
1

Paper 3263-2019
Machine Learning and Predictive Analytics in

SAS® Enterprise Miner™ and SAS/STAT® Software

D. Richard Cutler, Utah State University

ABSTRACT
SAS/STAT® software and SAS® Enterprise Miner™ are two excellent environments for applying machine
learning and other analytical procedures to a wide range of problems, from small data sets to the very large
and very wide. In SAS Enterprise Miner, one can move seamlessly from data cleaning and processing,
through preliminary analyses and modeling, to comparisons of predictive accuracy of several predictive
methods and the scoring of new data sets. Many powerful machine learning and statistical learning tools
including gradient boosting machines, artificial neural networks, and decision trees are nodes in SAS
Enterprise Miner, and other SAS® procedures that are not nodes can be accessed through the SAS Code
Node. In this talk, I work through some examples from business and other areas to illustrate some of the
many capabilities of SAS/STAT and SAS Enterprise Miner.

INTRODUCTION
Modern statistical analyses frequently entail the use of so called machine learning or statistical learning
methods, which are highly computational algorithms for prediction and interpretation of data. SAS® has
many such procedures implemented including classification and regression trees (Breiman et al. 1984) in
PROC HPSPLIT, support vector machines (Cortes and Vapnik 1995) in PROC HPSVM, random forests
(Breiman 2001) in PROC HPFOREST and gradient boosting machines (Friedman 2001) in SAS Viya and
SAS Enterprise Miner. These methods may be used in regular SAS programming, and are available in
SAS OnDemand. SAS Enterprise Miner offers an alternative environment for conducting statistical
analyses, from the simple graphical summaries of data to classical methods such as multiple linear
regression and logistic regression through all of the machine learning methods listed above and more. The
graphical user interface of Enterprise Miner facilitates multi-step analyses without the need to remember or
look up or remember programming syntax, and allows for very simple comparison of the accuracies of
multiple methods through the Model Comparison node. In this paper and the associated talk I will contrast
similar analyses of real data in the usual SAS programming environment and in SAS Enterprise Miner.

INSURANCE CLAIMS EXAMPLE
The data for the first set of analyses concerns auto insurance claims in Germany. The purpose of the
analyses is to relate the probability of a claim, and the amount of the claims, to a variety of predictor
variables which include the age of the policy holder, the number of children in the household that are driving,
and socioeconomic information including income, house value, type of job, and where the policy holder
lives.

PRELIMINARY DATA MANIPULATIONS AND SAMPLING
A brief description of the variables in the dataset are given in Table 1. There are 10,300 observations in
the dataset. The response variable are CLAIM_IND, which is coded 1 if an insurance claim was made and
0 otherwise, and CLAIM_AMOUNT, which is the amount of the claim if a claim was made and 0 otherwise.

2

Table 1. Descriptions of Variables in Auto Claims Dataset

Variable Name Type Variable Description
AGE Num Age
AREA Char Home/Work Area
CAR_USE Char Car use (y/n)
CHILDREN Num Number of children
CHILD_DRIV Num Number of children driving
CLAIM_AMOUNT Num Claim Amount
CLAIM_IND Num Claim indicator (1 = claim made; 0 = No claim)
CLM_FREQ Num Number of claims in last 10yrs
DISTANCE Num Distance to work
EDU_LEVEL Char Highest level of education
GENDER Char Gender of driver
HOUSE_VAL Num Value of house
ID Char ID number
INCOME Num Income
JOB Char Occupation of driver
MVR_PTS Num Record points
REVOKED Char License revoked in last 10 years? (Yes, No)
STATE_CODE Char
STATUS Char Marital status (Yes = Married; No = Not married)
VEHICLE_AGE Num Age of vehicle
VEHICLE_TYPE Char Type of vehicle
VEHICLE_VAL Num Value of vehicle
YOJ Num Years on job

Variables such as INCOME, CLAIM_AMOUNT, and HOUSE_VAL are often right skewed so I carried out
some preliminary graphical summaries of these and other variables. All three variables were indeed right-
skewed. Figure 1 is a panel of summary plots for INCOME obtained in PROC UNIVARIATE. The boxplot,
normal quantile plot, and histogram all show skewness. Accordingly, log transformations were applied to
all three variables with an offset of 1. That is,

LOG_INCOME = log (1 + INCOME).

