
1 

Paper SAS3481-2019 

Proper Planning Prevents Possible Problems:  
SAS® Viya® High-Availability Considerations 

Edoardo Riva, SAS Institute Inc., Cary, NC 

 

ABSTRACT  

SAS® Viya® is used for enterprise-class systems, and customers expect a reliable system. 

Highly available deployments are a key goal for SAS Viya. This paper addresses SAS Viya 

high-availability considerations through different phases of the SAS® software life cycle. 

After an introduction to SAS Viya, design principles, and intra-service communication 

mechanisms, we present how to plan and design your SAS Viya environment for high 

availability. We also describe how to install and administer a highly available environment. 

Finally, we examine what happens when services fail and how to recover. 

INTRODUCTION  

This paper assumes a basic understanding of SAS® Viya® architecture, so it does not 

describe the role and functionality of its different components. 

Jerry Read’s paper describes the process of creating highly available SAS Viya 3.3 

environments (Read 2018). This paper follows a more theoretical line, highlighting key 

considerations that are required with the design and administration of such an environment 

in SAS Viya 3.4, the currently available release.  

SAS VIYA DESIGN PRINCIPLES  
SAS Viya has been designed with services redundancy in mind, to increase services 

availability and improve performance through load sharing. Any single failure in the system 

should have the following effects: 

• Require no immediate response from an administrator. 

• Have minimal impact to current users of the system. 

• Have no impact on future users of the system. 

• Result in immediate notification to administrators of the failure. 

Expectations about what can be considered minimal impact to active users can vary, 

depending on customer requirements, the application involved, and the failure, but a typical 

acceptable impact can be any of these: 

• An in-progress action fails with a server error. 

• Users might need to refresh the browser to recover. 

• The system might continue to exhibit failures or delays for a short period--on the 

order of few minutes. 

An administrator should be able to return a failed system component to health without 

taking the system offline or affecting active users. 

Well, thanks to stateless microservices, all these objectives become much simpler to obtain. 

Individual groups of services can be clustered independently of others. After service 

instances have been started successfully, they register themselves within the SAS® 

Configuration Server (based on HashiCorp Consul) and are available to service requests. 



2 

The SAS Configuration Server continuously checks the health status of registered services, 

and connections are routed only to healthy instances.  

For a good description of microservices architecture, see Eric Bourn’s paper (Bourn 2018). 

Stateful services are less dynamic than microservices, but a similar concept applies to most 

of them. Most of these components have some support for high availability, and you can 

deploy multiple instances of the server as a cluster across different machines, whether it’s 

SAS® Message Broker or SAS® Infrastructure Data Server. 

HOW SERVICE DISCOVERY AND ROUTING WORKS 

Service discovery and routing is built on the idea that clients should not need to know the 

physical location of services. This concept originated within cloud environments, where 

services can be started on demand or moved to a different host at any time. But it makes 

perfect sense also when dealing with high availability clusters of redundant services: clients 

should be insulated from the details of how many service instances are running or where 

they are located. 

Within SAS Viya, this is possible because Apache HTTP Server is the front door to all web 

applications and microservices; its mod_proxy module routes requests to services at the 

designated port and balances the traffic among multiple service instances. Starting with SAS 

Viya 3.3 Apache also proxies any access to programming components such as SAS® Cloud 

Analytics (CAS) Server Monitor and SAS® Studio 4. Apache proxies both external 

connections (coming from a client such as a browser) and internal ones (service-to-service). 

Figure 1 shows an external connection (red arrows) from a browser going through the proxy 

to reach SAS® Studio 5. SAS Studio itself then opens an internal connection (blue arrows) 

(for example, to talk to the SASLogon microservice), and the connection is proxied as well. 

SAS Viya 3.4 middle tier 
Simple deployment

SAS Logon 
Manager

SAS 
Studio 5

launcher

audit

Credentials

compute

Microservices

Web Applications

Apache HTTP Server

 

Figure 1. Apache HTTP Server Proxying a Simple SAS Viya Deployment 



3 

Here is a key point to remember: there are no direct internal connections, ever. Apache 

HTTP Server proxies every connection to microservices. This is one of the principles followed 

by SAS in designing SAS Viya and is key for SAS Viya to be ready for cloud environments. 

DO YOU WANT TO SEE IT? 
It's easy to verify how Apache can forward all connections to the right endpoints. All proxy 

directives are stored in a specific file, /etc/httpd/conf.d/proxy.conf. Since this is a custom 

configuration file, upgrading Apache will not overwrite, modify, or delete it. Here is an 

extract from an environment with a two-machine, middle-tier cluster: 

  

... more lines ... 
 
 
# Proxy to SASBackupManager service 
<Proxy balancer://SASBackupManager-cluster> 
  BalancerMember https://viya01.example.com:46560 route=backupmanager-192-168-0-2 
  BalancerMember https://viya02.example.com:46073 route=backupmanager-192-168-0-18 
  ProxySet scolonpathdelim=on stickysession=JSESSIONID 
</Proxy> 
Redirect /SASBackupManager /SASBackupManager/ 
ProxyPass /SASBackupManager/ balancer://SASBackupManager-cluster/SASBackupManager/ 
ProxyPassReverse  /SASBackupManager/ balancer://SASBackupManager-
cluster/SASBackupManager/ 
 
# Proxy to SASDataExplorer service 
<Proxy balancer://SASDataExplorer-cluster> 
  BalancerMember https://viya01.example.com:42954 route=dataexplorer-192-168-0-2 
  BalancerMember https://viya02.example.com:37072 route=dataexplorer-192-168-0-18 
  ProxySet scolonpathdelim=on stickysession=JSESSIONID 
</Proxy> 
Redirect /SASDataExplorer /SASDataExplorer/ 
ProxyPass /SASDataExplorer/ balancer://SASDataExplorer-cluster/SASDataExplorer/ 
ProxyPassReverse  /SASDataExplorer/ balancer://SASDataExplorer-
cluster/SASDataExplorer/ 
 
... more lines ... 

