:

• The model does not need to be re-coded for different systems, eliminating several

potential delays and errors.

• Model deployment can be much faster by standardizing the deployment process for any

form of the model function.

• IT staff can use the same tools to manage model execution as any other IT-managed

process, reducing staff training and expertise requirements.

• Multiple container instances provide a shared-nothing high availability. Failures in one

instance will not affect other instances.

• New software releases can be added to new containers without affecting currently

running systems.

• New models can be added to new containers without affecting currently running

systems.

• Systems can be managed using standard container tools, such as Kubernetes. As

demand increases, new container instances can be quickly created. As demand

decreases, instances can be destroyed, freeing up resources for other tasks.

The traditional method of model deployment onto dedicated systems requires a large

amount of resources and labor. The systems and processes must be carefully and

expensively maintained. This is likened to owning a herd of cows. Each cow is precious and

expensive. In contrast, containers are small replaceable units of labor. They can be quickly

created and terminated. This is likened to a flock of chickens. Each chicken is disposable

and cheap. Thus, the comparison can be represented as “cows versus chickens.”

(https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-

containers-chickens/)

The remainder of this paper describes the details needed to turn both SAS models and

open-source models into containers that can be treated as chickens. The paper uses the

SAS® Viya® API to access model details and the Docker API to define and instantiate

container instances. The result is a more scalable, more maintainable, and more efficient

future.

4

DOCKER IMAGE OVERVIEW

A Docker image consists of multiple layers. Each of the layers is a read-only filesystem. The

recipe for how to install the layers is defined in a Dockerfile. The last installed layer sits on

top of the previous layers and hides the folders/files of previous layer if the folders/files

have the exact same path. If a layer needs to modify the file in the lower layer, it first

copies the file up to the target layer and then modifies it.

A container is an instance of the Docker image (from the docker run, docker create or

Kubernetes commands). The Docker engine takes an image snapshot and adds a read/write

filesystem on the top. It initializes the instance settings, such as IP address, system disk

and memory resources, and so on.

To make bootup easier, the ENTRYPOINT statement in the Dockerfile could define an

executable command after the instance has completed the initialization.

A Docker repository is a collection of different Docker images with same name but different

tags. A tag is identified by an alphanumeric string. For example, semantic version number

or build number is a common tag representation. The Docker registry is a service that hosts

and distributes Docker images, such as Docker Hub and AWS/Google Container Registry.

After the model image has been generated on the local host, we tag it and then push the

tagged repository to a registry. Thus, the image could be referenced as format of an HTTP

URL, for example, registryhost:5000/namespace/repo-name:tag.

MODEL IMAGE PUBLISHING

Transforming analytical models into containers is a very detailed and lengthy process. The

remainder of this paper demonstrates how to publish a model image and test the model

image with the Python utility library that SAS is developing.

Figure 2 shows the Python utility and its run-time environments

Figure 2. Python Utility

5

The model is stored in the SAS model repository. We can use the Python utility to pull the

model ZIP file from the repository to the host machine. Then, we pack the model with the

associated model base image and generate the model Docker image. After the model image

is tagged with a version, the utility can push the image to the Docker repository and

register it in the Docker registry.

We currently support three types of model base images (this might increase in the future):

• SAS® Micro Analytic Service (MAS) base image – to score SAS DS2 models

• PYML base image – to score Python models

• R base image – to score R models

Figure 3 shows the structure of the MAS base image.

Figure 3. MAS Base Image Structure

The REST layer services web service calls from outside the container instance. In this base

image we have included popular Python libraries and the MAS Python library under

MiniConda as well as SAS threaded kernel (TK) libraries for MAS.

Figure 4 and Figure 5 show an example of querying model information, generating the

model image, and pushing the image to the Docker repository.

Figure 4. Jupyter Notebook - Execute the initConfig and listmodel Commands

6

Figure 5. Jupyter Notebook – Execute the publish Command

MODEL VALIDATION

After the model image is generated and pushed to the Docker repository, users can launch

the container instance at any time to score the model in the container instance. The launch

command is shown in Figure 6.

