ABSTRACT

Data scientists use a variety of tools, both commercial and open-source, to achieve key goals for their organization. For enterprise applications of analytics and artificial intelligence, it is crucial that teams can collaborate no matter which tools they are using. SAS® software provides a platform on which all users in the enterprise can create intelligence from data and operationalize the results easily. Data scientists and developers whose core programming competence is in languages such as Python and R can efficiently use SAS through a variety of APIs to increase productivity and improve time-to-value. This paper describes and demonstrates a variety of best-practice use cases to show how SAS software provides integration with open-source tools to support end-to-end analytical workflows.

INTRODUCTION

SAS has a long history of providing high-quality statistical, data mining, and machine learning software for various industries. SAS offers solutions to build credit scorecards, detect fraud, assess risk, or provide recommendations that automate and streamline decision-making processes. In recent years, many data scientists have used SAS software, Python, R, and other open-source or vendor-specific tools to mix and match various tasks of the analytical life cycle. To enable these combinations, SAS provides Python and R integration with multiple releases of SAS 9, and continues to extend these capabilities with SAS® Viya®, the cloud-enabled, in-memory, distributed analytics engine that makes the SAS Platform more scalable, fault-tolerant, and open. The word “open” signifies the fact that the power of SAS to build and deploy analytics can be accessed via many programming languages—not just SAS, but also Python, R, Lua, Java, or RESTful APIs. This integration enables analytical teams with varied backgrounds and experiences to come together and solve complex problems in new ways.

Integrating SAS and open-source technologies is often advantageous in two main scenarios:

- Programmatically accessing the SAS Platform using open-source software
- Bringing open-source models into the SAS Platform for side-by-side comparison

Each of these topics is discussed in detail with examples in the following sections.

SAS TO OPEN-SOURCE LANGUAGES AND INTERFACES

This section starts with an example of being able to access and execute SAS analytics programmatically from open-source languages. For consistency, the primary focus is on calling SAS from Python, a popular general-purpose scripting language, via APIs. SAS provides three foundational open-source packages for doing this, all available on GitHub: SASPy, SWAT,\(^1\) and ESPPy. The SASPy package interfaces with SAS 9.4, SWAT with SAS Viya, and ESPPy with SAS® Event Stream Processing. Three higher-level open-source packages are also available: Pipefitter, SASOptPy, and DLPy. All these packages are open-source, and contributions from the community are welcome. Figure 1 shows a visual representation of the packages with their dependencies.

\(^1\) There is also a SWAT package for R.
SASPy is a Python module that interfaces between Python 3.x or later and SAS 9.4 or later and between Python 3.x or later and all releases of SAS Viya. At a minimum, you can use SASPy to run existing SAS code, procedures, DATA steps, and so on from a Python method called submit. Figure 2 shows an example of using SASPy to run the PRINT procedure in SAS from Python.
Another benefit is the easy transfer of data from Python to SAS and vice versa. This can be very beneficial when you want to use elements of multiple languages to mix and match workflows.
Further, Python methods are available that act as wrappers for SAS code, making the SAS code approachable for someone with a Python programming background while maintaining the power and governance of SAS. A `teach_me_sas` method shows how the Python method creates the SAS code for those who are curious to learn.

A Jupyter notebook with many SASPy examples is available at GitHub: https://github.com/sassoftware/saspy-examples/blob/master/SAS_contrib/saspy_example_github.ipynb.

SWAT

SWAT is a Python module that interfaces directly into SAS® Cloud Analytic Services (CAS, a part of SAS Viya) for Python 2.7.x or 3.4 and later. SWAT is specifically designed to help Python programmers handle large volumes of data through the scalable architecture of SAS Viya. From SWAT, all CAS actions that you have licensed are available to you via Python methods. You can transfer data to and from CAS directly, so it is possible to mix and match analytic workloads. One of SWAT's major points of emphasis is to mimic the data manipulation syntax of the popular pandas module, which is enabled through CAS table objects that run CAS actions behind the scenes. For portability to other programming clients, you can retrieve the underlying actions that have been run. Figure 5 provides a simple example.
Create a CASTable object and perform pandas-style CAS actions.

```python
In [8]: df = s.CASTable('hmeq')
In [7]: type(df)
Out[7]: swv.cas.table.CASTable
In [8]: df.head()
```

You can retrieve the underlying CAS actions that were performed.

```python
In [9]: s.history(first=-1)
```

Figure 5. Example of Printing Table Contents Using SWAT

You can find many GitHub examples to help you get started using SWAT at https://github.com/sassoftware/sas-viya-programming.