  
Here are some points that you can understand from this fragment: 

• Each service in this environment has been clustered and is currently running on two 

hosts; each instance is listening on an ephemeral port. 

• There is a separate "Balancer" per service; this way, all services are independent and 

could be deployed, scaled up/down, started, and stopped independently from other 

ones. 

• Once a client session is established, the parameter stickysession=JSESSIONID keeps 

it connected to the same instance of the clustered service. 

The last point might raise some concerns: sticky sessions could be an issue for high 

availability! If a session is always connected (for example, to host #1), what happens if that 

machine dies? Won't you lose all your work? Another key SAS Viya architecture design 

feature comes to the rescue: all microservices are stateless--that is, they do not save 

anything internally. The status of the current session, for example, is saved in the SAS 



4 

Cache Server. Were host #1 to die, Apache would route any requests for services to the 

surviving instances--for example, on host #2. That, in turn, would extract the session ID 

from the incoming request and retrieve its status from the external cache. Everything is 

preserved, and end users do not notice any issue. 

BACK TO THE THEORY 
Up to now, you have seen service routing—that is, how to route a connection from a client 

to a running service. Apache HTTP Server can do it for you. If you think about it for a 

moment, you might realize this has not solved the issue. It’s simply been moved down one 

level, from the client to the proxy. How can Apache actually know where services are 

running? That's the focus of service discovery. To do it, SAS Viya relies on two additional 

components, and also relies on the way services relate with them. These components are 

the SAS Configuration Server and the httpproxy service. 

The SAS Configuration Server, despite its name, is not only a central repository for 

configuration data, but also the core component for service discovery and service health 

status. 

Every time a SAS Viya service is started, it connects to the SAS Configuration Server and 

registers its name, ID, hostname, and port, plus additional information. It also registers a 

check that the SAS Configuration Server performs every few seconds to verify that the 

service is actually up and responsive. In a similar way, every time a SAS Viya service is 

gracefully stopped, it connects to the SAS Configuration Server and deletes its registration 

and any associated health check.  

Next, here are details about the httpproxy service: its role is to query the SAS Configuration 

Server for service events and to update Apache. 

• When a new service instance starts responding to health checks, httpproxy reads its 

name, host, and port and adds its route to the proxy.conf file described above. 

Apache is then forced to reload its configuration and starts routing client connections 

to this new service instance. 

• When a service instance is stopped or does not respond to health checks, httpproxy 

removes the corresponding entry from the proxy.conf file. Apache is then forced to 

reload its configuration and stops routing client connections to the dead service 

instance. 

YOU CAN CHECK THIS, TOO 
SAS Viya provides the sas-bootstrap-config command-line utility to interact with the SAS 

Configuration Server. We can use it to perform service discovery manually, as in the 

following examples. 

1. Assume that you previously started one instance of the audit service. You can check 

its registration: 

# define env variables if not already defined 
$ [[ -z "$CONSUL_HTTP_ADDR" ]] && . /opt/sas/viya/config/consul.conf  
$ [[ -z "$CONSUL_TOKEN" ]] && export CONSUL_TOKEN=$(sudo cat 
/opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/defaul
t/client.token); 
# discover the audit service 
$ /opt/sas/viya/home/bin/sas-bootstrap-config catalog service audit 
{ 
    "items": [ 
        { 



5 

            "address": "192.168.0.2", 
            "node": "viya01.example.com", 
            "serviceAddress": "viya01.example.com", 
            "serviceEnableTagOverride": false, 
            "serviceID": "audit-192-168-0-2", 
            "serviceName": "audit", 
            "servicePort": 40888, 
            "serviceTags": [ 
                "proxy", 
                "rest-commons", 
                "https", 
                "contextPath=/audit" 
            ], 
            "taggedAddresses": { 
                "lan": "192.168.0.2", 
                "wan": "192.168.2.2" 
            } 
        } 
    ] 
} 
 
# verify Apache configuration 
$ grep audit /etc/httpd/conf.d/proxy.conf 
# Proxy to audit service 
Redirect /audit /audit/ 
ProxyPass /audit/ https://viya01.example.com:40888/audit/ 
ProxyPassReverse  /audit/ https://viya01.example.com:40888/audit/ 

  
2. Now start an additional instance of the audit service, and check again: 

# discover the audit service 
$ /opt/sas/viya/home/bin/sas-bootstrap-config catalog service audit 
{ 
    "items": [ 
        { 
            "address": "192.168.0.2", 
            "node": "viya01.example.com", 
            "serviceAddress": "viya01.example.com", 
            "serviceEnableTagOverride": false, 
            "serviceID": "audit-192-168-0-2", 
            "serviceName": "audit", 
            "servicePort": 40888, 
            "serviceTags": [ 
                "proxy", 
                "rest-commons", 
                "https", 
                "contextPath=/audit" 
            ], 
            "taggedAddresses": { 
                "lan": "192.168.0.2", 
                "wan": "192.168.0.2" 
            } 
        }, 
        { 



