
1

Paper SAS3322-2019

Multi-tenancy in SAS® Viya®: Considerations and

Implementation

Eric Davis, SAS Institute Inc.

ABSTRACT

This paper introduces SAS® Viya® 3.4 multi-tenancy and considerations for its deployment.

It delves into the steps required to deploy and configure multi-tenancy successfully. It

highlights the reasons to use multi-tenancy, changes to make during deployment, how to

onboard tenants, and pitfalls to avoid during the configuration.

INTRODUCTION

A multi-tenant deployment of SAS Viya allows for a single deployment to serve multiple

customers. These customers can share some physical resources while remaining logically

separated. A multi-tenant deployment allows for these distinct groups to share IT resources

in a secure and cost-effective manner.

Multi-tenancy can add flexibility and depth to a SAS Viya deployment, but it also introduces

some added complexity. This complexity should not be surfaced to the end users, but for

administrators and IT stakeholders, this paper will highlight considerations around using

multi-tenancy and communicate details and decisions that will need to be made. The paper

will also provide an overview of the steps to complete when deploying and configuring a

multi-tenant deployment.

CONSIDERATIONS FOR USING MULTI-TENANCY

In a SAS Viya multi-tenant deployment, many components are shared among all the

tenants, and only a few components are tenant-specific. One of the best ways to visualize

this is as an apartment building. The plumbing and electricity are common to all the tenants

living there; as a tenant, you cannot say that you own the pipes in the walls. The apartment

building would also have shared areas like a pool, gym, or laundry room that everyone

uses. Every tenant in the apartment will have their personal unit that they lease, and that

other tenants cannot access. This is the heart of multi-tenancy: allowing for sharing of

common resources while keeping tenant-specific things like data secured to only the tenant.

WHEN TO USE MULTI-TENANCY

Multi-tenancy can be a very useful way to deploy SAS Viya. However, not every situation

requires multi-tenancy. Careful consideration should be given to determining whether a

multi-tenant deployment is right for you. Multi-tenancy results in architecture and

administrative complexity, and depending on how you plan to deploy it, it might require

more hardware. For example, if you want to segregate tenants to use separate hardware for

processing, or if you require a highly available system, additional considerations and

resources are required for a multi-tenant deployment as compared to a traditional SAS Viya

deployment. However, a multi-tenant deployment is very beneficial in some scenarios.

Security and Segregation

One of the best use cases for multi-tenancy is for increased security and segregation. In a

traditional SAS Viya deployment, segregating users, data, and reports among multiple

business units requires a lot of thought and design for the authorization model. You would

need to configure permissions for content folders, reports, tables, caslibs, and other objects

2

between business units. However, if you were to instead set up a multi-tenant deployment,

you could configure each business unit as a tenant. This would allow for all users to share

the common components of the platform, while inherently segregating and securing their

data, reports, and other content. Using multi-tenancy in this way would have the constraint

that content and data from one tenant would not be accessible by any other tenant. Thus,

there would be no sharing of content across tenants.

Chargeback

Another reason you might choose to implement multi-tenancy is if you require a chargeback

model for usage of an environment. For example, we have two business units: Marketing

and Sales. Marketing needs a much smaller footprint than Sales. You can deploy the multi-

tenant environment so that each business unit has a separate number of distinct workers on

separate hardware. This type of deployment is shown in Figure 1 below.

Figure 1: Multi-Tenant Deployment for Different Business Units

In this diagram, the Marketing tenant is provisioned with a single SAS® Cloud Analytic

Services (CAS) controller on hardware that Marketing is paying for, along with a share of

the SAS licenses. Sales is using a distributed CAS server with three CAS workers. Sales is

also paying for their hardware and a greater share of the software licenses. Both Marketing

and Sales are using the shared components of the deployment while having their own

distinct tenant environment.

Multiple LDAP Connections

Another use case that fits well is if your environment needs to connect to separate LDAP

providers. A current constraint in a traditional SAS Viya deployment enables you to connect

only to a single LDAP provider for your users, groups, and memberships. However, if you

require the ability to connect to multiple LDAP providers, you could set up multiple tenants

and configure each tenant to connect to a different LDAP provider. A multi-tenant

deployment with multiple LDAP providers would also add to the complexity of the host layer,

as each host would need to be configured for the additional domains.

3

When Multi-tenancy Might Not Be the Right Fit

The three use cases that are described above are the most common scenarios where a

multi-tenant deployment has proven business value. There are a few use cases where you

might think multi-tenancy would add value, but in practice, it might not be the best fit.

In SAS Viya, you can set up security between business units without a multi-tenant

deployment. You can define business groups and apply permissions between groups on

caslibs and tables. You can also segregate content, folders, and reports. In addition, having

a standard deployment might be the best choice if you have a lot of crossover of data and

content that is shared between business units or users. For example, if you have enterprise

reports that everyone can view, you can make these available to all users in a standard SAS

Viya deployment. However, you would have to replicate both the reports and data for each

tenant in a multi-tenant deployment. A standard SAS Viya deployment would also eliminate

the administration overhead that comes with multi-tenancy.

Another potential use case that might be considered is a paradigm of development, test,

and production environments, where every environment is a tenant. This sounds great in

practice, as the data, reports, and content can be segregated and promoted between

tenants/environments. However, there is a downside to this layered approach. A primary

reason for using this tiered environment paradigm would be to test software updates and

hotfixes in a lower environment before doing the same in a production environment. But

because of all the shared resources, a software upgrade would not be isolated to a tenant; it

would apply to all the tenants in the SAS Viya environment at the same time. However,

there is value in this as a deployment scenario if the limitations are taken into

consideration. A better solution might be to have development and test environments

sharing a multi-tenant deployment, with production on its own dedicated infrastructure.

Some customers have asked about using multi-tenancy to create a sort of high-availability

solution. The thought was that if resources for one tenant go down, users can hop over to

another tenant. The simple answer is no; this is not how multi-tenancy will work. Because

SAS Viya includes many shared components, all tenants are impacted if those shared

components go down.

TERMINOLOGY

Before moving on to the more technical considerations of a multi-tenant deployment, below

are key terms that you should know. Most of these are discussed in SAS documentation and

are needed for context and understanding of multi-tenancy.

• Tenant—A subset of users that requires segregation of data and content from all

other users in the system. These users are isolated, with no visibility into other

tenants. They share many common resources across the platform, but have some

dedicated resources deployed and secured to themselves. A tenant has access to all

licensed software but cannot access another tenant’s data or content.