3

Figure 1. Graphical Summaries of the Distribution of the Variable INCOME

Preliminary data summaries also revealed that several of the interval-valued variables contained 500-600
missing values. At this point the data analyst has the choice of simply omitting the observations that have
missing values on one or more of these variables, which is satisfactory is the total number of missing values
is small relative to the total sample size, or imputing the missing observations. For these analyses I chose
to impute the missing data using the very simplest alternative, the mean of the non-missing values of each
variable, using PROC HPIMPUTE. The code I used is given below:

 title2 "Imputing Missing Values in YOJ, LOG_HOUSE_VAL and LOG_INCOME";
 proc hpimpute data=SASGF.claim2 out=SASGF.claim3;
 input YoJ log_income log_house_val vehicle_age;
 impute YoJ / method = mean;
 impute log_income / method = mean;
 impute log_house_val / method = mean;
 impute vehicle_age / method = mean;
 ID Claim_Ind Area Edu_Level Gender Job Revoked State_Code Vehicle_Type
 Status Log_Claim_Amt Age Children Child_Driv Clm_Freq Distance
 Vehicle_val;
 run;

Distribution and Probability Plot for INCOME

$-4 $-2 $0 $2 $4

Normal Quantiles

$0

$100,000

$200,000

$300,000

In
co

m
e

0 250 500 750 1000 1250

Count

$6,000
$42,000
$78,000

$114,000
$150,000
$186,000
$222,000
$258,000
$294,000
$330,000
$366,000

In
co

m
e

4

A summary of the results of the imputation is given in Table 2.

Table 2. Summary of Imputation of Four Variables in Insurance Claims Dataset

Imputation Results

Variable
Imputation
Indicator

Imputed
Variable

N
Missing

Type of
Imputation

Imputation
Value (Seed)

YOJ M_YOJ IM_YOJ 548 Mean 13.47395

LOG_INCOME M_ LOG_INCOME IM_ LOG_INCOME 570 Mean 10.52021

LOG_HOUSE_VAL M_ LOG_HOUSE_VAL IM_ LOG_HOUSE_VAL 575 Mean 12.70385

VEHICLE_AGE M_VEHICLE_AGE IM_VEHICLE_AGE 639 Mean 10.29790

The imputed variable has the prefix IM_ and, for each variable, a new variable indicating which observations
have been imputed is generated and carries the prefix M_.

The ID statement in the code above tells SAS which variables in the input dataset that are not being imputed
to add to the output dataset. Failure to put in this line of code will result in the output dataset, SASGF.claim3,
containing only the new imputed variables and the indicator variables for which observations were imputed.

For the purposes of evaluating and comparing different predictive methods it is very desirable to have a
completely separate test dataset. I used PROC HPIMPUTE to randomly partition the original dataset into
a training dataset (SASGF.claimTrain) with 67% (𝑛𝑛 = 6,901) of the observations in the original dataset and
a test dataset (SASGF.claimTest) with the remaining 33% (𝑛𝑛 = 3,399) observations, using the following
piece of SAS code:

 title2 "Partitioning the Dataset into Training and Test Pieces";
 proc hpsample data=SASGF.claim3 out=SASGF.claim4 partition seed=4571
 partition samppct=33;
 class Claim_Ind Area Edu_Level Gender Job Revoked State_Code
 Vehicle_Type Status;
 var Log_Claim_Amt Age Children Child_Driv Clm_Freq Distance
 IM_Log_House_val IM_Log_Income IM_Vehicle_Age Vehicle_val IM_YoJ;
 run;

 data SASGF.claimTrain SASGF.claimTest;
 set SASGF.claim4;
 if _PARTIND_ eq 0 then output SASGF.claimTrain;
 else if _PARTIND_ eq 1 then output SASGF.claimTest;
 run;

Note that I set the value of the seed for the random number generator so I can replicate the partitioning if I
ever need to.

