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ABSTRACT 

A wide variety of clustering algorithms are available, and there are numerous possibilities 

for evaluating clustering solutions against a gold standard. The choice of a suitable 

clustering algorithm and of a suitable measure for the evaluation depends on the data type; 

whether separate class label information exists (supervised clustering); and on the 

particular distribution of the observations, including characteristics such as the number of 

clusters, separability of the clusters, and the shape, size, and density of the clusters. This 

paper provides a survey of some of the most widely used clustering evaluation criteria. In 

addition, the paper describes recently developed criteria that are applicable for mixed 

interval-categorical data and for non-Euclidean distance metrics. Notable examples of the 

methods covered include residual sum-of-squares, purity, the silhouette measure, the 

Calinski-Harabasz measure, class-based precision and recall, the normalized mutual 

information, variation of information, and graph-sensitive indices. 

INTRODUCTION 

Clustering is the task of segmenting a data set into groups. The goal is to ensure that 

similar data are clustered together, while dissimilar data are in different clusters. Over the 

years, many methods for clustering have been proposed. 

With many clustering methods generally available, a natural question is “How do I compare 

two different clustering results?” Many measures exist that compare clustering results, but 

these measures have different use cases, required assumptions, benefits, and downsides. 

This paper gives you a broad overview of many popular clustering methods as well as many 

popular cluster evaluation measures. This paper presents the clustering methods and 

evaluation measures as a survey with citations so that you can further investigate the 

details if you desire. In addition, this paper provides a synthesis and offers some best-

practice advice for cluster evaluation. 

This paper has three main sections: Clustering Methods, Clustering Measures, and 

Clustering Evaluation. The Clustering Methods section describes popular clustering methods 

and the section contains background material for understanding how different cluster 

evaluation metrics apply to different methods. The Clustering Measures section describes 

many popular cluster evaluation metrics, including when these metrics are applicable. The 

Clustering Evaluation section synthesizes the information contained in the Clustering 

Methods and Clustering Metrics sections to provide general best practice advice. 

CLUSTERING METHODS 

This section contains an overview of many popular clustering approaches. This section 

serves as high-level background information, introducing many algorithms for clustering 

that you might encounter while learning about cluster analysis. 

HIERARCHICAL CLUSTERING 

Hierarchical clustering is a broad clustering method with multiple clustering strategies. 

Alternatively, you can think of hierarchical clustering as a class of clustering methods that 

all share a similar approach. For hierarchical clustering there are two main approaches: 

agglomerative and divisive. 
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Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering is a bottom-up approach in which each datum is 

initially individually grouped. Two groups are merged at a time in a recursive manner. The 

groups are merged until a stopping condition is met. In SAS® you can use agglomerative 

hierarchical clustering by using the CLUSTER procedure. 

The process for merging two groups in agglomerative hierarchical clustering involves 

calculating the distance between the groups, and then choosing the two closest groups to 

merge. Table 1 contains some examples of how the distance between clusters is calculated. 

For a complete list of supported methods, you can see the PROC CLUSTER documentation. 

Names Description 

Average Linkage Average distance between all pairs of data 

between the two clusters. 

Centroid Linkage Distance between the centroids of the 

clusters. 

Complete Linkage Maximum distance between all pairs of data 

between the two clusters. 

Single Linkage Minimum distance between all pairs of data 

between the two clusters. 

Table 1. Examples of Hierarchical Clustering Linkages and Descriptions 

A common practice when using agglomerative hierarchical clustering is to visualize the 

clustering results as a dendrogram. Figure 1 is an example of a dendrogram that is 

generated by the CLUSTER procedure. 

 

Figure 1. Example Dendrogram Output from PROC CLUSTER 

To assign a new data point to an existing cluster, you can compute the distance from the 

new data to each existing cluster. You can compute this using the distance method 

originally used during cluster generation. 
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Divisive Hierarchical Clustering 

Divisive hierarchical clustering is a top-down approach in which the entire data set is initially 

grouped. The data set is then split into subsets, which are each further split. This process 

occurs recursively until a stopping condition is met. 

To assign a new data point to an existing cluster in divisive hierarchical clustering, you 

proceed through the divisive steps that were taken in the original clustering process. 