Figure 6. Jupyter Notebook – Execute the launch Command

The launch command calls the Kubernetes API to create the deployment service object that

exposes the deployment. Once the container instance is deployed, the service URL is

available for scoring and querying.

MODEL SCORING

The initial version of the container REST API interface accepts only CSV as the input/output

data format. Figure 7 shows the scoring and query test results.

Figure 7. Jupyter Notebook - Scoring and Query Test Results

7

Figure 8 illustrates stopping a container instance and the related cleanup activities.

Figure 8. Jupyter notebook – Execute the stop Command

As a best practice, stop a container when you are finished with your work. This minimizes

infrastructure, compute usage, and related costs. The score command is a convenience

command. It combines several commands that are commonly used together. Figure 9

shows the score command.

Figure 9. Jupyter Notebook – Execute the score Command

MODEL ASSESSMENT

The utility log and input/output data are organized in an SQLite file. Because the container

life cycle could be very short, it is better to retrieve the score results from the container and

store it in the host filesystem or an external database.

The SAS SWAT package is a Python interface to SAS® Cloud Analytic Services (CAS). With

this package, you can load and analyze data sets of any size from your desktop or in the

cloud. In addition, you can analyze extremely large data sets using as much processing

power as you need, while still retaining the ease-of-use of Python on the client side.

Next, we can load the scoring output data into CAS for further analysis, for example, to

assess the model’s performance.

Figure 10 shows the loading of CSV data and using the SAS SWAT package to upload the

test results into CAS.

8

Figure 10. Using the SAS Swat Package to Upload Test Results into CAS

Figure 11 shows the assessment of the model.

Figure 11. Assessing the Model

The next several figures are related to drawing plots.

9

Figure 12 shows the CAS table with lift.

Figure 12. Generate CAS Table – Lift

Figure 13 shows a lift chart.

Figure 13. Generate Lift Chart

Figure 14 shows a CAS ROC table.

10

Figure 14. Generate CAS Table – ROC

Figure 15 shows a ROC chart.

Figure 15. Generate ROC chart

We can also call the compare function to assess the model with multiple scoring results.

Figure 16 shows the comparison between two scoring results.

11

Figure 16. Side by Side Compare the Scoring Results

BEYOND THE MODEL

CLOUD

In addition to a private docker registry, we can upload a model image to a public docker

registry, such as Docker Hub, Amazon Elastic Container Registry (ECR) or Google Container

Registry (GCR), and then deploy the container instance in multiple cloud platforms.

Amazon Web Service (AWS)

Here is an example that illustrates how to register and store a model image in AWS and

launch an AWS Elastic Container instance with Amazon Kubernetes.

First, we create and configure at least one Amazon Elastic Container Service for Kubernetes

(EKS) cluster and its work nodes. This is shown in Figure 17.

Figure 17. AWS - CloudFormation for Kubernetes Cluster

Next, we set AWS properties in the cli.properties file. This is shown in Figure 18.

12

Figure 18. Configure cli.properties File to Switch to AWS Cloud

By setting the provider type to AWS, the CLI utility publishes the model image to AWS ECR,

and then deploys the model to an Amazon Elastic Container instance.

Figure 19 show the execution of initConfig and listmodel.

Figure 19. AWS – Execute initConfig and listmodel Commands

13

Figure 20 shows the publishing of the model.

Figure 20. AWS – Execute publish Command

When the publish command is compete, the results can be verified in the AWS ECR Console.

This is shown in Figure 21.

Figure 21. AWS – Use Elastic Container Registry (ECR) to Verify Results

Figure 22 shows the launching of the container instance in EKS.

Figure 22. AWS - Launch Container Instance in EKS

Using the kubectl command line, we can verify information about the exposed service and

the external IP address of the node. This is shown in Figure 23.

Figure 23. AWS – Verify Information with kubectl

14

Figure 24 shows scoring in an AWS container instance.

Figure 24. AWS - Perform Scoring in an AWS Container Instance

Figure 25 shows the execution of the query and stop commands.