6 

            "address": "192.168.0.18", 
            "node": "viya02.example.com", 
            "serviceAddress": "viya02.example.com", 
            "serviceEnableTagOverride": false, 
            "serviceID": "audit-192-168-0-18", 
            "serviceName": "audit", 
            "servicePort": 3044, 
            "serviceTags": [ 
                "proxy", 
                "rest-commons", 
                "https", 
                "contextPath=/audit" 
            ], 
            "taggedAddresses": { 
                "lan": "192.168.0.18", 
                "wan": "192.168.0.18" 
            } 
        } 
    ] 
} 
 
# verify Apache configuration 
$ grep audit /etc/httpd/conf.d/proxy.conf 
# Proxy to audit service 
  BalancerMember https://viya01.example.com:40888 route=audit-192-168-0-2 
  BalancerMember https://viya02.example.com:3044 route=audit-192-168-0-18 
Redirect /audit /audit/ 
ProxyPass /audit/ balancer://audit-cluster/audit/ 
ProxyPassReverse  /audit/ balancer://audit-cluster/audit/ 

 

3. The output of the commands above gives you the URL of each service instance. With 

these, you can manually check the health of each of the cluster members. 

$ curl -k https://viya01.example.com:40888/audit/commons/health 
{"description":"Composite Discovery Client","status":"UP"} 
$ curl -k https://viya02.example.com:3044/audit/commons/health 
{"description":"Composite Discovery Client","status":"UP"} 

ADDRESS VIRTUALIZATION AND LOAD BALANCERS 
The inter-service routing works very well when there is only a single instance of Apache 

running. When there are multiple instances of Apache, services should not use any that are 

down. A useful feature with SAS Viya is that it keeps track of Apache health, using the 

httpproxy service with health checks to track when an Apache HTTP Server goes down. 

Microservices include a services resolver that provides them with up-to-date information 

about where to find each active Apache HTTP Server instance. This is represented in Figure 

2 by the multiple blue and red lines connecting microservices and Apache HTTP Server 

instances.  



7 

SAS Viya 3.4 – Apache and microservices High Availability 
With a frontend Load Balancer

SAS Logon 
Manager

SAS 
Studio 5

launcher

audit

Credentials

compute

Microservices

Web Applications

Apache HTTP Server

SAS 
Studio 5

SAS Logon 
Manager

launcher

audit

Credentials

compute

Microservices

Web Applications

Apache HTTP Server

CAS Controller

SAS Launcher 
Server

SAS Compute 
Server

 

Figure 2 – A SAS Viya Middle-Tier Cluster  

While this works extremely well as of SAS Viya 3.4, there are just a few components that do 

not automatically take advantage of the service resolver. The SAS Launcher Server, CAS, 

and applications that generate links to SAS Viya reports for sharing outside SAS Viya, all 

remain hard wired to the Apache HHTP Server instance running on the first machine listed in 

the inventory file under the [httpproxy] host group. This is illustrated in Figure 2 by the 

dotted black and red lines. 

Since a cluster of Apache HTTP Servers requires an external front-end proxy or a load 

balancer to route external incoming connections, you can set additional properties to 

identify this external single entry-point for these components that do not use the service 

resolver. 

First, since the external proxy/load balancer should be set up to use transport layer security 

(TLS), you must install its certificate authorities (CA) certificate chain into the SAS Viya 

truststore, as described in “Add Certificates to Truststores Using Ansible (Linux Full 

Deployment)” in Encryption in SAS Viya 3.4: Data in Motion. 

SAS Cloud Analytics Services (CAS) Server  
The CAS server does not use the SAS Configuration Server to find an active instance of 

Apache HTTP Server. It stores in its configuration a URI to locate SAS Viya microservices in 

order to validate OAuth tokens being presented for authentication from other SAS Viya web 

applications or to obtain OAuth tokens for clients authenticating with user/password 



8 

credentials. By default, this URI is fixed to the Apache HTTP Server that is deployed on the 

first machine listed for the [httpproxy] inventory host group. You can override this default 

by setting the value for its properties cas.SERVICESBASEURL, env.CAS_VIRTUAL_HOST, 

env.CAS_VIRTUAL_PORT, and env.CAS_VIRTUAL_PROTOCOL to point to the front-end 

external proxy/load balancer that routes traffic across multiple Apache HTTP Servers. 

 

Example: cas.SERVICESBASEURL = 'https://loadbalancer.viya.customer.com:443/' 

  env.CAS_VIRTUAL_HOST ='loadbalancer.viya.customer.com' 

  env.CAS_VIRTUAL_PORT = '443' 

  env.CAS_VIRTUAL_PROTOCOL = 'https' 

 

If you know the properties before the deployment, you can specify these properties in the 

vars.yml file as described in SAS Viya 3.4 for Linux: Deployment Guide. Otherwise, you can 

change them post-deployment, by updating the configuration file 

/opt/sas/viya/config/etc/cas/default/casconfig_usermods.lua, and then restarting the CAS 

controller. 

Of course, CAS must have a network route to the load balancer. 