• Tenant administrator—A user who performs SAS administrative tasks at the

tenant level in the environment. They manage access to software applications and

control data access within the constraints of a single tenant. They are insular to their

tenant environment and cannot administer or access other tenants. Tenant

administrators manage tenant-specific configurations and deal with the creation of

user groups and assignment of permissions to users and groups.

• Provider—The first deployed environment, which is used to manage one or more

tenants within a single SAS Viya deployment. The provider could be considered the

first tenant, or “Tenant Zero,” as this environment is created when you first deploy

the software in a multi-tenant environment. The provider is set up exclusively for

4

administration and governance of the multi-tenant environment. It is not intended to

be a stand-alone tenant, or to be used in place of a standard deployment.

• Provider administrator—The administrator for the provider environment, who

manages SAS administration tasks for the provider. In addition, they are responsible

for the tasks of onboarding and offboarding tenants, managing global configurations

for all tenants, implementing the host-level configuration of individual tenants,

tenant monitoring, and troubleshooting of the multi-tenant environment.

• Onboarding—The process of creating and configuring tenants.

• Offboarding—The process of decommissioning and deleting tenants.

• SAS Cloud Analytic Services (CAS)—A server that provides the cloud-based run-time

environment for data management and analytics with SAS. It can be deployed as a

stand-alone controller that handles symmetric multiprocessing (SMP), or it can be

deployed across multiple machines for massively parallel processing (MPP). When

deployed as MPP, it consists of a CAS controller and multiple machines assigned as

CAS workers.

• The sasboot account—An internal user account that is created during the

deployment process. It is the initial administrator of a traditional deployment, and in

a multi-tenant deployment, this account is the initial administrator of only the

provider tenant.

• The sasprovider account—A distinct internal user account that is the tenant’s initial

administrator. When tenants are onboarded, they each get a sasprovider account.

This internal account is how the provider administrators can access and configure the

tenant before granting tenant users and tenant administrators access. Although each

tenant gets an account called sasprovider, each account is set up independently

when onboarding the tenant.

• The inventory.ini file—SAS Viya uses this file to specify the machines to be included

in a deployment and the type of software to be installed on them. In this document,

a name shown in brackets, such as [CoreServices], is a reference to a specific

section of the inventory.ini file.

DEPLOYMENT CONSIDERATIONS

If you determine that multi-tenancy is the right fit for your organization, or if you think it

might be at some point in the future, additional architecture and deployment decisions are

required.

First and foremost, SAS Viya 3.4 multi-tenant deployments are supported only in the Linux

operating environment. This constraint narrows both the scope of licensing and hardware

when planning a multi-tenant environment.

Deployment Time or Bust

When deciding if you want to use multi-tenancy, you must make that choice at deployment

time. The initial deployment is the only time that you can select the multi-tenant option.

Moreover, there is no way to convert a traditional deployment to a multi-tenant

deployment, either through an update or an upgrade. This fact might raise the question

whether it would be a good idea to always do a multi-tenant deployment. In this scenario,

you would deploy with the multi-tenancy option, which would create a provider as tenant

zero. This provider would then onboard a tenant that would be leveraged by the users of the

environment. If you think that you ever might want to use the multi-tenancy features, this

would be the best path because it would enable you to grow your tenants later if needed. To

5

change to a multi-tenant deployment after the fact, you must re-deploy a new environment

and migrate your content.

SAS® Infrastructure Data Server

The SAS Infrastructure Data Server is based on PostgreSQL and is configured specifically to

support SAS software. It stores content inherent to SAS Viya, such as reports, custom

groups, comments, authorization rules, selected source definitions, attachments, audit

records, and user preferences.

When deploying a multi-tenant environment, a decision must be made regarding the

configuration of the SAS Infrastructure Data Server. This is a deployment-time decision and

cannot be changed later. There are two ways to deploy the data server. This first (and

default) way to configure multi-tenancy uses a single database but isolates the tenants with

a separate database schema per tenant within the server. This allows for the partition and

separation of the tenant’s content, such as authorization rules and custom groups, which is

stored in the tenant’s schema. The SAS Viya 3.4 for Linux: Deployment Guide states the

following in its section titled “SAS Viya and Multi-tenancy”:

This mode is useful when database connection resources are limited because

this mode uses a single connection pool for all tenants. A disadvantage is that

data for all tenants is secured by a single credential. In addition, connections

for all tenants come from a single connection pool, which means that a single

tenant can consume all connection resources and deprive other tenants of

resources.

Even with the limitations listed, this is a common multi-tenant deployment path to take.

However, there are caveats; some software will not work correctly when using the schema

per tenant option. For example, SAS® Visual Investigator does not support a multi-tenant

environment when a single SAS Infrastructure Data Server is shared by tenants. This

software and other SAS solutions require a different configuration style.

The second, and less common, way to configure the SAS Infrastructure Data Server is to

create an entire database per tenant. The same section of the documentation quoted

previously states,

This mode is useful for users who prefer maximum isolation of tenant data. In

this mode, unique database credentials per tenant enhance security and

isolation. However, a disadvantage is that each tenant must have a unique

database connection pool, which can significantly increase the total

connection count that the back-end database server must support. Additional

tuning is required for this mode.

The value with this configuration is the truly segregated nature of the tenant content. There

are industries like health care, banking, and government where everything that can be

separated must be separated. This option requires additional configuration, tuning, and

architecture considerations for defining a database per tenant. Regardless, the extra

complexity might be worth the added value of separation for some organizations.

What Components Are Tenant-Specific versus Shared?

A multi-tenant deployment has some components that are tenant-specific, such as data and

content. It also includes many shared components that are leveraged by all tenants. You

can categorize the SAS Viya deployed components into three categories: programming run-

times, CAS, and the services layer. With multi-tenancy, the general rule is that the services

layer is shared among all tenants. This layer includes all the microservices, web

applications, infrastructure servers (for example, the SAS Cache Server, SAS Secret

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.4&docsetTarget=n00cg0mskw6e57n17z73o2xvs3io.htm&locale=en#p14empfot1t9a9n1bpzozseli3qg

6

Manager, and SAS Message Broker), and the Apache HTTP Server. The reason that this is

only a general rule is that some service-layer components can be configured with one

service per tenant, such as the SAS Infrastructure Data Server.

SAS Viya is designed to enable many of these shared service-layer resources to be scaled

up as you see fit. You can re-run the deployment and create redundant services to improve

performance or availability. This is especially useful in a multi-tenant deployment, because

as you grow the number of tenants, you can also grow these shared components, and

probably need to do so.