ESPPy

ESPPy enables you to programmatically create, modify, and visualize SAS Event Stream Processing components for data transformation, model building, and model scoring via Python objects for Python 2.7.x or 3.4 and later. These objects include components for projects, continuous queries, windows, events, loggers, SAS® Micro Analytic Service modules, routers, and analytical algorithms. Figure 6 shows how a project can be loaded and visualized using the graphviz open-source package.

```python
In [8]: walk = esp.load_project('model_walking.xml')
```

Figure 6. Loading and Visualizing a Project Using ESPPy

Further, models can be trained outside of SAS Event Stream Processing and be used for real-time scoring as in the example at https://github.com/sassoftware/python-esppy/blob/master/examples/Iris_FitStat.ipynb.

In addition to the previously mentioned foundational packages (SASPy, SWAT, ESPPy), SAS provides three higher-level packages (Pipefitter, SASOptPy, and DLPy) that use the foundational packages to help with specific, commonly performed tasks.
Pipefitter is a high-level API that enables you to efficiently build SAS data transformations and machine learning pipelines with a minimal amount of coding for Python 2.7.x or 3.4 and later. It uses either SASPy for SAS 9.4 or SWAT for SAS Viya. Features include imputation, multiple machine learning techniques (including gradient boosting and neural networks), and hyperparameter optimization. Figure 7 shows an excerpt of how simple it is to create and score a decision tree model from the example at https://github.com/sassoftware/python-pipefitter/blob/master/examples/regressionExample.ipynb.

Figure 7. Modeling and Scoring a Decision Tree Using Pipefitter

SASOptPy

SASOptPy provides a Python-friendly way of interacting with SAS/OR® and SAS® Optimization on SAS Viya for Python 3.5 and later; it is specifically designed for linear, mixed integer linear, and nonlinear optimization problems. Like Pipefitter, SASOptPy is built on top of SASPy to run on SAS 9.4 or on top of SWAT to run on SAS Viya. Figure 8 shows an example of a simple linear programming problem that uses SASOptPy.
You can find many SASOptPy examples in the GitHub repository at https://github.com/sassoftware/sasoptpy/tree/master/examples.

DLPy

DLPy enables programmers of Python 3.4 and later to easily apply SAS Viya deep learning algorithms to image, text, audio, and time series data by using SAS® Visual Data Mining and Machine Learning. DLPy provides high-level APIs for calling deep, convolutional, and recurrent neural networks, with predefined neural network architectures such as VGG-16, ResNet, DenseNet, Darknet, Inception, and YOLO. Figure 9 shows an example of scoring and visualizing a YOLO model that is built using DLPy.
Score the test data, and display object predictions

Now use `predict()` to score the images in the test data `predict_tbl`, and enable use of GPU during processing.

```python
In [19]: yolo_model.predict(dets=predict_tbl, gpu = 0, devices=[0])
```

NOTE: Due to data distribution, `minBatchSize` has been limited to 1.
NOTE: Only 1 out of 2 available GPU devices are used.

```python
Out[19]:
```

<table>
<thead>
<tr>
<th>ScoreInfo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OutputCasTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Elapsed: 2.56s - user 1.55s - sys 0.89s - mem 2.06G +3MB

This output shows an output CAS table `Valid_Res_B3est1`, which contains the scored image data that was created.

Now, use `display_object_detection()` with `valid_res_tbl` to create a three-column matrix of scored images, which shows object detection bounding boxes with label and probability score.

```python
In [20]: display_object_detections(conn=conn, coord_type='yolo', max_objects=5, table=yolo_model.valid_res_tbl, n_plot=10, n_col=3)
```

Figure 9. Example of Scoring and Visualizing a YOLO Model by Using DLPy

Another feature in DLPy enables you to import and export deep learning models in ONNX format for portability, as shown in Figure 10.
Figure 10. Loading a YOLO Model in ONNX format by Using DLPy

You can find examples for these features in the GitHub repository at https://github.com/sassoftware/python-dlpyp/tree/master/examples.

SAS KERNEL FOR JUPYTER NOTEBOOK

To enable you to access SAS analytics from open-source interfaces, SAS also supports a popular notebook environment for programming: the SAS kernel for Jupyter Notebook. It requires Python 3.x, Jupyter 4 or later, and SAS 9.4 or SAS Viya. Behind Jupyter Notebook is a Python session that submits code to SAS and receives responses through a socket interface. A notebook-style approach to SAS programming enables you to interactively submit code and visualize responses as seen in Figure 11.
To improve usability, SAS extensions and Jupyter magic commands are also available in the GitHub repository at https://github.com/sassoftware/sas_kernel.

OPEN SOURCE TO SAS LANGUAGE AND INTERFACES

Next, let’s see how SAS enables bringing models from open-source software into SAS 9 or SAS Viya.