SAS Launcher Server 
When Compute Servers are launched, they ultimately need to talk back to the Compute 

service and should do so through the load balancer. By default, however, the Launcher 

Server passes only the address of the first Apache HTTP Server instance listed in the 

inventory file to each launched Compute Server. The SAS Launcher Server requires a 

property retrieved from the SAS Configuration Server (config/launcher-server/global/sas-

services-url) to specify the URL for the single entry point to SAS Viya. If you know this URL 

before the deployment, you can specify the required property in the sitedefault.yml, 

following the instructions in SAS Viya 3.4 for Linux: Deployment Guide. Otherwise, you can 

add the property post-deployment using the following commands: 

. /opt/sas/viya/config/consul.conf  
export CONSUL_TOKEN=$(sudo cat /opt/sas/viya/config/etc/SASSecurityCertificat
eFramework/tokens/consul/default/client.token) 
/opt/sas/viya/home/bin/sas-bootstrap-config kv write config/launcher-
server/global/sas-services-url "https://<loadbalancer-address>:443/"  

In this latter case, restart the sas-viya-runlauncher-default service. 

Again, a network path must exist from the Compute Server hosts to the load balancer and 

not be preempted by a firewall rule. 

URL Generators 
Applications that generate links to SAS Viya objects, such as SAS® Visual Analytics reports, 

also require a configuration change, specific to the SAS Viya service, that will override an 

otherwise hard-wired affinity to the primary Apache HTTP Server instance. You can use the 

properties config/viya/sas.httpproxy.external.hostname and 

config/viya/sas.httpproxy.external.port. Again, if you know these properties before the 

deployment, you can specify them in the sitedefault.yml, following the instructions in SAS 

Viya 3.4 for Linux: Deployment Guide. Otherwise, you can add them post-deployment using 

the following commands: 

. /opt/sas/viya/config/consul.conf  



9 

export CONSUL_TOKEN=$(sudo cat /opt/sas/viya/config/etc/SASSecurityCertificat
eFramework/tokens/consul/default/client.token) 
/opt/sas/viya/home/bin/sas-bootstrap-config kv write 
config/viya/sas.httpproxy.external.hostname <loadbalancer_hostname> 
/opt/sas/viya/home/bin/sas-bootstrap-config kv write 
config/viya/sas.httpproxy.external.port <loadbalancer_port> 

After this, restart the sas-viya-reportdistribution-default and sas-viya-reportalerts-default 
services. 

 

Finally, it should be noted that a virtual address for the microservices (for example, using a 

front-end proxy or a hardware load balancer) is also important for the user experience. It 

not only provides the convenience of a single bookmarked entry point for SAS Viya, but it 

makes single signon and signoff among SAS Viya applications possible. SAS Logon tracks 

session information mapped to the hostname being used to connect to it. This allows SAS 

Logon to share a single session for a user among many instances of itself. When you log off 

from SAS Logon, through any running instance, you’re logged off from SAS Viya completely: 

all web applications in all browser sessions (for a given browser). Conversely, if you allow 

users to reach SAS Logon at multiple addresses, then multiple sessions will be created, and 

they won't benefit from the single signon and signoff. 

Figure 3 shows the final result of all of the previous configuration changes. All single-

address connections are routed through the front-end load balancer. 



10 

SAS Viya 3.4 – Apache and microservices High Availability 
With a frontend Load Balancer – additional configuration

SAS Logon 
Manager

SAS 
Studio 5

launcher

audit

Credentials

compute

Microservices

Web Applications

Apache HTTP Server

SAS 
Studio 5

SAS 
Studio 5

launcher

audit

Credentials

compute

Microservices

Web Applications

Apache HTTP Server

CAS Controller

SAS Launcher 
Server

SAS Compute 
Server

 

Figure 3 - SAS Viya Middle-Tier Full High Availability 

 

PLAN AND DESIGN YOUR SAS VIYA ENVIRONMENT FOR HIGH 

AVAILABILITY.  

SAS Viya servers and services can be clustered to increase their availability. With clustering, 

if a member of the cluster goes down, all of the other ones keep servicing client requests. 

In order to guard against unexpected issues, such as hardware, operating system, or 

network failures, it is recommended that cluster instances be distributed across multiple 

machines. Deploying redundant instances of each service results in a highly available and 

more robust system that requires less attention when a failure occurs. 

For some components, clustering should be planned and configured before starting the 

deployment. Other can be clustered at any time. 

The following table lists the main SAS Viya components with their currently supported 

clustering status. 

Component Clusterable at 

Deployment? 

Clusterable Post- 

deployment? 

SAS Cloud Analytics Services (CAS) Y Y 



11 

SAS Studio V (5.x) Y Y 

Apache HTTP Server Y Y 

SAS Infrastructure Data Server 

(PostgreSQL) 

Y Y 

Microservices Y Y 

SAS Configuration Server (Consul, 

includes Vault) 

Y Y1 

SAS Message Broker (RabbitMQ) Y N2 

SAS Compute Server Y N 

SAS Studio (4.x) Y N 

Pgpool II N N3 

Operations N4 N4 
1. The only tested--and thus supported--case is when you add a new Consul server, after 

the initial deployment, on hosts that do not already have a Consul agent on it. This means 

that the cluster can be expanded only on machines that do not already host any other SAS 

Viya software.  

2. Although clustering RabbitMQ post-deployment should be possible, it has not been 

officially tested. Thus, it is not supported. 

3. SAS R&D has recently tested a supported way to add Pgpool II nodes post-deployment. 

For more information, contact SAS Technical Support or a member of SAS Professional 

Services. 

4. The Operations host group contains services that accumulate metric, log, and notification 

events from RabbitMQ, and then process those into CAS tables that are consumed by the 

SAS® Environment Manager application. Only one instance can be deployed per 

environment. In case of failure, end users will be unaffected: only administrators will be 

affected. They will not be able to use SAS Environment Manager to consume the information 

provided by the Operations microservice, but they should still be able to get the same 

information from other sources.  