When it comes to the CAS server however, each tenant gets their own distinct CAS server

instance. Each tenant’s CAS server is isolated to the tenant, and there is no crossover

between tenants or even to the provider. Technically, you do have the ability to deploy

these CAS servers to the same hardware – as either SMP or MPP architecture. However,

each tenant has its own CAS controller. Even though a single machine can host multiple

CAS configurations, SAS recommends that you dedicate a single CAS controller per machine

in a production environment. Even when the same hardware hosts multiple CAS instances,

each tenant’s CAS server is secured to the tenant.

For programming run-times, this gets more complex as there is a split between which

components are shared and which are tenant-specific. Programming run-times are

essentially processes where SAS code gets executed, and these sessions where code runs

are owned by the user who is executing the code. For programming run-times, tenants get

their own components, which include the following:

• SAS Workspace Server configuration at

/opt/sas/tenantID/config/etc/workspaceserver/default

• SAS Object Spawner configuration /opt/sas/tenantID/config/etc/spawner/default

• SAS Object Spawner process called sas-tenantID-spawner-default

• Compute Context for launching SAS Compute Servers

• Launcher Context for launching SAS Launcher Servers

These tenant-specific configurations and contexts are used during session initialization to

get tenant-specific programming run-times. These configurations allow for lockdown

options, and force tenants to be independent of each other.

Host-Level Considerations

With a standard SAS Viya deployment, host-layer considerations for filesystem access and

process ownership come into play. For example, when you start a compute session in SAS

Viya, the user that is attempting to launch the session needs to be known on the host

because the compute process is launched as the end user. These host-level considerations

also extend to the CAS server, depending on the identity that is running the CAS session

process. Although all these considerations are still applicable for a multi-tenant deployment,

there are additional considerations when using multi-tenancy.

When deploying SAS Viya 3.4 as multi-tenant, you still need to fulfill the user and group

requirements for a traditional SAS Viya deployment, including:

• user account that deploys the software

• cas user account

• sas group

• consistent UID and GID for all users and groups across the hosts

7

In addition, the following requirements apply to each tenant that is onboarded:

• tenant_admin – This account is the owner of all tenant-specific files and directories

on disk as well as the process owner of the tenant-specific services. The tenant’s

CAS server process will be running as this account. It is analogous to a combination

of the deployment owner and the cas account from a standard deployment. This

account could be from an LDAP provider or local to the host.

• tenant_admin_group – Must be the primary group for the tenant administrator. It is

used for directory and file permissions on admin-restricted, tenant-specific

resources. This group is like the tenant-specific version of the sas group. This group

could be from an LDAP provider or local to the host.

• tenant_users_group – The group for all non-administrator tenant users. It is used for

directory and file permissions on tenant-specific resources. This differs from the

tenant_admin_group, as these tenant-specific locations are intended for end-user

access. It could be from an LDAP provider or local to the host.

Another requirement for a multi-tenant deployment is that all provider users must be

members of the sas group. This is because in a multi-tenant deployment, access control

lists (ACLs) are applied to certain directories for all hosts within the Compute Server host

group and programming host group within the SAS Viya configuration directory,

/opt/sas/viya/config/. To ensure that the provider users can access critical services

(including SAS Studio and the SAS Compute Server), they must be members of the sas

group. This also requires the file system mount to allow for ACLs.

LDAP Requirements and Nuances

Beginning with the SAS Viya 3.4 release, there are two configuration options in a multi-

tenant deployment for binding SAS Logon Manager and the Identities microservice to LDAP:

a single configuration that applies to all tenants, or a separate configuration per tenant. The

single configuration for all tenants was the only multi-tenant option available with SAS Viya

3.3 and has persisted. It requires a fixed LDAP tree structure that most organizations will

not have in place. This tree structure has all tenants, including the provider, share the same

LDAP domain. It requires the provider and all tenants to be at the same level within the

tree, with the user and group organization units (OU) below the tenant level, and with the

same structure mirrored across all tenants. In addition, it is not just membership within the

OU that is required, the object must also be at that point in the directory information tree

(DIT) and have the tenant as a part of its distinguished name (DN). Figure 2 below shows

this hierarchical structure with the provider, tenantA, and tenantB in the LDAP tree.

Figure 2: Required LDAP Structure for Single LDAP Configuration

8

LDAP configuration has lost its rigidity with the advent of SAS Viya 3.4 and its additional

configuration options. You can now implement a separate LDAP configuration per tenant.

This allows for much greater flexibility within your multi-tenant deployment and allows for

some great usage patterns. For example, you can now configure tenants to all use the same

LDAP server, but start your search for users or groups at different base distinguished names

within the tree.

Another way to leverage this configuration is to change your object filter for tenant users or

groups. For each tenant, you could start at the top of the LDAP tree as your base DN, and

then have an object filter that brings in your tenant users and the members of your

administrators group. As an example, for the provider you could use your object filter to

bring in only the members of an “Administrators” LDAP group. This would let them be the

only users who would be known to the provider tenant, and thus the only ones who are able

to log on to the provider. You could then update the object filter for the Marketing tenant to

allow for membership within “Administrators” or membership in the “Marketing” LDAP

group. If you used this paradigm for all tenants, your SAS Administrators would have access

to the provider and all tenants and could act as both your provider and tenant

administrators.

Another use case for this new configuration option would be to connect to multiple distinct

LDAP domains. Using this configuration can significantly increase the complexity of your

solution. For example, if you have one set of users on your Hong Kong domain, and another

set of users on your Europe domain, you could set each tenant’s LDAP configuration to point

to each domain. With these multiple domains there is now added complexity at the host

level, as users from both domains need to be known and unique to host. Potentially, you

would need to configure your hosts to connect to both domains. You would also need to

make sure that the UIDs and GIDs that are used on the hosts are unique across domains.

As the tenant administrators would be coming from the LDAP server that is configured for

each tenant, they would need to be self-sufficient SAS administrators because the provider

would (probably) not be in that domain.

When deploying multi-tenancy, there is no reason to stick to the rigid structure of a single

LDAP configuration that applies to all tenants because each tenant can be configured

separately. Even if you are connecting all tenants to the same LDAP provider, having a

configuration per tenant exempts tenants from the strict LDAP tree requirements.

SAS also recommends that you enter the LDAP information about your multi-tenant

deployment with SAS® Environment Manager after installing your software. To enable this

functionality, remove the sas.identities.providers.ldap.connection block from your

sitedefault.yml file. This will be covered later in the Implementation section.

Resource Considerations

Multi-tenancy requires proper planning for available resources. In general, SAS Viya

requires careful host-level monitoring of resources like memory and disk space. For

deployment-level monitoring, the focus is on availability of resources like the microservices

or computing environment. By choosing a multi-tenant deployment, this required

monitoring of resources is even more important. An example of this would be if you have

multiple tenants sharing CAS workers, you need to carefully monitor how much memory is

available because one tenant could monopolize the worker and impact other tenants.