Assigning a new data point is similar to following a set of rules, though in this case the rules 

are the process by which the data was divided at each step of the clustering process. 

Two well-known divisive hierarchical clustering methods are Bisecting K-means (Karypis and 

Kumar and Steinbach 2000) and Principal Direction Divisive Partitioning (Boley 1998). You 

can achieve both methods by using existing SAS procedures and the DATA step. Such an 

analysis, however, is outside of the scope of this paper. 

CENTROID-BASED CLUSTERING 

Centroid-based clustering is most well-known through the k-means algorithm (Forgy 1965 

and MacQueen 1967). For centroid-based methods, the defining characteristic is that each 

cluster is defined by the “centroid”, the average of all the data points in the cluster. In SAS 

you can use centroid-based clustering by using the FASTCLUS procedure, the HPCLUS 

procedure, or the KCLUS procedure in SAS® Viya®. 

To assign a new data point to an existing cluster, you first compute the distance between 

the data point and each centroid. The centroid that has the minimum distance to the new 

data point indicates which cluster the data point belongs. 

DISTRIBUTION-BASED CLUSTERING 

Distribution-based clustering is an approach where the data are assumed to have come 

from multiple statistical distributions. Distribution-based clustering supports soft-clustering, 

where a data point has partial membership in multiple clusters, or a hard clustering, where 

a data point is assigned to only one cluster. In distribution-based clustering, each cluster 

represents a distribution. In hard clustering, the data is assigned to the cluster whose 

distribution is most likely the originator of the data. In SAS you can use distribution-based 

clustering by using the GMM procedure in SAS Viya. Also, the mbcFit and mbcScore actions 

in SAS Viya perform model based clustering using mixtures of multivariate Gaussians. 

To assign a new data point to an existing cluster, you calculate how likely it is for the new 

data point to belong to each distribution. This can give either a soft clustering for the new 

data point, or the data point can be assigned to the cluster that has the most likely 

distribution from which the data point originated. 

You can approach distribution-based clustering in another way using finite mixture models. 

In SAS you can use finite mixture models by using the FMM procedure. You can find more 

information about how finite mixture models relate to clustering in the FMM procedure 

documentation. 

RULE-BASED METHODS 

Rule-based clustering methods encompass a rule or set of rules that lead to a clustering of 

the data. A simple example is grouping data by geographic location such as city, county, or 

state. Often, rules of this form come from specific business use cases, as opposed to the 

optimization of an unsupervised learning algorithm. 

You can generate more complicated rule-based clusters by using a decision tree with a 

target. The leaf nodes of the decision tree are then used as clusters of the data. When using 
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a decision tree to derive clusters, you should use shallow trees to avoid generating too 

many clusters. 

A shallow decision tree with a target can give a powerful rule-based clustering. However, 

the optimization of this cluster is then based on the target as opposed to an unsupervised 

learning problem. In SAS you can generate decision trees by using the ARBOR procedure, 

the HPSPLIT procedure, or the TREESPLIT procedure in SAS Viya. 

To assign a new data point to an existing cluster, you apply the rules in the rule-based 

model. 

SPECTRAL-BASED METHODS 

Spectral methods (von Luxburg 2007) rely on the spectrum (eigenvalues and eigenvectors) 

of a matrix. This matrix is often a similarity matrix, in which the entries are the similarities 

between the observations. The reciprocal of the values of a distance matrix is one example 

of a similarity matrix. 

Once the set (or a partial set) of eigenvalues and eigenvectors is obtained, more traditional 

methods such as k-means are applied. Spectral clustering enjoys popularity because it 

blends density-based approaches by using the similarity matrix to centroid-based 

approaches. 

A major difficulty with spectral-based methods is that it is not feasible to assign a new data 

point to a cluster. To do so, you need to compute the similarity of the new data point to the 

training data, and then do a projection into space of eigenvectors that was created during 

the clustering process. 

Overall, while spectral-based methods are popular for data exploration purposes, these 

methods are not suitable for assigning new data points. 

In SAS you can achieve some spectral-based clustering methods by using a mix of the DATA 

step, the PRINCOMP procedure, and one of the centroid-based clustering procedures in the 

Centroid-Based Clustering section. Such an analysis, however, is outside of the scope of this 

paper. 