SAS CLOUD ANALYTICS SERVICES 
SAS Cloud Analytics Services (CAS) can be deployed in a distributed analytic cluster 

(MPP). In this configuration, CAS Server is more resilient to failures. 

Even if a CAS worker node fails, the service as a whole is still available. Likewise, data, that 

by default is replicated, is not lost. 

Starting with SAS Viya 3.3, CAS can also have one (and only one) backup (or secondary) 

controller. A CAS backup controller provides fault tolerance in case the primary CAS 

controller fails. It can be used only in a distributed server architecture, and its deployment 

is optional. 

The primary and backup controller hosts should be identical (for example, in sizing, 

operating system version and settings, prerequisites, and so on).  

The primary and backup controller should share the following directory: 

/opt/sas/viya/config/data/cas 

Since only one of the controllers can service client requests (warm standby), if you have a 

core-based SAS license, the cores of the backup controller do not count toward the total 

number of cores. 



12 

CAS Cluster

CAS Backup 
Controller

CAS Controller

CAS Worker CAS Worker CAS Worker

Server 
Backup 

Controller

Session 
Backup 

Controller

Server 
Controller

Session 
Controller

Server 
Worker

Session 
Worker

Server 
Worker

Session 
Worker

Server 
Worker

Session 
Worker

CAS MonitorCAS Monitor

 

Figure 4 – CAS Cluster with a Backup Controller 

PROGRAMMING RUN-TIME SERVERS 
SAS Studio 4 with its supporting components (SAS Object Spawner, SAS Workspace 

Server) can be clustered. Similarly, the SAS Compute Server and SAS Launcher Server-

- that support SAS Viya applications such as SAS Studio 5--can be clustered. 

The two clusters can share hosts, as shown in Figure 5, or, starting with SAS Viya 3.4, 

reside on different hosts, as shown in Figure 6.  

Each instance is independent, and there is no session failover. In the event of a failure, a 

new session can be established on a different host. This happens after the user performs a 

new logon, with SAS Studio 4, or automatically, with SAS Studio 5. 

All instances of the cluster must be able to access the same saved configuration data. To 

enable this, you should do the following:  

• Set up a shared file system and configure SAS Studio 4 to use a shared drive in that 

file system for all the user data you want to save. For more information, see the 

description of “webdms.studioDataParentDirectory” in SAS Viya 3.4 Administration: 

Configuration Properties. 

• Enable file sharing for home directories on all hosts where programming interfaces 

are installed. 

Programming Run-Time Cluster

Programming Run-Time

SAS Workspace 
Server and SAS 
Object Spawner

Embedded Web 
Application Server

SAS Launcher 
Server

SAS Compute 
Server

Programming Run-Time

SAS Workspace 
Server and SAS 
Object Spawner

Embedded Web 
Application Server

SAS Launcher 
Server

SAS Compute 
Server

 

Figure 5 – Example of Programming Run-Time Cluster 



13 

Programming Run-Time Cluster

Compute Server

SAS Launcher 
Server

SAS Compute 
Server

Compute Server

SAS Launcher 
Server

SAS Compute 
Server

Programming

SAS Workspace 
Server and SAS 
Object Spawner

Embedded Web 
Application Server

Programming

SAS Workspace 
Server and SAS 
Object Spawner

Embedded Web 
Application Server

 

Figure 6 – Programming Components Split from SAS Compute Server and SAS Launcher Server 

INFRASTRUCTURE SERVERS 

Apache HTTP Server can be clustered. All active instances can proxy incoming requests to 

microservices or web applications, as described in the “How Service Discovery and Routing 

works” section. An external proxy server or hardware load balancer is required in front of 

the cluster, so that every external web request transits through it. This is shown in Figure 7. 

 

Figure 7 - Apache HTTP Server Cluster 

The external proxy should use the https protocol; it must forward requests through the SAS 

Viya Apache HTTP Servers without changes in the URL path. The external proxy or load 

balancer is responsible for routing requests only to active Apache HTTP Server instances; 

round robin or load balanced routing is recommended. 

SAS Configuration Server (Consul) and SAS Secret Manager (Vault) can be clustered. 

The cluster elects a leader: while all nodes can answer client requests, only the leader is 

responsible for Writes and updates to the cluster, as shown in Figure 8. A Consul cluster 

should always have an odd number of members. Three or five are recommended in most 

situations; an excessive number of servers will affect performance. 

Vault uses Consul as its back-end storage and is always deployed on each Consul server. 

Apache HTTP Server Cluster

Apache HTTP Server

Apache HTTP Server



14 

SAS Configuration Server Cluster

Consul Cluster Leader

Consul Cluster Follower

Consul Cluster Follower

 

Figure 8 - SAS Configuration Server Cluster 

SAS® Infrastructure Data Server (PostgreSQL) can be clustered. One instance assumes 

the primary role and services incoming requests. All other instances have the standby role 

and become active only in case the primary fails. All data transactions are replicated from 

the primary to the standby nodes, thus ensuring data safety in case of loss of the primary 

host. Figure 9 shows a horizontal cluster with two nodes, each on a separate host. While 

SAS Infrastructure Data Server supports numerous other highly available topologies, 

discussing all of them is outside the scope of this paper. To learn more, see “Creating High 

Availability PostgreSQL Clusters” in the SAS Viya 3.4 for Linux: Deployment Guide. 