5

LOGISTIC REGRESSION FOR PREDICTION
An obvious simple first analysis for these data is logistic regression which I carried out in PROC
LOGISTIC with and without variable selection. Code for the logistic regression with variable selection is
follows:

 title2 "Logistic Regression for Claim_Ind with Backward Elimination";
 proc logistic data=SASGF.claimTrain descending;
 class Area Edu_Level Gender Job Revoked State_Code Vehicle_Type Status;
 model Claim_Ind = Area Edu_Level Gender Job Revoked State_Code
 Vehicle_Type Age Children Child_Driv Clm_Freq Distance
 IM_log_House_val IM_log_Income IM_Vehicle_Age Vehicle_val Status
 IM_YoJ / selection = b sls = 0.01 ctable pprob = 0.3 0.5;
 roc;
 score data = SASGF.claimTest out = claimTestscored2;
 run;

 title3 "Accuracy on Scored Dataset--Cutoff = 0.5";
 proc freq data=claimTestscored2;
 tables Claim_Ind * I_Claim_Ind / nocol;
 run;

 title3 "Accuracy on Scored Dataset--Cutoff = 0.3";
 data claimTestscored2;
 set claimTestscored2;
 PredCut3 = 0.0;
 if P_1 ge 0.3 then PredCut3 = 1;
 run;

 proc freq data=claimTestscored2;
 tables Claim_Ind * PredCut3 / nocol;
 run;

The descending option is needed in the call to PROC LOGISTIC because the response is coded as 0 or 1,
with 1 indicating that a claim was made. The roc statement generates roc curves for each model fit, and
these may be used to visually summarize the predictive accuracy. The predicted values from PROC
LOGISTIC are a form of leave-one-out (LOO) cross-validated predictions. The score statement takes the
predictive model fit to the training data and applies it to the test data. In the model statement backward
elimination is selected as the variable selection method with a significance level to stay of 0.01. In this
analysis some variables are clearly associated with CLAIM_IND and some are not so using values of the
significance level to stay of between 0.05 and 0.001 all yield the same final model. The ctable option in the
model statement causes SAS to give accuracy metric such as percent correct, sensitivity, specificity, false
positive and false negative rates for the classification. In addition to the usual 0.5 cutoff I have specified a
cutoff of 0.3. The reason for this is that there are many more non-claims (code 0 on CLAIM_IND) than
claims (code 1 on CLAIM_IND) and in such cases with a cutoff of 0.5 the specificity may be high but the
sensitivity is often very low, below 50%. The results for the logistic regression analyses are summarized in
Table 3.

6

Table 3. Classification Accuracies for Logistic Regression with and without
Variable Selection, on Test Data and Cross-validated on the Training Data

Using Cutoffs of 0.5 and 0.3

Variable
Selection

Probability
Cut-off

Crossvalidation
Or Test Data

Percent
Correct Specificity Sensitivity

No 0.5 CV 77.5% 92.0% 38.1%
 Test 77.5% 91.7% 37.8%
 0.3 CV 73.2% 74.1% 70.6%
 Test 72.7% 74.3% 68.1%
Yes 0.5 CV 77.3% 91.8% 38.0%
 Test 77.8% 92.1% 37.2%
 0.3 CV 73.4% 74.3% 71.0%
 Test 72.7% 74.3% 68.1%

Note that the cross-validated accuracies and the accuracies measured on the test dataset are almost
identical. With a cut-off of 0.5 the specificity was over 90% and the sensitivity was less than 40% with an
overall percent correct of about 77.5%. Changing the cut-off to 0.3 led to values of the sensitivity and
specificity that were much more similar (sensitivity between 68% and 71% and specificity of about 74%)
and a slightly lower overall percent correct of 72.7%—73.4%. Finally, with regard to variable selection, six
variables were removed: STATE_CODE, IM_VEHICLE_AGE, IM_YOJ, GENDER, AGE and
IM_LOG_HOUSE_VAL.

Figure 2. ROC Curves for Variable Selection by Backward Elimination

0.00

0.25

0.50

0.75

1.00

Se
ns

iti
vi

ty

0.00 0.25 0.50 0.75 1.00

1 - Specificity

Model (0.7995)
Step 5 (0.7997)Step 4 (0.7999)
Step 3 (0.8000)Step 2 (0.8000)
Step 1 (0.8000)Step 0 (0.8004)

ROC Curve (Area)

ROC Curves for All Model Building Steps

7

The overlaid ROC curves for the original model and the models with these variables removed one at a time
(Figure 2) are virtually indistinguishable from each other and the difference in AUC values between the
model with all the variables and the model with six fewer variables is only 0.0009, an absolutely miniscule
difference by any standard. Together the overlaid ROC curves and the AUC values indicate that the
predictive accuracy of the logistic regression model was not compromised in any way with the elimination
of the six variables. This is also reflected in the metrics in Table 2: looking at the accuracies for the logistic
regressions with and without variable selection we see that there is almost no difference in any of the
metrics.