Figure 25. AWS – Query Test Results and Delete the Deployment

Google Cloud Platform (GCP)

This section shows an example of deploying to Google Cloud Platform. The following images

demonstrate how to push a model to Google Container Registration, how to launch a

container instance in a Google Kubernetes cluster, and how to perform scoring and query

results.

Figure 26 and Figure 27 show an example of executing the initConfig and listmodel

commands, and then executing the publish command.

15

Figure 26. GCP – Execute initConfig and listmodel Commands

Figure 27. GCP – Execute the publish Command

Figure 28 shows an example of using the Google Cloud Platform console to verify the

results.

Figure 28. GCP – Use Google Cloud Platform Console to Verify Results

16

Figure 29 shows an example of executing the launch command.

Figure 29. GCP - Launch Container Instance in a Google Kubernetes Cluster

Figure 30 shows an example of verifying the deployment.

Figure 30. GCP – Verify Deployment in Google Kubernetes Engine Workloads

Figure 31 shows an example of verifying the service pod.

Figure 31. GCP – Verify Service Pod in Google Kubernetes Engine

Figure 32 shows scoring in an GKE container instance.

17

Figure 32. GCP - Perform Scoring in an GKE Container Instance

Figure 33 shows an example of querying the test results and deleting the deployment.

Figure 33. GCP - Query Test Results and Delete the Deployment

DEPENDENCY SUPPORT

Our predefined base images could include the most popular libraries or packages. In the

real world, a user’s model might have extra dependencies on other software libraries or

packages. Our solution to provide a mechanism to adapt to dynamic user requirements is as

follows. The user:

1. Creates a file named requirements.json

2. Describes the steps about how to install extra dependencies in the file

3. Inserts this specification file in the model content list

When packing the model into the model image, the utility scans the specification file from

model content list and includes those step commands as part of Dockerfile. The Dockerfile

will be rendered by Docker Engine. For example, one data model is based on a Python H2O

library that the base image has not packaged yet. This is illustrated in Figure 34.

18

Figure 34. Support Extra Model Dependency

Figure 35 shows the specification file in the model content.

Figure 35. Specification File in the Model Content

19

Figure 36 shows the installation of the dependent packages in the image generation.

Figure 36. Installing the Dependent Packages in Image Generation

When Verbose is set to True, the utility displays more useful output for each command. This

is shown in Figure 37.

Figure 37. Displaying More Information with Verbose Enabled

20

CONCLUSION

The goal of this paper is to show how to use our CLI utility library to pack a SAS or open-

source model in a Docker image and perform scoring in a Docker container. It introduced

the features of the current development stage of the CLI utility library. This paper might be

updated in the future if we support more model types and additional cloud environments.

REFERENCES

Mouat, A. 2016. Using Docker: Developing and Deploying Software with Containers. 1st

ed.:O’Reilly Media.

Docker Inc.. “Docker SDK for Python.” Available at https://docker-

py.readthedocs.io/en/stable/.

GitHub Inc.. “Python Kubernetes Client.” Available at https://github.com/kubernetes-

client/python/blob/master/kubernetes/README.md.

Amazon Web Services, Inc.. “Kubernetes AWS.” Available at

https://aws.amazon.com/kubernetes/.

Google Cloud. “Google Kubernetes Engine Documentation.” Available at

https://cloud.google.com/kubernetes-engine/docs/.

Bernard Golden, Mar 16 2015. “Pets and Cattle Symbolize Servers, so What Does That Make

Containers? Chickens?” Available at https://thenewstack.io/pets-and-cattle-symbolize-

servers-so-what-does-that-make-containers-chickens/.

RECOMMENDED READING

• SAS® Model Manager 15.2: User’s Guide

• SAS® Micro Analytic Service 5.2: Programming and Administration Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

David Duling

SAS Institute Inc.

919-677-8000

David.Duling@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://github.com/kubernetes-client/python/blob/master/kubernetes/README.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/README.md
https://aws.amazon.com/kubernetes/
https://cloud.google.com/kubernetes-engine/docs/
https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-containers-chickens/
https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-containers-chickens/