SAS provides Pgpool-II open-source software to manage PostgreSQL clusters. Pgpool 

software resides and operates between SAS Infrastructure Data Servers and clients, as 

shown in Figure 9. All data connections and database requests are routed through the 

Pgpool service. Currently, SQL queries are relayed only to the primary node. The arrow in 

Figure 9 depicting queries being also sent to a standby node, to load balance the workload, 

represents an improvement being researched for a future SAS Viya release. Pgpool is also 

responsible for monitoring the PostgreSQL cluster and, in case of failure of the primary 

node, it promotes one of the standby nodes to become the new primary and reconfigures 

any additional standby node to follow the new primary. 

For the current release, Pgpool itself is a single point of failure. This was a conscious 

decision because the software release that was initially deployed with SAS Viya did not 

support any reliable way to establish quorum in case of network issues (split-brain 

problem). Were this split-brain problem to happen, it could lead to possible corruption of the 

managed databases. SAS has thus chosen to enforce data integrity over availability.  

Recent releases of Pgpool have finally solved this issue. As of publication time, work is 

underway to provide an out-of-the-box deployment of a cluster of Pgpool instances for SAS 

Viya. In the meantime, contact SAS Technical Support or SAS Professional Services to 

manually implement this new configuration in your existing SAS Viya environment.  



15 

 

Figure 9 – SAS Infrastructure Data Server Cluster 

SAS Message Broker (RabbitMQ) can be clustered. At deployment time, the first machine 

defined in the cluster is the primary node and initializes the cluster. The RabbitMQ cluster 

model is quite complex. It can be considered Active/Active for failover purposes because all 

members of the cluster are active and take requests directly, but there are nuances. 

RabbitMQ queues are assigned to different members of the cluster. For each queue, that 

RabbitMQ instance is "in charge" of that queue, such that activity in that queue is managed 

by that particular RabbitMQ instance. Other cluster members effectively forward requests 

for that queue to that manager instance, and that manager maintains and mirrors state 

information and content back to the other cluster members. If that queue's manager fails, a 

different RabbitMQ instance takes over management of that queue (and retains it even if 

the original comes back online).  

SAS has recently discovered that the default configuration is susceptible to loss of 

messages, in the case of network problems or partitions. To overcome this issue, it is 

required to deploy an odd number of RabbitMQ instances, as shown in Figure 10, and verify 

that the configuration property cluster_partition_handling = pause_minority is present in 

the file /opt/sas/viya/config/etc/rabbitmq-server/rabbitmq.config.ssl on each node. Three or 

five nodes are recommended in most situations, just as with the SAS Configuration Server. 

For additional details, see SAS Note 63804. 

SAS Message Broker Cluster

RabbitMQ

RabbitMQ

RabbitMQ

 

Figure 10 - SAS Message Broker Cluster 



16 

MICROSERVICES 
Microservices and web applications are stateless, and an arbitrary number of instances 

can be started to form a cluster. At least two instances of each service are required for high 

availability. 

Each instance registers with the SAS Configuration Server when it starts, and it is 

continuously monitored. If it fails, it is removed from the SAS Configuration Server service 

catalog, and client requests are routed to other instances.  

Instances should be distributed across multiple machines to guard against host hardware, 

VM, OS, or network failures. 

ADMINISTERING A HIGHLY AVAILABLE ENVIRONMENT.  

MONITORING 
Administrators can monitor the status of clustered environments using different tools. 

The primary interface is SAS Environment Manager. The Dashboard page, shown in Figure 

11, provides a summary view of each instance of every registered service across all 

machines. Figure 12 shows the Machines page, which gives a detailed view by host. To 

gather information for both pages, SAS Environment Manager uses the monitoring 

microservice, which, in turn, queries the SAS Configuration Server to get services and hosts 

statuses.  

 

Figure 11 - SAS Environment Manager Dashboard Page 



17 

  

Figure 12 - SAS Environment Manager Machines Page  

Services deregister themselves from the SAS Configuration Server when they are 

intentionally shut down so that it is possible to make a distinction between “intentionally 

shut down” and “crashed.” 

Therefore, it is important to understand that SAS Environment Manager reports a service 

instance as “down” only when it becomes unavailable because of a failure and stops 

answering to SAS Configuration Server health checks. This is not the case with service 

instances that are properly stopped: after they deregister themselves from the SAS 

Configuration Server, they simply disappear from the dashboard and from the machines 

page. When all services deployed on a machine are properly stopped, the whole machine 

disappears from the dashboard. 

To get a comprehensive status of all services, including the ones that have been properly 

stopped by an administrator, you can use the sas-viya-all-services command-line utility, 

which gives a listing similar to the one shown in Output 1. 

$ sudo /etc/init.d/sas-viya-all-services status 
Getting service info from consul... 
  Service                            Status  Host           Port     PID 
  sas-viya-consul-default            up      N/A             N/A    1129 
  sas-viya-vault-default             up      192.168.0.18   8200    1413 
  sas-viya-httpproxy-default         up      N/A             N/A    5754 
  sas-viya-rabbitmq-server-default   up      192.168.0.18   5671    None 
  sas-viya-sasstudio-default         up      N/A             N/A    9584 
  sas-viya-spawner-default           up      N/A             N/A    9808 
  sas-viya-runlauncher-default       up      192.168.0.18   5284   10275 
  sas-viya-alert-track-default       up      192.168.0.18      0   10809 
  sas-viya-authorization-default     up      192.168.0.18   0928   11140 
  sas-viya-cachelocator-default      down    None           None   11165 



18 

  sas-viya-cacheserver-default       up      192.168.0.18  33132   11190 
  sas-viya-configuration-default     up      192.168.0.18  41235   11252 
  sas-viya-identities-default        up      192.168.0.18  36207   11263 
... 