DECISION TREES
Classification and regression trees (Breiman et al. 1984), also known as decision trees, are an attractive
alternative to regression and logistic regression often resulting in very concise summaries of the data with
just a few binary partitions and similar accuracy to regression models with a dozen or more predictor
variables. Classification trees were among the first machine learning methods to find widespread use
among statisticians and are also the basis for some of the most accurate classification procedures, notable
gradient boosting machines (Friedman 2001) and random forests (Breiman 2001).

A very first step in predicting using a decision tree is to select the appropriate size of the tree. Decision
trees are fit in SAS using the HPSPLIT procedure. The key diagnostic for selecting tree size is the plot of
the cross-validated accuracy of the tree against tree size (the number of terminal nodes or leaves) which is
denoted by CVCC in the SAS code that follows. Cross-validation entails randomly splitting the dataset into
10 equal size pieces. By selecting the value of random seed I am able to ensure that I get the same
partitioning of the data each time and can replicate my results. As is the case in many SAS regression-like
procedures, categorical variables are put in a class statement. The difference between PROC HPSPLIT
and, say, PROC LOGISTIC, is that if the response variable is categorical then it also goes in the class
statement. Thus, CLAIM_IND is the first variable in the class statement and the response variable in the
models statement. Last, we must specify a metric for measuring the purity of the subgroups of data
generating by the binary partitioning process. I have chosen the Gini index, which is the most commonly
used metric but other metrics such as entropy are available. The following is the SAS code I used to get
the CVCC plot to help me to determine candidate tree sizes:

 title2 "Fitting a Classification Tree";
 title3 "Determining the Size of the Tree";
 proc hpsplit data=SASGF.claimTrain cvmethod=random(10) seed=456 cvmodelfit
 plots(only)=cvcc;
 class Claim_Ind Area Edu_Level Gender Job Revoked State_Code
 Vehicle_Type Status;
 model Claim_Ind = Area Edu_Level Gender Job Revoked State_Code
 Vehicle_Type Age Children Child_Driv Clm_Freq Distance
 IM_log_House_val IM_log_Income IM_Vehicle_Age Vehicle_val Status
 M_YoJ;
 grow gini;
 run;

From the output we obtain the plot of cross-validated accuracy against tree size. The highest accuracy
(which is the minimum misclassification rate) occurs for a tree with 32 leaves (terminal nodes). The 1-SE
rule of Breiman et al. (1984) suggests a much smaller tree with four terminal nodes. That is, the original
(training data) of over 6,000 observations is divided into just 4 subgroups. For further analyses I decided
to fit classification trees with 4, 14, and 32 leaves and to compare their accuracies.

8

Figure 3. Plot of Cross-validated accuracy against Tree Size

The following code is for fitting a tree with four leaves and scoring the test dataset:

 title3 "Fitting a Tree with 4 Leaves and Predicting onto the Test Data";
 proc hpsplit data=SASGF.claimTrain cvmethod=random(10) seed=456
 cvmodelfit plots;
 class Claim_Ind Area Edu_Level Gender Job Revoked State_Code
 Vehicle_Type Status;
 model Claim_Ind = Area Edu_Level Gender Job Revoked State_Code
 Vehicle_Type Age Children Child_Driv Clm_Freq Distance
 IM_log_House_val IM_log_Income IM_Vehicle_Age Vehicle_val
 Status IM_YoJ;
 grow gini;
 prune costcomplexity (leaves=4);
 code file='C:\Users\Richard\Documents\Research\Reviews\SAS\SAS Global
Forum 2019\Fournodes.sas';
 run;

 data claimTestpred(keep=Actual Predicted);
 set SASGF.claimTest end=eof;
 %include "C:\Users\Richard\Documents\Research\Reviews\SAS\SAS Global
Forum 2019\Fournodes.sas";
 Actual = Claim_Ind;
 Predicted = (P_Claim_Ind1 >= 0.5);
 run;
 proc freq data=ClaimTestpred;
 tables Actual*Predicted / nocol;
 run;