In addition, each tenant that you onboard will require available resources, like CAS

controllers and CAS workers. A new tenant could also necessitate additional disk space on

the Compute tier. Other resources that you will want to consider scaling are the

microservices and infrastructure servers. Each tenant that you onboard could place a strain

on the availability of these resources. A simple example would be the SAS Message Broker.

9

As you onboard additional tenants, the message broker could become overwhelmed,

resulting in delayed response times for end users and services. However, to mitigate this

situation, you could scale out your services as you grow your environment.

Overall, the scaling of these resources is no different in a multi-tenant environment than in

a standard deployment. You can add resources to the inventory file and re-run the original

playbook. This is a highly useful strategy, because as you onboard tenants, additional

service resources will probably be needed to support the higher load request.

Another resource to be mindful of is your license. You always want to make sure you are

license-compliant as you expand your deployment and onboard tenants. Remember, each

tenant that you onboard gets its own CAS server. A large component of designing a multi-

tenant deployment is planning how the environment will share the license.

When deploying or adding tenants, you always want to make sure you have considered the

following factors:

• Do your hosts have appropriate memory?

• Do your hosts have appropriate disk space?

• Do you need additional services, infrastructure, or computing resources?

• Are you license-compliant?

If you are implementing a deployment and want a robust, highly available platform, multi-

tenancy would also increase the complexity of your platform and the resources required. For

example, if you want a highly available CAS server for your tenant, you now have a primary

CAS controller, a backup CAS controller, and multiple CAS workers per tenant. Multi-

tenancy can be configured with high availability; it is just more complex than a standard

highly available deployment. Also, if you want a disaster recovery solution, you now need to

consider each tenant’s section of the platform, as they each have their own separate data,

configurations, and content.

Tenant Access and Zones

Tenants are accessed via tenant-specific URLs that have the following format:

tenantID.hostname/applicationName. The following is an example tenant-specific URL for
navigating to SAS Drive for a tenant named Marketing: marketing.sas.com/SASDrive. All

tenant URLs are built off a configuration called zones. In this configuration, you set the

internal hostnames that are then prepended with a tenant name to allow for access. In the

SAS Viya 3.4 for Linux: Deployment Guide section on multi-tenancy, this list of hostnames

is described as follows:

The comma-separated list of internal host names should specify any hosts

that will be used to access the provider and any domain from which tenant

subdomains will potentially be built. Machines that are included in the

[httpproxy] host group in the inventory.ini file should be included in this list.

Machines that are included in the [CoreServices] host group in the

inventory.ini file should be included in this list if there are multiple domains

and they are a subset of each other. Do not use wildcard characters in this

list. A host name from this list with a prepended tenant name will be used as

the URL to reach each tenant after each one has been onboarded.

Moreover, the documentation goes on to note that you must add wildcard versions of the

host names to your DNS using the method that your administrator recommends. For

example, if you added hostname1.company.com and hostname2.company.com to the

internal.hostnames variable in your sitedefault.yml file, you would add

*.hostname1.company.com and *.hostname2.company.com to your DNS that points to the

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.4&docsetTarget=n00cg0mskw6e57n17z73o2xvs3io.htm&locale=en#p14empfot1t9a9n1bpzozseli3qg

10

host name or IP address of the HTTP server of your SAS installation. This sitedefault.yml file

is discussed further in the Implementation section.

If this DNS step is missed, the URLs will not resolve, and you will not be able to onboard or

access your tenants. In testing deployments, you can temporarily add these domains and

subdomains to the hosts file on the machines in the deployment so that the URL will resolve

correctly. The same would need to be done from any users’ host machines that connect to

the environment because the URL must resolve in their browsers as well. This would be only

a temporary solution, and you would still need to get the DNS updated appropriately.

Administrative Responsibilities: Provider versus Tenant

With multi-tenancy, there are now two types of administrators: provider administrators and

tenant administrators. They each have different responsibilities and capabilities within the

deployment. They even have different options and screens available within SAS

Environment Manager. Certain activities can be performed only at the provider level, and

certain tenant activities can be performed only at the tenant level.

Provider-level administrators have additional capabilities, permissions, and responsibilities

compared to tenant administrators. As the provider can be considered the initial or default

tenant, provider administrators also handle all the provider tenant-specific administrative

tasks. Table 1 below contrasts the exclusive provider-level tasks with tenant administrator

tasks (the tenant-specific tasks are generic SAS Administrators tasks):

Provider Administrator Tasks Tenant Administrator Tasks

• Perform tenant management tasks

(onboarding, offboarding, etc.)

• View or modify deployment resources

For example:

❖ Add or remove resources to the

deployment

❖ Manage SAS Configuration Server

(Consul) key-value pairs

❖ Update system configuration

properties

❖ Manage system component status

• Manage global configurations, including

global configuration for the connection

to the LDAP identity provider

• Manage product licenses

• Access application and server logs

• Perform machine-level monitoring

• Perform provider-level backup and

recovery

• Administer the provider as a tenant

• Manage tenant-specific

configurations, such as the tenant-

specific configuration for the LDAP

identity provider

• Create and restore tenant-level

backups

• Add, remove, or modify caslibs

• Manage access to data

• Manage access to content

• Manage access to functionality

• Promote content

• Assign users to custom groups

• Manage mobile devices

• Schedule jobs

• Set the default QKB and the default

locale

Table 1: Comparison of Administrative Tasks

11

The documentation gives a great explanation of how these groups work together. below is

an excerpt and image from ”Multi-tenancy: Concepts” in the SAS Viya 3.4 Administration

documentation:

An identical set of predefined groups and principals exists in the provider and

in each tenant. Membership in the provider’s SAS Administrators group

enables you to perform provider-level tasks, but does not enable you to sign

in to any tenant. Membership in a tenant’s SAS Administrators group enables

you to administer that tenant. The following figure depicts the structure:

Figure 3: Predefined Groups and Principals

As shown in Figure 3, all tenants (including the provider) have the same predefined

custom groups. The members of the provider’s SAS Administrators custom group are

the provider administrators. The provider might leverage other groups for purposes

like validating or reporting. In the diagram, the provider administrator is designated

with a purple star and cannot directly access the tenants; instead, provider

administrators need to leverage the tenant’s internal sasprovider account to access

the tenant environment. These tenant-specific sasprovider accounts are designated

with red stars in the diagram. While this internal account’s name is the same for all

tenants, each tenant gets its own version of the account, and its password is set

when the tenant is being onboarded.