Output 1 – sas-viya-all-services Listing Services Status 

OPERATING 
Starting or stopping SAS Viya services requires following the correct sequence to avoid 

operations issues. When SAS Viya is deployed on a single machine, it is possible to use the 

sas-viya-all-services script deployed in the /etc/init.d directory. Currently, when you have a 

multi-machine deployment, including services replicated on a multi-node cluster, this script 

cannot be used because it is not capable of orchestrating services across machine 

boundaries. 

In this case it is really important to be familiar with the correct sequence, as detailed in SAS 

Viya 3.4 Administration: General Servers and Services. There is, however, a tool to help 

with this effort: the Multi-Machine Services Utilities (MMSU), part of the SAS Viya 

Administration Resource Kit (Viya-ARK). Viya-ARK is a collection of tools and utilities aimed 

at making SAS Viya deployment and administration easier, safer, and faster. Viya-ARK is 

hosted as Git repository on the SAS Software GitHub page. It is accessible to anyone. MMSU 

gives you a set of playbooks to start, stop, and check the status of all SAS Viya services 

across all the machines identified in the inventory.ini file that was used to deploy the 

environment. For example, to start all services gracefully, execute the following: 

ansible-playbook viya-ark/playbooks/viya-mmsu/viya-services-start.yml 

The start-up/shutdown script for a whole CAS cluster is available only on the primary 

controller. At start-up, it always attempts to start the primary node as the active instance 

and the backup node as a standby. Then it connects to and starts all worker nodes.  

As an administrator, you can manage CAS Server nodes, including stopping them 

individually, using the Servers page of SAS Environment Manager, as shown in Figure 13. 

 

Figure 13 - Operating CAS Nodes from SAS Environment Manager 



19 

SERVICES FAILURE AND RECOVERY OPTIONS  

To design an architecture that minimizes the impact on end users, it is important to 

understand what happens when a component fails, and how users can recover from failure. 

SAS CLOUD ANALYTICS SERVICES 
SAS Cloud Analytics Services can survive failures of worker nodes in MPP deployments 

thanks to data replication. When you load data into CAS, you can specify the number of 

redundant blocks, or inactive copies, to create. In the event of node failure, a surviving 

node accesses the data from the redundant block. Among all copies of the same data 

segment, only one block on only one node is active at any given time. 

Secondly, the CAS controller node can be deployed with a standby instance. When a CAS 

cluster is started, the primary node is always made the active instance. In case of failure, 

the CAS controller fails over automatically to the backup controller, with no loss of data, 

provided a shared file system is in place for /opt/sas/viya/config/data/cas. Once failover 

occurs, CAS remains operating without fault tolerance for the controller. It would not be 

possible to automatically fail back to the primary even if it were restarted. Bringing the 

primary machine back online requires following a particular sequence of steps, which 

includes a planned outage. For complete instructions, see “Recover a Failed Controller” in 

SAS Viya Administration: SAS Cloud Analytic Services.  

With the initial version of SAS Viya 3.4, some termination scenarios for the CAS secondary 

controller might cause the primary controller to terminate also. For example, when you 

terminate the secondary controller with the SIGTERM or SIGQUIT signals, the primary 

controller also stops. Unfortunately, this can also happen during a regular shutdown or 

reboot of the machine hosting the CAS secondary controller. SAS Problem Note 63522 

provides instructions about accessing and applying a software update to correct this issue. 

SAS STUDIO 5 IMPROVED RECOVERY 
Previous releases of SAS Studio can be clustered for scalability and high availability, 

providing multiple instances of the web application. However, before SAS Studio 5.x, end-

user sessions were bound to a specific instance known as a “sticky session.” 

To understand the disadvantages of a sticky session, consider the following example. 

Suppose that you have two SAS Studio 4.x instances running on server1 and server2. When 

you sign in to SAS Studio 4.x, the front-end Apache HTTP Server directs you to server2. 

Until you sign out, your session remains on server2. If server2 abnormally shuts down—

even though server1 is unaffected—your session is lost, and you must sign out, possibly 

losing your work. When you sign in again, Apache HTTP Server redirects you to the 

available server, in this case, server1. 

There is also another, more subtle issue. Each instance of SAS Studio 4.x can access only 

an object spawner and workspace servers running locally on the same machine. Suppose 

that all SAS Studio 4.x instances are running fine, but the object spawner on server2 goes 

down. Even if your SAS Studio 4.x session is unaffected, you are unable to perform any 

work. If you decide to sign out and back in, there is a chance that you will again be routed 

to server2, because Apache HTTP Server continues to see SAS Studio 4.x active on server2. 

SAS Studio 5.x solves all these issues. Because it is a stateless microservice, Studio 5.x 

end-user sessions are not bound to any specific instance. If one instance stops abnormally, 

SAS Studio 5.x continues working using another microservice instance. Also, to run SAS 

code, SAS Studio 5.x does not use an object spawner and workspace server. Instead, 

Studio 5.x submits code to a Compute Server started by a launcher server. The compute 

and launcher server infrastructure ensures that there are no dependencies to a specific 



20 

server machine. Therefore, SAS Studio 5.x can use a launcher and Compute Server located 

on any machine. 