1 4 8 14 26 32 42 48 56 57 82 99 131 166 184 255 257 258

Number of Leaves

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
ve

ra
ge

 M
isc

la
ss

ifi
ca

tio
n

R
at

e

58.988
0.0044

0.0026
0.0014

.00086
.00066

.00059
0.0005

.00047
0.0004

.00033
.00028

.00023
.00018

.00013
.00012

.00011
55E-12

Cost-Complexity Parameter

Cost-Complexity Analysis for CLAIM_IND Using Cross Validation

1 4 8 14 26 32 42 48 56 57 82 99 131 166 184 255 257 258

Number of Leaves

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
ve

ra
ge

 M
isc

la
ss

ifi
ca

tio
n

R
at

e

58.988
0.0044

0.0026
0.0014

.00086
.00066

.00059
0.0005

.00047
0.0004

.00033
.00028

.00023
.00018

.00013
.00012

.00011
55E-12

Cost-Complexity Parameter

0.0007Parameter
32N Leaves

0.243Min Avg Misclass Rate
1–SE

Cost-Complexity Analysis for CLAIM_IND Using Cross Validation

9

In the prune statement the size of the tree to be fitted is specified. The code statement outputs SAS data
step code for scoring a new dataset and the data step that follows imports those commands and scores
the test dataset. In this example I used a cut-off of 0.5 but it would be very simple to modify to obtain a
cutoff of 0.3 if so desired.

Table 4 is a modification of Table 3 to include the cross-validated and test data classification accuracies
for classification trees with 4, 14, and 32 leaves.

Table 4. Classification Accuracies for Logistic Regression with and without
Variable Selection, on Test Data and Cross-validated on the Training Data

Predictive
Method

Crossvalidation
Or Test Data

Percent
Correct Specificity Sensitivity

Logistic Regression CV 77.5% 92.0% 38.1%
No Variable Selection Test 77.5% 91.7% 37.8%
Logistic Regression CV 77.3% 91.8% 38.0%
Variable Selection Test 77.8% 92.1% 37.2%
Tree with 4 leaves CV 74.8% 97.2% 14.1%
 Test 75.5% 97.3% 13.1%
Tree with 14 leaves CV 74.9% 90.0% 34.0%
 Test 75.9% 89.8% 36.0%
Tree with 32 leaves CV 75.6% 90.0% 36.6%
 Test 76.8% 91.6% 34.3%

The cross-validates accuracies and the predictive accuracies obtained on the test data are very similar with
overall percent correctly classified being just a tiny bit higher than the cross-validated estimates. This is
unusual, but they differences are so small they may be down to randomness in the cross-validation
partitioning of the training data into 10 pieces. The overall predictive accuracy of the classification trees
increases very slightly with the number of terminal nodes, from 75.5% for the tree with only four terminal
nodes to 76.8% for the tree with 32 nodes. The accuracy for this largest tree is essentially the same as for
the logistic regression models. Usually interpretation of small trees is easiest but in this case it is
complicated by the fact that the sensitivity for the tree with four leaves is only 13%—14%, which is too poor
to be of practical value. For the two larger trees the values of sensitivity are much closer to those for the
logistic regression models.

RANDOM FORESTS
In random forests (Breiman 2001) many (typically 100—500) subsets of the data are randomly drawn and
decision trees fitted to each random subset of the data. The predictions are then combined to give more
accurate predictions. In many applications (see, for example, Cutler et al. 2007) random forests has been
found to be among the most accurate classifiers.

In SAS random forests may be fit using the HPFOREST procedure. The default proportion of observations
in the original dataset that are selected in each sample is 0.6 and this may be changed using the
inbagfraction option. The number of trees to be fit may also be specified with the maxtrees option. The
default is 100; I have chosen 200 in the code below; and other versions of random forests use 500 or more
trees. Several authors (e.g., Cutler et al. 2007) have found that the accuracy of random forests is

10

remarkably robust to the number of fitted trees and that as few as 50 trees will yield very accurate
predictions. In the algorithm predictions from a given tree are made only for the observations that were not
part of the dataset to which that tree was fit. Such observations are said to be out-of-bag (oob) with respect
to the tree (and the dataset to which it was fit). The strange looking option scoreprole=oob is requesting
the accuracy results for predictions generate only through combining the out-of-bag predictions. This is
generally equivalent to cross-validation for other procedures.