In this case, models are trained and scored in the open-source software. A scored data set or the PMML (Predictive Model Markup Language) score code produced by the open-source software is passed to the SAS platform to compute model assessment and perform model comparison. The scored data set contains model predictions for an interval target or the posterior probabilities for a nominal target. When PMML score code instead of a scored data set is passed, SAS converts this score code into DATA step scoring logic and supports model deployment. This deployment allows supported models to be published to databases such as Hadoop, Teradata and so on or to be registered to a repository for future model management by products such as SAS® Model Manager.
The interfaces in this category can be classified as based either on programming or on a GUI (graphical user interface):

- **Programming interfaces on SAS 9:**
 - SAS/IML®
 - Base SAS® Java Object

- **GUI-based:**
 - SAS® Enterprise Miner™ (Open Source Integration node for R, SAS Code node for Python) on SAS 9
 - Model Studio in SAS Visual Data Mining and Machine Learning (Open Source Code node) on SAS Viya

PROGRAMMING: SAS/IML

SAS/IML software provides a flexible matrix programming language that enables statistical programmers to perform data analysis, simulation, and matrix computations. It also includes the ability to call functions in the R language from within the IML procedure in SAS/IML 9.22 and later. To use this ability, R software must be installed on the SAS Workspace Server and the SAS system must have been configured with the RLANG option.

The SAS/IML functions ImportDataSetFromR, ExportDataSetToR, ImportMatrixFromR, ExportMatrixToR make it easy to transfer data between SAS and R data structures. You specify the R code that needs to be executed between the SUBMIT / R and ENDSUBMIT statements within PROC IML. To get started on this methodology, see the section "Calling Functions in the R Language" in SAS/IML 15.1: User’s Guide. The following statements provide an example that uses PROC IML to perform linear regression in R software:

```plaintext
/* Use PROC IML to build a regression model in R software */
proc iml;
    call ExportDataSetToR("sashelp.class", "class");
    submit / R;
        Model <- lm(Weight ~ Height, data=class, na.action="na.exclude")
        ParamEst <- coef(Model)
   endsubmit;
    call ImportDataSetFromR("work.ParamEst", "ParamEst");
quit;

/* Print intercept and height parameter estimates */
proc print data=work.ParamEst;
run;
```

PROGRAMMING: BASE SAS JAVA OBJECT

The Java Object functionality in Base SAS (9.2 and later) provides a mechanism that is like the Java Native Interface (JNI) for instantiating Java classes and accessing fields and methods on the resultant objects. Using the Java Object, you can create hybrid applications that bring together the capabilities of both SAS and Java.

With the Base SAS Java Object, the communication between SAS and the open-source software is through a pair of Java classes available in the GitHub repository at https://github.com/sassoftware/enlighten-integration/tree/master/SAS_Base_OpenSrcIntegration in the src/dev folder. After you compile the provided Java classes and set the Java CLASSPATH accordingly in your Base SAS installation, you can use the SAS DATA step code to instantiate the Java class to execute the Python or R program.
The following SAS DATA step instantiates the Java Object and executes a method:

```sas
*** PYTHON and WORK_DIR LOCATIONS (-- USER UPDATE NEEDED --);
%let PYTHON_EXEC_COMMAND=C:\Anaconda\python.exe;
%let WORK_DIR=C:\SAS_Base_OpenSrcIntegration;

/* Executing Python code */
data _null_
  *** Python program takes working directory as first argument;
  python_call = "&WORK_DIR\.digitsdata_svm.py &WORK_DIR";
  declare javaobj j("dev.SASJavaExec", "&PYTHON_EXEC_COMMAND", python_call);
  j.callStaticVoidMethod("main");
  j.delete();
run;
```

This technique can be used to invoke any external program, whether Python, R, MATLAB, or others. However, that type of flexibility can also bring security concerns depending on which users and how many of them can access the SAS server machine.

The step-by-step details about implementing this methodology can be found in Hall, Myneni, and Zhang (2015), which includes Python and R code samples.

GUI: SAS ENTERPRISE MINER

The Open Source Integration node was introduced in SAS Enterprise Miner 13.1 to enable you to write code to train models in the R language and when possible support scoring of these supervised or unsupervised models alongside SAS models. The node’s **Training Mode** and the **Output Mode** properties control how modeling results and generated columns from R software are returned to and consumed by SAS Enterprise Miner. With regard to configuration and setup, R software must be installed on the same machine where SAS Enterprise Miner is installed, and all necessary packages must be pre-installed before they are used in the node.