MULTI-TENANCY IMPLEMENTATION

SAS Viya multi-tenancy documentation is embedded as sections in various documents and

creates a slightly disjointed experience when you are trying to plan and execute your

deployment. The following sections outline the general steps for deploying SAS Viya in a

multi-tenant fashion and describe where specific details can be found in the documentation.

MULTI-TENANT PRE-INSTALLATION TASKS

Multi-tenancy is just a specific way to deploy SAS Viya. The deployment still has the all the

same pre-work that is required of a traditional SAS Viya deployment. Listed below are some

specific pre-installation items that are needed for a multi-tenant deployment.

Mirror Repository

When adding new tenants to an existing SAS Viya deployment, the system downloads and

installs the latest software available from the SAS software repository. Therefore, make sure

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.3&docsetId=caltenants&docsetTarget=p1uvpvfxsjdgi8n1mjnl279r5v1c.htm&locale=en#p02nyvalzvdgc0n1w3v9wadiqhme
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.3&docsetId=caltenants&docsetTarget=p1uvpvfxsjdgi8n1mjnl279r5v1c.htm&locale=en#p02nyvalzvdgc0n1w3v9wadiqhme

12

you are using a mirror repository. A mirror repository ensures that the software that you

might deploy later is the same software that was installed during the original deployment. If

a mirror repository is not used, then a tenant that you onboard 6 months after your original

deployment could possibly end up with a different set of binaries, as the SAS repository

might have been updated during that time. Another reason to use a mirror repository would

be if you are adding resources to a tenant. For example, a tenant has run out of space and

needs to grow their CAS server. When adding MPP CAS workers, you want to make sure you

are deploying the same software as the original deployment to keep your environment in

sync.

For more information, see SAS Viya 3.4 for Linux Deployment Guide: Create a Mirror

Repository.

Multi-Tenant Package Requirements

Multi-tenancy requires two extra packages that need to be installed before you can onboard

tenants to your environment. The original deployment will succeed, but if these packages

are not installed on the correct host, tenant onboarding will fail.

To support multi-tenancy, the jq-1.5 package (or a later version) must be installed on any

hosts where the command line interface is installed before you begin onboarding. This

package enables the system to easily process JSON structured data and is required. If the

jq package is not installed on the hosts in the [CommandLine] host group from your

inventory file, the onboarding playbook fails with the message “jq: command not found”.

In addition, the access control list (acl) package must be installed on any hosts in the

[ComputeServer] host group and the [programming] host group from your inventory file

before you begin onboarding. These access control lists are used in securing some

directories when a tenant is onboarded. If the acl package is not installed in the two host

groups, the onboarding playbook fails with the message “setfacl: command not found”.

DNS Resolution

The Ansible scripts that are used in onboarding tenants use the subdomain

tenantID.hostname, and this can cause issues if the host name’s subdomain cannot be

accessed. Issues are typically caused by a subdomain name that is not correctly resolving.

An error might be seen like the following example, shown in Figure 4, from the tenant-

specific onboarding log at

/opt/sas/viya/config/var/log/multitenant/tenant/tenant_onboard.log:

Figure 4: Log Output from a Failed Onboarding

Before onboarding, SAS recommends pinging the tenant-specific URL that you will be using

to access your tenant from each host. This will enable you to see whether the name is

resolving as expected.

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=dplyml0phy0lax&docsetTarget=p1ilrw734naazfn119i2rqik91r0.htm&locale=en
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=dplyml0phy0lax&docsetTarget=p1ilrw734naazfn119i2rqik91r0.htm&locale=en

13

DEPLOYING A MULTI-TENANT ENVIRONMENT

Deploying SAS Viya with multi-tenancy is the same as a traditional SAS Viya deployment,

with a few extra steps as noted in the following sections.

SAS® Studio 4 Configuration Addition in vars.yml

SAS Studio 4 is a programming client that uses the Object Spawner and Workspace Server

paradigm to launch a programming run-time. The UI of SAS Studio 4 provides a way to

navigate the filesystem. This is problematic for a multi-tenant environment, as there is

potential for the tenant to navigate outside of the tenant-specific area (for example/tmp)

and to write or read something that should be tenant-specific. Therefore, before running the

Ansible playbook to deploy SAS Viya, make a small change in the vars.yml file by adding

the following highlighted line in the figure below under the STUDIO_CONFIGURATION block:

Figure 5: Update to vars.yml

Information about this configuration update comes from the “Enable Multi-tenancy” section

of the SAS Viya 3.4 for Linux: Deployment Guide. By setting this parameter to false, you

are limiting what is seen in the Folders tree within SAS Studio 4. This changes the Files

navigation to start at the user’s home directory ($HOME) instead of at the system root (/).

Additional information about this setting can be found at SAS Viya 3.4 Administration:

Configuration Properties: How to Configure SAS Studio 4. This is the is the only addition

needed for the vars.yml file.

Creating the sitedefault.yml File

Modifications in the sitedefault.yml file are the main drivers of multi-tenancy. This file

includes configuration information to enable multi-tenancy, configure SAS Infrastructure

Data Server, and identify zones declared for the tenants. This file, in YAML syntax, is used

by the Ansible playbook to drive the deployment. Special care needs to be taken when

editing this file, as spacing, indenting, and spelling are extremely important. After you set a

value with sitedefault.yml, you cannot re-run the playbook with the updated sitedefault.yml

to change the value. You will have to use other tools, such as SAS Environment Manager or

the sas-bootstrap-config CLI, to make post-deployment changes to the values that are set

in this file. SAS recommends starting with a copy of the sitedefault_sample.yml file and

naming the copy sitedefault.yml. The file sitedefault_sample.yml is in the directory where

the playbook was uncompressed.

This was mentioned previously but bears repeating: SAS recommends that you manually

enter the LDAP information about your multi-tenant deployment within SAS Environment

Manger. This would mean not including any variables from the

sas.identities.providers.ldap.connection block in the sitedefault.yml file.

https://go.documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=n00cg0mskw6e57n17z73o2xvs3io.htm&docsetVersion=3.4&locale=en&showBanner=walkup#p14empfot1t9a9n1bpzozseli3qg
https://go.documentation.sas.com/?docsetId=calconfig&docsetTarget=n03003sasconfiguration0admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=calconfig&docsetTarget=n03003sasconfiguration0admin.htm&docsetVersion=3.4&locale=en

14

Select a Multi-Tenant Deployment

This is one of the easiest modifications to sitedefault.yml. Simply add the line highlighted in

the image below:

Figure 6: Multi-Tenant Deployment Settings

This property simply indicates that you want a multi-tenant deployment. It is an option that

can be set only at deployment time. There is no way to convert a traditional deployment to

a multi-tenant deployment, either through an update or an upgrade. If this option is not set,

the deployment will be a standard deployment.