CLUSTERING MEASURES 

This section contains an overview of many methods for cluster evaluation. This section 

serves as high-level background information, introducing you to many popular evaluation 

techniques that you might encounter in the literature for cluster analysis. 

RESIDUAL SUM-OF-SQUARES 

Also known as the sum of squared errors (SSE), the residual sum-of-squares measure is 

often applied to regression problems. In clustering contexts this refers to the sum of 

squared differences between each data point and the centroid of the cluster where the data 

point belongs. This can also be called the total within sum of squared errors. 

SSE is calculated with the following equation: 

𝑆𝑆𝐸 =  ∑ ∑ ||𝑥 − 𝑐𝑗||2

𝑥∈𝐶𝑗

𝑘

𝑗=1

 

Equation 1 Sum of Squared Errors (SSE) 

The SSE is a useful measure because for algorithms such as k-means, it is the same 

measure by which the clustering is optimized. Computing the SSE is also quick, as there are 

a total number of differences equal to the number of data points. 
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SSE as a cluster evaluation measure only applies to methods in which the cluster can be 

represented by the centroid. Using this measure with clusters derived from other methods 

can offer misleading insights into the efficacy of the clustering. Another often cited downside 

to SSE is that as the number of clusters increase, the SSE decreases. This means that SSE 

is not suitable for comparing clustering results with different numbers of clusters. 

SILHOUETTE 

The silhouette method provides a measure of how similar the data is to the assigned cluster 

as compared to other clusters. This is computed by calculating the silhouette value for each 

data point, and then averaging the result across the entire data set. 

To compute the silhouette value for a single data point you need to compute the average 

distance between a data point and all clusters. The average distance between a data point 

and all other data points within a cluster is calculated with the following equation: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
1

𝑛𝑐

∑ ||𝑥 − 𝑑||

𝑥∈𝐶𝑗

 

The silhouette value for a single data point is calculated with the following equation: 

𝑠 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑂𝑢𝑡 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑛

max (𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑂𝑢𝑡, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑛)
 

In this equation, AverageOut is the minimum average distance between the data point and 

data within other clusters, and AverageIn is the average distance between the data point 

and other data within the same cluster. The silhouette measure is the average of all the 

silhouette values computed for each data point. 

The silhouette measure is restricted to the range of [-1, 1], with -1 meaning that no data 

are well suited to their assigned clusters, and 1 meaning that all data are well suited to their 

assigned clusters. 

The silhouette measure is useful because it considers distance to other clusters in addition 

to the distance within the cluster. Because of this comparison, the silhouette measure is 

suitable for comparing clustering results that contain different numbers of clusters. If there 

are too many or too few clusters, the silhouette measure will be closer to zero than if an 

appropriate number of clusters is chosen. 

Like SSE, the silhouette measure applies best to centroid-based clustering methods. This is 

because rule-based methods or hierarchical clustering methods don’t seek to minimize 

distances in the same way that centroid-based cluster methods do. Because of this, 

methods that are not centroid-based are not appropriately described by the silhouette 

measure. An additional area of concern is that the silhouette measure takes much longer to 

compute than SSE. The total of differences is equal to the square of the number of total 

data points. 

CALINSKI-HARABASZ INDEX 

The Calinski-Harabasz index is similar to the F Statistic used in ANOVA. The F Statistic in the 

F Test is calculated with the following equation: 

𝐹 =  
𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛/(𝑘 − 1)

𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛/(𝑁 − 𝑘)
 

In the case of centroid-based clustering the sum of squares within is the same as the sum 

of squared errors from Equation 1. The sum of squares between clusters is calculated with 

the following equation: 
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𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑇𝑆𝑆 −  𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 

TSS, the total sum of squares, is the total distance between each data point and the mean 

of the data: 

𝑇𝑆𝑆 =  ∑ ||𝑥𝑖 − 𝑥||

𝑛

𝑖=1

 

PURITY 

To evaluate the purity of a clustering, you need a categorical target that was not used in the 

clustering process. This is called an external evaluation measure, as the categorical target is 

a variable that is external to the clustering process. 

Purity, and the other following measures are measures of how closely two cluster results are 

to each other. When you use a categorical target to calculate these measures, you assume 

that there is a benchmark clustering in which each category of the target is in its own 

cluster. 