 title2 "Random Forests for Claim Indicator";
 proc hpforest data=SASGF.claim4 maxtrees=200 scoreprole=oob
 inbagfraction=0.6;
 input Area Edu_Level Gender Job Revoked State_Code Vehicle_Type Status
 / level = nominal;
 input Age Children Child_Driv Clm_Freq Distance IM_log_House_val
 IM_log_Income IM_Vehicle_Age Vehicle_val IM_YoJ
 / level = interval;
 target Claim_Ind / level=nominal;
 run;

The out-of-bag accuracy in this example is 77.0% which is comparable to—but greater than—the
accuracies obtained by logistic regression. In this case we would probably prefer logistic regression and
classification trees over random forests due to their ease of interpretation.

USING SAS ENTERPRISE MINER TO ANALYZE THE INSURANCE CLAIMS DATA

In this section I show how all the preceding analyses and so much more may be carried out in
SAS Enterprise Miner. A first step is to create a new project in SAS Enterprise Miner. Clicking on
the New Project option in the left hand menu brings up a New Project Wizard (Display 1). I have
given the name SASGF Insurance Claims Analyses to the new project.

Display 1. Creating a New Project in SAS Enterprise Miner

11

Next, from within the project I created a library for the data and other items relating to these analyses.
Clicking on File … New … Library brings up the Library Wizard (see Display 2). Within the box shown in
Display 2 I specify a path to a directory I have previously set up in my SAS Studio account within SAS
OnDemand.

Display 2. Creating a New Library for the Project

The final piece of the setup in SAS Enterprise Miner is to create a diagram, the graphical workspace onto
which we are going to place analysis nodes of various kinds. This, too, is accomplished by clicking on File
… New … Diagram, which pops up a New Diagram Wizard. See Display 3. I have called this diagram
Analyses of CLAIM_IND.

Display 3. Creating a New Diagram for the Project

12

PRELIMINARY DATA MANIPULATIONS AND SAMPLING

I previously placed the insurance claims dataset in the directory for these analyses in SAS Enterprise Miner.
To use it I just and dropped it into the diagram (workspace) and that brought up the Data Source Wizard.
One of the most important steps in the wizard is step 5, which is where one can specify formats and roles
for variables. In the column labelled Role one variable is labelled as an ID variable and is not used in
subsequent analyses, and all the remaining variables are labelled Input. To specify that CLAIM_IND and
CLAIM _AMOUNT should be regarded as response variables, I change their roles to Target.

In any given analyses one can typically only have a single response/target variable so you may have to
specify which variable to use as the response for the specific analysis. I found that CLAIM_IND was the
default response for my analyses, and that’s what I wanted.

The second change I made was in the column labelled Level. Variables that are obviously categorical
(because they contain letters) have level Nominal; all others have level Interval. The variable CLAIM_IND
is coded as 0 and 1 so by default it is level Interval. In subsequent analyses regressions would be carried
out, when we really want binary classifications. To remedy this situation I changed the level of CLAIM_IND
from Interval to Binary.

Display 4. Identifying a Data Source for the Project

My usual first step in my analyses, before sampling or partitioning data, is to summarize the distributions of
variables. In SAS Enterprise Miner I pull down the Multiplot node from the Explore menu, connect it to the
data source and then right click … Run. See Display 5.

13

Display 5. Summarizing Interval Valued Variable Using the Multiplot Node.

Histograms for two of the interval values variables are shown in Figure 4. The histogram for AGE looks
remarkably like the normal density histogram while the histogram for INCOME shows the right skewness
of this variable that we saw in the output from PROC UNIVARIATE in the first set of analyses.

Figure 4. Histograms of AGE and INCOME

Transforming variables is done with the Transform Variables node in the Modify menu. In the left hand
menu in Display 6 I have set all the default imputation setting to none. Then I clicked on the Variables
part of the menu which opened the menu box on the right of the display. There I manually selected log
transformations for three of the variables. The transformation is applied with an offset of 1. That is,

LOG_INCOME = log (1 + INCOME).

14

Display 6. Transforming Variables Using the Transform Variables Node.