SAS Infrastructure Data Server

Next, select the configuration for SAS Infrastructure Data Server. The two options discussed

previously were a single database, where each tenant gets a schema, or a unique database

per tenant. The first option is the default, with a schema per tenant in a single database. If

you do not add a configuration value, this option is selected for deployment.

However, if you do want a deployment with a database per tenant, you can set

sas.multi.tenancy.db.mode: databasePerTenant, as shown in the image below. Some

software solutions, such as SAS Visual Investigator, require you to deploy the databases in

this manner. If you specify databasePerTenant, you must add additional parameters for the

connection pool of the databases. The applicable parameters are highlighted in Figure 7:

Figure 7: Parameters Needed for a Database per Tenant

The parameters for a database per tenant need to be tuned to your environment and usage.

These parameters can be adjusted later if necessary. However, the choice of database mode

is final and can be set only at deployment time. If you want to change how you configured

SAS Infrastructure Data Server, then you must uninstall and redeploy with the other option

selected. This would force you to migrate content and configurations that you wish to

preserve.

Zones

The next addition to the sitedefault.yml file is a property called zones. This property has

only one value that you need to provide for multi-tenancy: internal.hostnames. This is a

comma-separated list of internal host names that are used to access the provider zone or

15

are used in a subdomain to access other zones. This is also the field that is used to generate

the subdomain access. For example, if the Apache HTTP server is on a host called

server.customer.com, and if you are planning for tenants named Sales and Marketing, you

would set this value as internal.hostnames: server.customer.com. This (combined with the

DNS updates) would allow for your tenants to be accessed at sales.server.customer.com

and marketing.server.customer.com.

This comma-separated list of internal host names should specify any hosts that will be used

to access the provider and any domain from which tenant subdomains will potentially be

built. Machines that are included in the [httpproxy] host group in the inventory.ini file

should be included in this list. Machines that are included in the [CoreServices] host group

in the inventory.ini file should be included if your environment includes multiple domains

that are a subset of each other. Do not use wildcard characters in this list, and be sure to

specify the base host name without any tenant prefixes.

If you have a highly available deployment with multiple Apache HTTP servers, you would

want to include each one of those internal hostnames in this comma-separated list.

Below is an example of a full sitedefault.yml with multi-tenancy selected. Because no

database mode was selected, it gets the standard schema per tenant:

Figure 8: Simple sitedefault.yml

INFORMATION ABOUT INVENTORY.INI

Ansible uses an inventory file to specify the machines to be included in a deployment and

the software to be installed on them. Each inventory file consists of two parts: a deployment

target definition, which is a list of each machine used in the deployment, and a host group

assignment list, which maps the machines to the function that they will serve and the types

of software that will be deployed on them. In a multi-tenant deployment, there are some

extra considerations related to the inventory file.

The provider can be considered the initial tenant, or “tenant zero.” The provider gets its own

CAS controller, and potentially a backup controller and CAS workers. These are all listed in

the host group assignments of the inventory file as [sas-casserver-primary], [sas-casserver-

secondary], and [sas-casserver-worker].

In a multi-tenant deployment, the first server listed under [sas-casserver-primary] will be

the CAS controller for the provider. Every other server underneath this host grouping will

have software deployed to the host so that it acts as a CAS server, but it will not be used by

the provider. The intent is that if you know the tenant architecture and configuration that

you want, you can seed the servers that you want to designate as tenant controllers,

backups, and workers. When onboarding, this allows you to avoid redeploying the software

to these hosts later.

In the inventory.ini file, the server under [sas-casserver-secondary] will act as the

provider’s backup CAS controller and must meet its requirements. Hosts that are listed

under [sas-casserver-worker] will be the provider’s worker nodes and will deploy the

provider’s CAS server in an MPP architecture.

16

CUSTOM CERTIFICATES

During the initial deployment, SAS Viya will replace the default self-signed certificates on

the Apache HTTP Server with a self-signed certificate that includes a wildcard of subdomains

from the fully qualified domain (FQDN) name of the machine. As a result, the default

certificate is valid for your FQDN and *.FQDN. This updated certificate, combined with the

DNS updates, allows tenants to securely access their tenant-specific URLs.

If you want to use your own custom certificate, make sure the certificate contains a

wildcard for the subdomain or has the subject alternative name (SAN) for each tenant. You

would then replace the self-signed certificate by following the instructions in the following

SAS Viya Administration document: Data in Motion: Replace Self-Signed Certificates.

PROVIDER’S LDAP CONFIGURATION

Once the deployment has completed, the provider administrator will need to log in to SAS

Environment Manager using the sasboot account to update the provider’s LDAP

configuration. This is similar to a standard deployment, except that in a multi-tenant

deployment, the provider has an extra option for these configurations. This extra option is

present for the three configuration elements under Basic services for the Identities service:

the sas.identities.providers.ldap connection, group, and user. In these three configuration

instances, there is now a setting to Apply configuration only to this tenant (provider),

as shown below:

Figure 9: Provider LDAP Configuration

When this option is toggled in the Off position (a gray O), the provider’s LDAP configuration

for this category applies to all tenants. However, tenant administrators can override this

configuration set at the provider level by configuring their own LDAP connection categories.

This setting is exclusive to its category: connection, user, or group. For example, if you are

connecting all tenants to the same LDAP provider, you might want to leave this setting in

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calencryptmotion&docsetTarget=n1xdqv1sezyrahn17erzcunxwix9.htm&locale=en#p0r605jd7uwuuyn15evrzxmu360y

17

the Off position to propagate the connection settings to all tenants, but leave it in the On

position for users and groups, so that those settings will apply to the provider only. Then

the provider and each tenant can have unique LDAP user and LDAP group configurations.

ONBOARDING TENANTS

Multi-tenancy enables you to grow your environment as you see fit. You do not have to

onboard all tenants at the same time; additional tenants can be added later. The initial

deployment of the software does create the provider tenant, which is used to administer the

deployment. All subsequent tenants must be onboarded.

Onboarding Prerequisites

Here is a short list of questions to work through before onboarding:

• Is your deployment multi-tenant? This might sound silly, but you need to make sure

your deployment is a successful multi-tenant deployment. You can check this in the

provider’s SAS Environment Manager by navigating to the Tenants option in the left

panel. If the option is not there, then you must re-install the software with multi-

tenancy enabled before onboarding tenants.