INFRASTRUCTURE SERVERS 
Infrastructure servers are stateful services and are at the core of SAS Viya; yet, the SAS® 

platform is quite resilient in surviving service failure. Only in a limited number of cases has 

the failure of a single service caused the whole system to become unavailable. The most 

critical time is during start-up; if any of the stateful services fails to start, the whole 

platform might be unable to become fully operational. After a successful start-up, however, 

if any of the infrastructure servers fails, the rest of the platform can be resilient enough to 

stay operative and keep servicing end users, even if in a diminished capacity. As described 

in the previous section, a way to guard against server failures is to cluster them all. Then, if 

an instance fails, after the cause of a service failure has been solved, you can simply restart 

it. With some applications, users might have to refresh their pages, but no work should ever 

be lost. Usually, failures do not cascade to other instances or to different servers, and no 

other services have to be restarted.  

An incorrect termination of PostgreSQL can leave it in a status where it refuses to restart. In 

this case, see recovery instructions in “Recover a Failed Cluster” and “Failback a Cluster” in 

SAS Viya 3.4 Administration: Infrastructure Servers.  

 

MICROSERVICES 
Microservices are stateless, independent, and are designed to remain operational even when 

required resources become unavailable. SAS Viya applications can still work when all 

instances of a microservice fail: a specific functionality might be unavailable until the failure 

is resolved, but everything else keeps working. For example, suppose that no instance of 

the folders microservice is available. Users cannot navigate folders, open reports, or save 

new reports. Yet, they can still consult reports that were already open, and keep building 

new reports. As soon as one instance of the folders microservice comes back online, any 

report can be successfully saved, and no work is lost.  

Obviously, clustering provides a great safeguard even from this eventuality.  

There is one service whose failure can be critical to others: SAS Cache Locator. Most 

microservices are stateless in part because they share a distributed cache across all their 

cluster instances. They use the SAS Cache Locator to discover existing members of the 

cluster. Microservices, which are locator clients, fetch the list of locators at client start. If a 

single locator fails or is restarted, the client has a list with other locators and continues to 

run. If all locators fail or are restarted within a short time, the client no longer can contact a 

locator. Clients must then be restarted to reload the list of locators from the SAS 

Configuration Server. Otherwise, service clients (if not restarted) can fall back to isolated 

mode and not coordinate the cache with other instances of the same service, giving 

unpredictable results. 

CONCLUSION 
SAS Viya resiliency is getting better with each new version. For most components, if they 

fail, you can simply restart them. Most of the services are independent for almost every 

operation; in case of a single failure, service recovery does not require a restart of any 

other service--key exception, at start-up. Almost all components can be easily and 

automatically clustered, so that, if a member of a cluster fails, the system as a whole is 

unaffected. CAS Server can replicate data so that, if a worker node fails, data tables are 

available from other nodes. 



21 

REFERENCES 

Bourn, Eric. 2018. “SAS® Viya® Service Layer Architecture Overview.” Proceedings of the 

SAS Global Forum 2018, Cary, NC: SAS Institute Inc. Available at 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/2272-2018.pdf  

Read, Jerry. 2018. “SAS® Viya®: Architect for High Availability Now and Users Will Thank 

You Later.” Proceedings of the SAS Global Forum 2018, Cary, NC: SAS Institute Inc. 

Available at https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/1835-2018.pdf 

SAS Institute Inc. 2018. SAS® Viya® 3.4 Administration: SAS® Cloud Analytic Services. 

Cary, NC: SAS Institute Inc. Available 

https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=titlepage.htm&d

ocsetVersion=3.4  

SAS Institute Inc. 2019. SAS Note 63804. "A SAS® Message Broker cluster may not recover 

from a node failure." Available http://support.sas.com/kb/63/804.html 

SAS Institute Inc. 2019. SAS Note 63522. "The Primary SAS® Cloud Analytic Services 

Controller Stops When the Secondary SAS® Cloud Analytic Services Controller Stops." 

Available http://support.sas.com/kb/63/522.html  

ACKNOWLEDGMENTS 

I’d like to thank Phil Hopkins https://www.linkedin.com/in/philip-hopkins-b176a12/ for 

sharing some of his experience and research material. 

My thanks to many colleagues in SAS R&D who have shared valuable information, including 

key settings for use within this paper. Thank you all. 

RECOMMENDED READING 

• SAS Institute Inc. 2019. SAS Viya 3.4 for Linux: Deployment Guide. Cary, NC: SAS 

Institute Inc. Available https://support.sas.com/en/documentation/install-

center/viya/deployment-guides.html  

• SAS Institute Inc. 2018. SAS Viya 3.4 Administration: Orientation. Cary, NC: SAS 

Institute Inc. Available http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4   

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author at: 

Edoardo Riva  

100 SAS Campus Drive 

Cary, NC 27513  

SAS Institute Inc.  

+1 919 531 7293  

edoardo.riva@sas.com  

http://www.sas.com  

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 

registration.  

Other brand and product names are trademarks of their respective companies. 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2272-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2272-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1835-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1835-2018.pdf
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=titlepage.htm&docsetVersion=3.4
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=titlepage.htm&docsetVersion=3.4
http://support.sas.com/kb/63/804.html
http://support.sas.com/kb/63/522.html
https://www.linkedin.com/in/philip-hopkins-b176a12/
https://support.sas.com/en/documentation/install-center/viya/deployment-guides.html
https://support.sas.com/en/documentation/install-center/viya/deployment-guides.html
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4
mailto:edoardo.riva@sas.com
http://www.sas.com/