The purity of a cluster is determined by assigning the cluster the category that is most 

frequent in the cluster, and then computing the accuracy of this assignment. The purity is 

calculated with the following equation: 

𝑝𝑢𝑟𝑖𝑡𝑦 =
1

𝑁
∑ 𝑚𝑎𝑥𝑡∈𝑇 (𝑐𝑘 ∩ 𝑡)

𝑘

 

In this equation 𝑡 ∈ 𝑇 indicates a target category, t, in the set of all target categories, T. 

External evaluation measures are useful when comparing different types of clustering 

methods that might not both be well suited to distance-based clustering evaluation 

measures. 

The purity measure doesn’t penalize having too many clusters and is also poorly suited for 

imbalanced target category size. 

CLASS-BASED PRECISION AND RECALL 

Class-based precision and recall are, like purity, a form of external evaluation using a 

categorical target. When you use a categorical target to calculate this measure, you assume 

that there is a benchmark clustering in which each category of the target is in its own 

cluster. Similar to the purity measure, precision and recall require assigning each cluster a 

category of the class target that is most frequent in the cluster. 

Precision and recall are often seen in binary classification problems. In the case of 

clustering, class-based precision and recall work on an underlying assumption that there is a 

benchmark classification. The clustering obtained is the compared to the benchmark. 

The equation for precision is based on the number of True Positives (TP) and False Positives 

(FP): 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The equation for recall is based on the number of True Positives (TP) and False Negatives 

(FN): 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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In the clustering context the number of true positives is the number of the same category 

that are clustered together. The number of false positives is the number of the different 

categories that are clustered together. The number of false negatives is the number of the 

same category that are clustered in different clusters. 

NORMALIZED MUTUAL INFORMATION 

Mutual information in probability theory describes the mutual dependence of two random 

variables. The mutual information is the amount of information that you can obtain for one 

random variable by observing the other random variable. 

Mutual information relies on an external categorical target. When you use a categorical 

target to calculate this measure, you assume that there is a benchmark clustering in which 

each category of the target is in its own cluster. 

For clustering evaluation, normalized mutual information also requires an external 

categorical target. The mutual information of a clustering is calculated with the following 

equation: 

𝑀𝐼 = ∑ ∑ 𝑃(𝑐𝑗 ∩ 𝑡)𝑙𝑜𝑔
𝑃(𝑐𝑗 ∩ 𝑡)

𝑃(𝑐𝑗)𝑃(𝑡)
𝑡∈𝑇

𝑘

𝑗=1

 

In this equation 𝑡 ∈ 𝑇 indicates a target category, t, in the set of all target categories, T. The 

probability 𝑃(𝑐𝑗 ∩ 𝑡) is number of category t in cluster j, divided by the total number of data 

points. The probability 𝑃(𝑐𝑗) is the total number of data points in cluster j divided by the 

total number of data points. The probability 𝑃(𝑡) is the total number of category t divided by 

the total number of data points. 

The minimum mutual information is zero if the clustering is random with respect to the 

categorical target. Mutual information suffers from the same problem as purity in that the 

mutual information is maximized when each data point is in its own cluster. This is the 

motivation behind normalized mutual information. The normalization penalizes generating 

higher numbers of clusters. 

The mutual information is normalized by using the entropy of the categorical targets and 

the entropy of the clusters. The two types of entropy are calculated with the following 

equations: 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃(𝑐𝑗)log (𝑃(𝑐𝑗))

𝑘

𝑗=1

 

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃(𝑡)log (𝑃(𝑡))

𝑡∈𝑇

 

With the entropy of the clusters and the entropy of the categorical target the normalized 

mutual information is calculated with the following equation: 

𝑁𝑀𝐼 =  
𝑀𝐼

(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑡𝑟𝑜𝑝𝑦)/2
 

The normalized mutual information is always between zero and one. The value of zero has 

the same meaning as mutual information, that the clustering is completely random with 

respect to the categorical target. Because the normalization is based on cluster entropy, the 

normalized mutual information allows you to compare clustering results with different 

numbers of clusters. Similar to precision and recall, however, the normalized mutual 

information still favors clustering results that have one cluster per category of the target. 
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VARIATION OF INFORMATION 

The variation of information is very similar to the mutual information, and it requires the 

same assumptions and existence of a categorical target. 