• Do you have enough resources in your environment to handle the new tenant? Is

there enough space and memory available on your hosts? Do you need to add

redundant microservices or infrastructure servers? Are the correct ports open on the

hosts where you are deploying?

• Does the environment need to be tuned to operate better? More information can be

found in the documentation at SAS Viya 3.4 Administration: Tuning.

• Is the jq package installed on all hosts in the [CommandLine] host group in the

inventory file?

• Is the acl package installed, and are ACLs enabled on the mount for the

[ComputeServer] host group and [programming] host group?

Onboarding Steps

The first, and perhaps most important, step when onboarding a tenant is making sure you

have a full binary backup before onboarding. You can get more information about this in the

SAS documentation at the SAS Viya 3.4 Administration: Backup and Restore.

Next, establish your tenant ID. This ID is used by the tenant in many places, including

URLs, the file system, and in the LDAP server configuration. The tenant ID must meet the

following requirements:

• Must be unique among your tenants.

• Can be 1-16 characters in length and must begin with a letter.

• Can contain only lowercase letters (only a - z in the English alphabet) and numbers.

• The following identities are reserved: default, provider, shared, sharedservices, spre,

uaa, viya, and any identity beginning with “sas”.

Before you begin to onboard a tenant, you need to set up your tenant users and groups.

The bare minimum consists of a valid user that can be configured as the initial tenant’s

administrator, a tenant administrators group, and the tenant’s user group. These are used

during the onboarding process to set host-level ownership of tenant-specific files and

directories. These could be from LDAP or exist only at the host level, but they must exist

and be known at the host level before onboarding.

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=caltuning&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calbr&docsetTarget=p0rntnzm17cs2kn0zsoyr90xw68n.htm&locale=en#p1ru01swmtdzmvn1j0w7mfnha2fd

18

Create a Tenant-Specific Onboarding File

When executing the initial SAS Viya multi-tenant deployment, you updated the vars.yml file

to add a property for SAS Studio 4. This vars.yml contains deployment variables that enable

you to customize the deployment to meet your needs. When you onboard a tenant, you

create a tenant-specific vars.yml to uniquely configure the tenant. In SAS documentation,

this file is referred to as tenantID_vars.yml (where tenantID is an ID that fits the tenant

naming restrictions).

This file is where you list the specific configurations for your tenant. These configuration

settings include how you want your CAS servers configured, the filesystem permissions on

the tenant-specific directories and files, the tenant ID, and more.

To begin, SAS recommends that you copy the sample_tenant_vars.yml file from the

samples directory that is provided in your deployment to the sas_viya_playbook directory.

This file will be named tenantID_vars.yml at that location; for example, you could run the

following command to initiate the configuration of a Marketing tenant:

cp samples/sample_tenant_vars.yml marketing_vars.yml

Once the sample has been copied, you can start updating the fields in the

tenantID_vars.yml file.

The sample_tenant_vars.yml file includes some great descriptions of what the configuration

values control. These explanations are helpful when configuring these tenant-specific values

for onboarding. Some descriptions explicitly call out *** Do not edit this value ***. These

fields are prepopulated with Ansible references and should not be changed.

Throughout the file, many fields are labeled with “<replace me>” indicating where you must

add tenant-specific details. In these fields, be sure to retain the quotation marks, as those

are important to the processing. Other fields are stubbed out with only quotation marks.

These indicate optional configurations, such as declaring which host from inventory.ini you

want to serve as the backup CAS controller. If you are not updating these fields, leave them

unchanged.

The first property to set in the file is the tenant ID. In the file, this field is noted as

sas_tenant: “<replace me>”. As in the previous example, if this was the

marketing_vars.yml, you would set this value as sas_tenant: “marketing”.

Another field to pay attention to is the skip_ldap_config. This field can have a value of true

or false, and it determines whether the tenant will use the provider’s configuration for LDAP

connection, or will instead use its own. If you have chosen to configure an LDAP connection

per tenant, then this vale should be skip_ldap_config: “true”. This will prevent the

onboarding process from picking up the provider’s LDAP connection details and will enable

you to set your tenant’s specific LDAP configurations in SAS Environment Manager after

onboarding.

The next three fields are the tenant_admin, tenant_admin_group, and tenant_users_group.

As discussed previously, these will be used for filesystem permissions on tenant-specific

directories and files.

Next you need to set the password for the tenant-specific sasprovider account in the field

tenant_provider_pwd. This account is the initial tenant administrator, and natively is a

member of SAS Administrators. This account resembles sasboot, and the sasprovider

account is used by the provider to finish configuring the tenant for access. This tenant-

specific sasprovider account has administrative access within the tenant and cannot be

disabled by a tenant administrator. Because the password is set in the file, restricting

19

access to this file or removing this value from the tenant’s vars.yml file after the tenant has

been onboarded is highly recommended.

The next two properties enable the tenant to be onboarded. They are the ID of a provider

administrator and its password; these values are used to programmatically onboard the

tenant. In the fields of provider_admin and provider_admin_pwd, set the admin’s ID and

password for the account. This ID can be any account that is in the provider’s SAS

Administrators group (sasboot is used by default in the sample_tenant_vars.yml file). It is

highly recommended that you restrict access to this file or remove this value from the

tenant’s vars.yml file after the tenant has been onboarded.

If SAS/CONNECT® is licensed, the following values must be set for the tenant-specific

SAS/CONNECT configuration:

• sasenv_connect_port – requires a unique port number for SAS/CONNECT Spawner.

This process typically runs on port 17551, and it is typically incremented starting

here as you onboard tenants.

• sasenv_connect_mgmt_port – requires a unique port number for monitoring the

SAS/CONNECT Spawner. This process typically runs on port 17541 and is also

normally incremented.

These fields are in the sample_tenant_vars.yml file that you copied earlier. If SAS/CONNECT

is not licensed, these lines can be commented out.

The next configuration to set is the unique port for the tenant’s SAS Object Spawner. This is

a tenant-specific process that is used to launch a tenant’s SAS Workspace Server processes.

This property is set under the SPAWNER_CONFIGURATION block as the variable sasPort.

The port that is used must be unique and, given the SAS Object Spawner by default runs on

port 8591, it is typically started at 8592 and incremented as you onboard tenants.