Imputation of missing vales is accomplished using the Impute node, also in the Modify menu. I switched
off the default imputation and the specified using the mean value to impute LOG_INCOME,
LOG_HOUSE_VAL, VEHICLE_AGE, and YOJ.

Display 7. Imputation of Missing Values Using the Impute Node.

To this point, all the data manipulations and adjustments have been identical to those carried out in the
usual SAS programming language in the first part of the paper. The final step of data manipulation is to
(randomly) partition the insurance claims dataset into training and test pieces. The Partition node in the
Sample menu allows one to do this quickly and easily. In Display 8 I have selected 67% (𝑛𝑛 = 6901) of the
data for the training dataset and the remaining 33% (𝑛𝑛 = 3399 for the test data.

15

Display 8. Partitioning the Insurance Claims Data into Training and Test Datasets.

LOGISTIC REGRESSION ANALYSIS
Using the Regression node in the Model menu I fit logistic regression models for CLAIM_IND with and
without variable selection. I renamed the nodes to reflect the analyses carried out in each node. Variable
selection is automatic so I had to switch it off for the higher node. For the lower node I selected backward
elimination as the method. Using P-values as a stopping criterion is not available in this node so, instead,
I used Schwarz’s criterion to select the model.

Display 9. Logistic Regression with and without Variable Selection.

Discussion of the results of these analyses are postponed until later in the paper.

CLASSIFICATION TREES
Classification trees for a binary, interval-valued, and multicategory response may be fit using the Decision
Tree node in the Model menu (Display 10). For controlling the size of the fitted tree the item in the left menu

16

labelled Depth is used. I fit trees of depths three and four (which had between 8 and 16 leaves). Discussion
of the fitted trees and their accuracies is postponed until later.

Display 10. Fitting Classification Trees of Depths Three and Four.

RANDOM FORESTS
Within SAS Enterprise Miner random forests may be found in the HPForest node of the HPDM menu. By
design random forests has few parameters that need to be set. I increased the maximum number of trees
to be fit from the default value of 100 to 200. The proportion of observations in the original dataset to have
in each sampled dataset has a default value of 0.6 and I have yet to encounter a problem in which choosing
a different value of this parameter yields a significantly more accurate set of predictions. As with the
previous predictive analytic methods applied in SAS Enterprise Miner to the insurance claim data, a
discussion of the results is postponed until later in this paper.

Display 11. Fitting Random Forests to the Insurance Claims Data.

17

GRADIENT BOOSTING MACHINES, SUPPORT VECTOR MACHINES AND MORE TREES
Several other cutting edge classification procedures may be applied to data in SAS Enterprise Miner. The
Gradient Boosting node in the Model menu fits gradient boosting machines (Friedman 2001). Within the
HPDM menu the HP SVM node may be used to fit support vector machines and the HP Tree node is a
slightly different implementation of decision trees. Because it is so easy to do so I added all three methods
to my analysis: see Display 12.

Display 12. Fitting Gradient Boosting Machines, Support Vector Machines and a Tree.

MODEL COMPARISON
In preceding steps we have fit many predictive methods but not discussed the results or compared the
methods. One of the most remarkable features of SAS Enterprise Miner is the Model Comparison node in
the Assess menu. This allows us to compare the predictive accuracies of many methods applied to the
same data in one foul swoop. There is almost nothing to do here other than to join all the predictive analytics
nodes to the Model Comparison node and clicking run. See Display 13 for the final diagram for these
analyses. From the output of the Model Comparison node Table 5 was constructed. It contains the Percent
Correct (PCC) and the AUC values for each method on both the training and test data. There is actually
more information available in the output to the Model Comparison node: for the training data the full
confusion matrix is available and hence so are the sensitivity and specificity.

The differences are very small for these data but the two logistic regression models—with and without
variable selection—have slightly higher accuracies than the other methods while the three classification
trees and support vector machines have slightly lower accuracies.