The equation for variation of information is calculated with the following equation: 

𝑉𝐼 =  − ∑ ∑ 𝑃(

𝑡∈𝑇

𝑘

𝑗=1

𝑐𝑗 ∩ 𝑡)[𝑙𝑜𝑔
𝑃(𝑐𝑗 ∩ 𝑡)

𝑃(𝑐𝑗)
+ 𝑙𝑜𝑔

𝑃(𝑐𝑗 ∩ 𝑡)

𝑃(𝑡)
] 

In the case of variation of information, a lower number is better, as a lower value indicates 

a smaller distance between two clustering results. The benefit of the variation of information 

is that this measure obeys the triangle inequality, which has theoretical benefits.  

GRAPH-SENSITIVE INDICES 

Graph-sensitive indices (Hussain and Meilla 2014) are two newer approaches to comparing 

two clustering results. As with other external evaluation measures, you must use a 

categorical target as a benchmark to which you can compare your clustering results. 

The two graph-sensitive indices are the random walk index (RWI) and the variation of 

information with neighbors (VIN). Both methods rely on first computing an adjacency matrix 

for the clustering. An adjacency matrix is a matrix of size n-by-n, in which the ij-th element 

is 1 if the data point i and data point j are clustered together. 

The random walk index defines a random walk through the indices of the adjacency matrix 

and looks at the probability that the next index in the walk will have a specific cluster 

assignment and a specific target category, given the previous index’s cluster assignment. 

The conditional probabilities that come from this random walk are similar to the variation of 

information, except that neighboring indices in the adjacency matrix also add to the 

information. 

The variation of information with neighbors index also uses information about the cluster 

assignment of neighbors of a point. Instead of doing this by a random walk, the variation of 

information with neighbors measures the amount of information the cluster assignment of a 

neighborhood of points in the clustering gives about the target categories of the points. 

For a full detail of how to calculate these graph-sensitive indices, please see the paper 

(Hussain and Meilla 2014). 

The goal behind these two methods for cluster evaluation is to extend the notion of 

variation of information to include more information about the clusters. You can think of 

these as a more complete picture provided by the variation of information measure. 

CLUSTERING EVALUATION 

Table 2 summarizes the background given in the section Clustering Measures for quick 

viewing. This section contains some helpful best-practices for you to consider while 

performing clustering analysis. 

Evaluation 

Measure 

Compare Across 

Numbers of 

Clusters 

Suitable for 

Comparing Across 

Clustering 

Methods 

Requires Target 

Information 

Residual Sum of 

Squares 

No No No 
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Silhouette Measure Yes No No 

Calinski-Harabasz Yes No No 

Purity No Yes Yes 

Precision and Recall No Yes Yes 

Normalized Mutual 

Information 

Yes Yes Yes 

Variation of 

Information 

Yes Yes Yes 

Graph-Sensitive 

Indices 

Yes Yes Yes 

Table 2. Summary of Evaluation Measures 

CLUSTER VISUALIZATION 

One method you can use to evaluate clusters is visualizing the clustering. Often the data is 

multivariate, so a simple plot of all the variables is impossible. While you can look at a panel 

of variable-by-variable plots, it is likely unhelpful, especially when there are many variables. 

Instead, you might find it useful to consider one of the following methods for cluster 

visualization. 

The CANDISC Procedure 

The CANDISC procedure computes the canonical variables given a target class and creates 

output that you can plot using the SGPLOT procedure. If you have a data set named Cluster 

with variables X1, X2, X3, X4, and a cluster label _CLUSTER_ID_, then an example of using 

PROC CANDISC is shown in the following code: 

proc candisc data=Cluster anova out=can; 

  class _CLUSTER_ID_;  

  var X1 X2 X3 X4; 

  title2 ‘Canonical Discriminant Analysis of Iris Clusters’; 

run; 

 

proc sgplot data=can; 

   scatter y=Can2 x=Can1 / group=_CLUSTER_ID_; 

   title3 ‘Plot of Canonical Variables Identified by Cluster’; 

run; 

 

You can see example of the output from this example in Figure 2. 
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Figure 2. Example SGPLOT of Canonical Discriminant Analysis 

The TSNE Procedure 

The TSNE procedure in SAS Viya implements the t-distributed stochastic neighbor 

embedding (t-SNE) algorithm (Maaten and Hinton 2008). Unlike the canonical discriminant 

analysis, t-SNE computes an unsupervised embedding of the data into two or three 

dimensions. After performing the embedding, you can use the SGPLOT procedure with the 

cluster identifiers in a similar way to canonical discriminants. 