The largest block of configuration values in the tenant’s vars.yml file is for the tenant’s CAS

configuration. The CAS configuration from the provider is not automatically enabled for the

tenant, and therefore these values orchestrate how the tenant’s CAS server will be

deployed. These properties let you select hosts from the inventory.ini file to use for the

tenant’s CAS hosts, the ports that CAS will use, and additional tenant-specific CAS

configurations. The fields for primary_host, secondary_host, and worker_hosts declare how

you want your hosts to be used for this tenant’s CAS server. The values from your

inventory.ini file that can be used for these configuration variables need to be listed in the

[sas-casserver-primary] host group. Figure 10 shows an example of values for these

variables. The hosts are mapped in the inventory.ini file and are in the [sas-casserver-

primary] host group:

20

Figure 10: Example Tenant CAS Configuration

In a multi-tenant environment, you could have many varied combinations of CAS

configurations. You could have all tenants sharing a CAS controller, or you could have

workers shared across tenants. Also, within this CLUSTER DEFINITIONS block, you set the

tenant-specific CAS_DISK_CACHE, identify a load balancer for CAS, and add any CAS

settings.

To avoid collisions of the CAS process on a shared host, update the CAS port and httpport.

You can leave these as the defaults if you do not have tenants that share CAS hosts. If you

do have CAS server processes sharing a host, then you must use unique ports for each

tenant that is using the host.

Run the Tenant Onboarding Script

Once the tenantID_vars.yml file is customized for your tenant, run the Ansible script to

onboard the tenant. For example, if you have created and configured the

marketing_vars.yml for the Marketing tenant, you would run the following:

ansible-playbook -i inventory.ini utility/multi-tenancy.yml -e

"@marketing_vars.yml" -vv

If any errors occur during onboarding, you will potentially see failures in the output. You can

also view the tenant-specific onboarding log, which is created at the following location:

/opt/sas/viya/ config/var/log/multitenant/tenantID/tenant_onboard.log

If there are no errors, you can access the provider’s instance of SAS Environment Manager,

navigate to the Tenants page, and see the tenant with a status of Onboarded. Figure 11

shows an entry for multiple tenants and their status:

21

Figure 11: Tenant Status After Onboarding

Some services take some time to move from the state of Onboarding to Onboarded. You

can verify the state of services by highlighting the tenant from the Tenants page and

selecting Service Status. That action populates a pop-up window like the one shown

below:

Figure 12: Tenant Services Status with Mixed States

If a service’s status does not change to Onboarded after a reasonable amount of time, you

will need to troubleshoot the issue. To investigate these individual services, find the

appropriate log file and look for errors or warnings related to the onboarding process. In the

example above, you would navigate to the SAS® Visual Analytics log on the microservices

host. In this log, you would search for the word “onboarding” and examine any associated

warnings or errors. These services will continuously retry the onboarding process, even after

a failure, until they get a status of Onboarded.

Configure LDAP for the Tenant

If you have selected skip_ldap_config: “true” in your tenant-specific vars.yml file, then once

the tenant onboarding process has completed, the provider administrator will need to log on

to the tenant using the sasprovider account and configure the tenant’s LDAP connection.

The provider administrator must navigate to tenantID.hostname/SASEnvironmentManager

and update the configuration for the Identities service’s sas.identities.providers.ldap for its

connection, group, and user.

Once the users and groups are surfaced in the tenant’s environment, the provider

administrator (still using the tenant’s sasprovider account) will define the initial tenant

administrators by adding those users as members of the tenant’s SAS Administrators group.

22

Enable the Tenant

After the tenant has been onboarded and has its LDAP connection configured, the provider

needs to enable the tenant. When the tenant is onboarded, its Access Policy is set to

Limited. This setting means that only the tenant’s sasprovider account can log on, but no

one else can access the tenant environment. When all onboarding tasks have been

completed, the provider administrator can set the Access Policy to Open.

Figure 13: Settings for Tenant Access Policy

This setting is accessed through the provider’s Tenants page in SAS Environment Manager.

It is shown in Figure 13, above, for the tenant named Marketing. This setting can be

changed at any time, to allow or to prevent tenant users from logging in to the tenant

environment. However, any users who currently have active sessions will not be interrupted

and will continue to have access for the duration of their session.

What’s Next: Task for the Tenant

Once the tenant’s access policy is in the Open state, all users that belong to that tenant

(that is, users that are returned from its LDAP configuration) will be able to log on and

access the tenant environment. It is now the responsibility of the tenant administrators to

set up their structure and security around data, content, and other SAS administrative

tasks.

OFFBOARDING

Offboarding is the process of decommissioning and removing a tenant from the system. SAS

provides specific Ansible playbooks that must be run to offboard a tenant. You can choose

whether to delete or disable a tenant. For details regarding the offboarding process,

reference the following SAS Viya Administration documentation: Multi-Tenancy: Offboard a

Tenant. This section of the documentation provides specific details about the required steps

to offboard a tenant, disable a tenant, and re-onboard a tenant.

https://go.documentation.sas.com/?docsetId=caltenants&docsetTarget=n1vw1msvr5mxrgn1bygh7rau2nh4.htm&docsetVersion=3.3&locale=en#p1rhz07wqbutqan15ao3ka65f9li
https://go.documentation.sas.com/?docsetId=caltenants&docsetTarget=n1vw1msvr5mxrgn1bygh7rau2nh4.htm&docsetVersion=3.3&locale=en#p1rhz07wqbutqan15ao3ka65f9li

23

CONCLUSION

A SAS Viya 3.4 multi-tenant deployment can be a very useful way to leverage SAS Viya. It

allows for segregation of data and content for discrete groups of end users. For complex

deployments, multi-tenancy might be the only way to implement an important business

requirement, such as connecting a single deployment of SAS Viya to multiple LDAP

providers.

Multi-tenant deployments allow for flexibility of architecture, while allowing IT resources to

be shared in a secure and cost-effective manner. If proper planning goes into the

deployment, and deployment considerations are taken into account, multi-tenancy can drive

business value in SAS Viya.

REFERENCES

SAS Institute Inc. 2018. SAS Viya 3.4 Administration: Multi-tenancy. Available at

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calten
ants&docsetTarget=titlepage.htm&locale=en.

SAS Institute Inc. 2018. SAS Viya 3.4 for Linux: Deployment Guide. Available at

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=dplyml0phy0l

ax&docsetTarget=titlepage.htm&locale=en.

ACKNOWLEDGMENTS

A huge thanks to Angie Hedberg, Philip Hopkins, Eric Bourn, Gilles Chrzaszcz, Wade Adkins,

Tom Reichmeider, Alex Kubacki, Dara Davis, and Susan Pearsall for their help and support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Eric Davis

SAS® Institute

eric.davis@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=caltenants&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=caltenants&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=dplyml0phy0lax&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=dplyml0phy0lax&docsetTarget=titlepage.htm&locale=en