18

Display 13. The Model Comparison Node to Compare the Accuracies of Predictive

Methods

Table 5. Predictive Accuracies for Logistic Regression with and without
Variable Selection, Classification Trees, Random Forests, Gradient Boosting Machines

and Support Vector Machines on Training and Test Data

Method

Accuracy Metric
Percent Correctly Classified AUC

Training Data Test Data Training Data Test Data
Logistic Regression
Full Model 78% 79% 0.80 0.80

Logistic Regression
Variable Selection 78% 79% 0.80 0.80

Tree Depth = 3 75% 74% 0.73 0.72
Tree Depth = 4 76% 75% 0.75 0.73
Random Forests 77% 76% 0.83 0.80
Gradient Boosting 78% 77% 0.84 0.80
Support Vector
 Machines 82% 76% 0.85 0.76

High Performance
Tree 77% 76% 0.76 0.74

Figure 5 shows ROC curves for all the methods overlaid on the same plot for the training and test data
separately. The extent to which the curves overlap is another indicator of the modest differences in the
predictive accuracies among the different methods.

19

Figure 5. ROC Curves for Predictive Methods for Training and Test Data.

There is considerably more information in the output of the individual predictive methods. For example,
random forests identifies AREA, JOB, CLAIM_FREQ, CHILD_DRIV (number of children who are driving),
REVOKED, EDU_LEVEL, and CHILDREN as the most important variables. The high performance tree
has a similar list of important variables. With regard to interpretation of the variables, we may examine one
of the classification trees (Figure 6). For people living and working in a rural/highly rural area the accident
rate is less than 6% whereas for those living in an urban/highly urban area the accident rate is over 30%.
That is a very substantial difference. Among the drivers who live and work in urban and highly urban areas,
the nest split is on the occupation of the driver with those who are bankers, doctors, and managers having
are much lower accident rate (less than 20%) than those in other professions, including clerical and being
a student.

20

Figure 6. Classification Tree of Depth 3.

CONCLUSION
In this article I have shown more or less the same analyses of some insurance claim data using regular
SAS programming and in SAS Enterprise Miner. In the latter environment it is very easy to do additional
analyses and to compare the predictive accuracies of the different methods. What may be surprising to the
reader is how long it takes to do these analyses. Even someone who is experienced in coding in SAS will
make errors and have to look up syntax for particular options. In contrast, SAS Enterprise Miner involves
selecting options and rerunning an analysis if a mistake is made is almost trivial. And then there is the time
spent on the analyses. The SAS program I ran to obtain the output and results presented in the first part of
this paper took the better part of half a day while the SAS Enterprise Miner diagram took me only about 45
minutes. My message is that if you have access to SAS Enterprise Miner, it is an alternative to standard
SAS programming that is very well worth considering. There is a steep learning curve to get started in SAS
Enterprise Miner but once that has been done it is an excellent environment for conducting many statistical
analyses quickly and being able to compare the results of many methods.

21

REFERENCES
Breiman, Leo. 2001. “Random forests.” Machine Learning 45(1):5—32.
Breiman, Leo, Jerome Friedman, Richard Olshen, and Charles Stone. 1984. Classification and Regression

Trees. Boca Raton, FL: Chapman & Hall.
Cortes, Corinna and Vladmir Vapnik. 1995. “Support-vector networks.” Machine Learning 20:273—297.
Cutler, Richard, Thomas Edwards Jr., Karen Beard, Adele Cutler, Kyle Hess, Jacob Gibson, and Joshua

Lawler. 2007. “Random Forests for Classification in Ecology.” Ecology 88(11):2783—2792.
Friedman, Jerome. 2001. “Greedy function approximation: The gradient boosting machine.” Annals of

Statistics 29(5):1189—1232.
Moro, S., R. Laureano and P. Cortez. 2011. “Using Data Mining for Bank Direct Marketing: An Application

of the CRISP-DM Methodology.” In P. Novais et al. (Eds.), Proceedings of the European Simulation
and Modelling Conference, pp. 117—121, Guimarães, Portugal, October, 2011.

Vapnik, Vladmir. 1995. The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag, Inc.

	Abstract
	Introduction
	Insurance claims example
	PRELIMINARY DATA MANIPULATIONS AND SAMPLING
	LOGISTIC REGRESSION FOR PREDICTION
	Decision Trees
	Random Forests

	USING SAS ENTERPRISE MINER TO ANALYZE THE INSURANCE CLAIMS DATA
	PRELIMINARY DATA MANIPULATIONS AND SAMPLING
	LOGISTIC REGRESSION analysis
	Classification trees
	Random forests
	gradient boosting machines, support vector machines and more trees
	Model Comparison

	Conclusion
	References