One benefit for using t-SNE over canonical discriminants is that you can use the same 

embedding to compare multiple clustering results. By visualizing multiple clustering results 

in the same embedding, you gain insight that is not available through canonical discriminant 

analysis. 

An example for running PROC TSNE is shown in the following code: 

proc tsne data=mycas.cluster; 

  input X1 X2 X3 X4; 

  output out=sascas1.tsne_out copyvars=(_CLUSTER_ID_); 

run; 

 

 

 

 

proc sgplot data=sascas1.tsne_out; 
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   scatter y=_DIM_2_ x=_DIM_1_ / group=_CLUSTER_ID_; 

   title1 ‘Scatter plot of iris embedding’; 

run; 

 

You can see example output from this example code in Figure 3. 

 

Figure 3 Example SGPLOT of the TSNE Procedure Output 

For more information about the how the t-SNE algorithm works, please see the TSNE 

procedure documentation. 

SELECTING THE APPROPRIATE CLUSTERING METHOD AND MEASURE 

Before performing your cluster analysis, it is very important to consider your goal of 

clustering. Two broad use cases for clustering are for data exploration and for use in a 

predictive modeling flow, in which you want to develop a predictive model for each cluster. 

If you have other uses cases of clustering, you might still find the following tips helpful. 

Clustering for Data Exploration 

When using clustering as a data exploration tool, you might want to consider using multiple 

types of clustering, multiple numbers of clusters, multiple evaluation metrics, and cluster 

visualization. The methods in the Clustering Methods section all have different objectives 

that they optimize. By using multiple clustering methods, you explore your data in different 

ways. 
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For data exploration with centroid-based clustering methods, the Calinski-Harabasz measure 

is very useful as it allows you to explore different numbers of clusters, while still being quick 

to compute. The silhouette measure, on the other hand requires more computations, which 

can be prohibitive depending on the amount of data which you are trying to cluster. 

While purity is not suitable as a measure to compare across different numbers of clusters, it 

is useful if you want to understand how your clustering interacts with categorical data that 

you might have. If you have multiple categorical variables, you should consider exploring 

the purity of the clustering for each categorical variable. 

Clustering in a Predictive Modeling Flow 

When clustering for a predictive modeling flow, the goal is to provide good clusters such 

that you can build accurate predictive models on the data within the clusters. When this is 

the case, you should use supervised learning approaches in addition to cluster evaluation 

measures. 

In predictive modeling scenarios, the use of a holdout test set is important to ensure that 

you have not over-trained your models. In this case, you should generate your clusters 

without using your holdout test set. If the clusters are generated using the test set, then 

how your models are built on top of those clusters is biased. 

In this scenario the entire process flow of feature engineering, clustering, and predictive 

modeling is compared to other process flows. Clustering is but one step of the process, and 

to evaluate it in a stand-alone way can lead you to optimize a local goal (for example, best 

clusters according to some measure), without optimizing the overall goal (for example, best 

predictive model flow according to a different measure). 

For predictive modeling scenarios, you should choose the clustering method whose 

assumptions best fit the data or predictive models that you are using. For example, a 

shallow decision tree built with a continuous target will first generate a clustering based on 

a few rules, which segment the data based on ranges of the target. Then additional models, 

such as linear regression might produce different regressions for each of the clusters. In this 

way, even if the entire problem was not well-fit by a linear regression, it is possible that the 

individual clusters are better described by the smaller cluster-wise regressions. 

CONCLUSION 

This paper contains an overview of many popular clustering methods and how you can 

access these methods in SAS. The paper also contains a survey of commonly used cluster 

evaluation measures that you might encounter in the cluster analysis literature. 

When clustering data, you should always keep your end goal in mind. Doing so will help you 

direct your focus on appropriate algorithmic and evaluation choices. Visualizations of your 

data and clusters can also help you determine the quality of your clustering results. 
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