In the Open Source Integration node, the **Training Mode** property specifies whether a supervised or unsupervised model is being built, and the **Output Mode** property specifies whether the R code returns output according to the **PMML** option (which returns PMML score code), **Merge** option (which returns model predictions), or the **None** option (which returns no output). The PMML output mode enables certain standard R packages (such as `lm`, `multinom(nnet)`, `glm(stats)`, `rpart`, `kmeans(stats)`, and `nnet`) to generate PMML score code that can be turned into SAS score code. When this is possible, these R models can also be deployed to databases (in order to score new data) or registered to SAS Model Manager (for further monitoring and management).

The Open Source Integration node relies on the SAS/IML integration with R under the covers; that is, it requires that the SAS system was configured with the RLANG option although SAS/IML does not have to be licensed separately. Figure 12 shows an example process flow diagram from **SAS Enterprise Miner 15.1: Reference Help** that illustrates how to use R software to model and score a logistic regression for a binary target.
The following logistic regression R code (which you specify in the Open Source Integration node) is relatively straightforward when you use data and variable handles that are provided by the node.

```r
&EMR_MODEL <- glm(&EMR_CLASS_TARGET ~ &EMR_CLASS_INPUT + &EMR_NUM_INPUT,
                  family= binomial(), data= &EMR_IMPORT_DATA)
```

For detailed steps on re-creating this example, see *SAS Enterprise Miner 15.1: Reference Help*.

Although Python is not supported in the Open Source Integration node, it can be executed using the SAS Code node and the Java Object functionality in Base SAS. The following SAS Communities tip shows how to execute a Python script in SAS Enterprise Miner: https://communities.sas.com/t5/SAS-Communities-Library/Tip-How-to-execute-a-Python-script-in-SAS-Enterprise-Miner/ta-p/223761

GUI: MODEL STUDIO IN SAS VISUAL DATA MINING AND MACHINE LEARNING

Just as SAS Enterprise Miner provides the Open Source Integration node, the Model Studio application in SAS Visual Data Mining and Machine Learning 8.3 and later provides the Open Source Code node, which can execute Python or R code.

The Open Source Code node (located in the Miscellaneous group) can train a Python or R model that can subsequently be assessed and compared with other SAS, Python, or R models in the Model Studio pipeline. A Model Studio pipeline enables you to perform a series of tasks (such as data preprocessing, feature engineering, predictive modeling, data postprocessing, and model ensembles) followed by comparison of these models in a directed process flow. These tasks, called “nodes” in Model Studio, provide a large choice of statistical, data mining, machine learning, model interpretation, and deployment techniques for analyzing your data. Because SAS Visual Data Mining and Machine Learning runs in SAS Viya, it can handle large amounts of data using in-memory, distributed computing techniques.

To use the Open Source Code node, Python or R must be installed on the same machine as the compute server microservice. On Linux, the executable python or Rscript must be available in the system path. If you have multiple versions of Python or R on your compute server, you can set a preferred version by modifying the PATH environment variable. You also need to install any necessary Python or R packages with administrator or sudo privileges so that they are accessible to all users.

Figure 13 shows an example Model Studio pipeline that trains and compares various forest models from SAS, Python, and R software. For more information about this pipeline, see the SAS Communities Library: https://communities.sas.com/t5/SAS-Communities-Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463. The nodes in
Figure 13 depict the following, from left to right (the last three of these nodes are Open Source Code nodes):

- Forest node in Model Studio
- randomForest package in R
- scikit-learn RandomForestClassifier in Python
- scikit-learn RandomForestClassifier in Python, where categorical inputs are one-hot encoded

Figure 13. Model Studio Pipeline That Compares Multiple Models by Using the Forest Node and Open Source Code Nodes

Although not shown in this example, you can add other preprocessing nodes such as Feature Extraction, Filtering, Imputation, Transformations, Variable Selection, and so on as needed after the Data node and before any Open Source Code nodes in this pipeline. Note that any output file from Python or R code that is prefixed with rpt_ and saved as a comma-separated value file (with a .csv file extension), as a plain text file (with a .txt file extension), or as an image file (with .png, .jpeg, or .gif file extensions) can be viewed in the Results view of the Open Source Code node after execution.

For more information about the inner workings of the Open Source Code node, see the node documentation at https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlref&docsetTarget=n0qn2o41lv4exn17ingd558jcs0.htm&locale=en and examples in the GitHub repository at https://github.com/sassoftware/sas-viya-dmml-pipelines/tree/master/open_source_code_node. In addition, you can view a brief video on this topic at http://video.na.sas.com/assets/47183.
CONCLUSION

Providing integration with open-source tools such as Python and R is a major focus area for SAS. Whether it is bringing SAS analytics to open source or open-source capabilities into SAS software, SAS recognizes that enabling and enhancing integration points between various software systems improves approachability, collaboration, and time-to-value.

REFERENCES

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Jesse Luebbert
jesse.luebbert@sas.com

Radhikha Myneni
radhikha.myneni@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.