
1 

Paper 3765-2019 and 3240-2019 

Analyzing Structural Causal Models Using the CALIS Procedure 

Banoo Madhanagopal, John Amrhein, McDougall Scientific Ltd. 

ABSTRACT  

Structural Equation Modeling (SEM) is a statistical technique to model hypothesized 

relationships among observed (manifest) and unobserved (latent) variables. SEM is not only 

widely applied in the social sciences, but is also suitable in areas such business, ecology, 

engineering, finance, pharmaceutical, and research. Under certain assumptions, a SEM can 

support causal inference as a Structural Causal Model (SCM). Path diagrams, commonly 

used with SEM, are visual representations of the hypothesized associations and 

dependencies and are particularly useful when studying causality.  

This paper describes how to formulate and interpret structural models as causal models. 

Using the PATH modeling language within the CALIS procedure, we fit SEMs for causal 

inference; we focus on model hypothesis and modification using fit statistics, but also briefly 

describe how to interpret model estimates to infer causality from direct and indirect effects. 

SEM is appropriate for both observational data and controlled experiments. Therefore, we 

support our discussion with two examples: the first application analyzes observational data 

from anonymized logs of a web site to infer the page causal dependencies i.e. which pages 

lead to visits of other pages; and the second example uses flow cytometry data from a cell 

signaling experiment to understand and discover the complex structure of the protein 

signaling pathways. 

INTRODUCTION  

The statistical terms correlation and causation are often misunderstood and used 

interchangeably. Correlation (or association) occurs when two or more variables’ values 

change together in a measurable relationship. Causation is the effect that changes of one 

variable have on another variable’s values. We have all heard many times that “correlation 

does not imply causation”; when two variables are correlated, it does not imply that 

changing one affects change in the other. For many research questions, correlation-based 

conclusions are provided based on the patterns observed, but we fail to investigate causal 

relations. Understanding the differences between the two goes a long way to support 

business decisions or developing a new intervention for a treatment, because the usefulness 

of causal results is far greater than correlational results. 

 

Especially in an observational study, in which there was no experimental design giving rise 

to the data, correlational results are often “discovered”. That is, we had no hypotheses of 

prior relationships among the variables. Although causal results may be discovered in a 

similar manner, it is more often the case that causal relationships are pre-specified, and the 

analyses are conducted to confirm or refute our hypotheses. The pre-specified causal 

relationships are learned from prior scientific studies or research and require the input of a 

subject matter expert.  

 

Structural Equation Modeling (SEM) is a statistical technique to model hypothesized 

relationships among variables. We begin by hypothesizing or specifying assumed 

relationships between a set of variables. This can be done graphically (as we do in this 

paper) or by listing a set of functions is what is meant by “structural” in “structural equation 

modeling”. We often rely on subject matter expertise to hypothesize the model structure. 

The purpose of the analysis is to confirm or refute the model structure. This is an important 
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concept and might differ from the usual analyses of discovery with which we have become 

accustomed. 

The variables in a SEM may be manifest (observed) or latent (unobserved). Variables are 

further classified as exogenous, which have no causes themselves but might affect the 

values of other variables, and endogenous, whose values are caused by other variables 

(which may be exogenous or endogenous).  

Relationships between the variables belong to one of the following types: 

➢ Correlational or Bidirectional 

➢ Isolated or Conditionally Independent 

➢ Causal or Unidirectional (the focus of this paper) 

It is useful to visualize an SEM as a graphical model. Figure 1 shows a simple example of a 

SEM graph or pathway, illustrating the concepts of variable and relationship types discussed 

in this introduction. In Figure 1, we use a common standard by representing latent variables 

with ovals and manifest variables with rectangles. Variables A and W are exogenous 

variables because they have no single-headed arrows entering them. Variables X and Y are 

endogenous because they are the children of parents; A is the parent of X, and X and W are 

the parents of Y. The double-headed arrows represent covariances (between X and W) or 

variances (of Y). The three relationship types are also represented in Figure 1. X and W are 

assumed to have a correlational relationship, as indicated by the double-headed arrow. A 

and W are assumed to be conditionally independent; they are isolated from each other via 

the lack of a connecting arrow. Several causal relationships are assumed; A to X, X to Y, 

and W to Y. The omission of an arrow between X and W indicates a strong causal claim that 

there is no causal effect between the variables. 

 

 

Figure 1 Graphical Representation of a Structural Equation Model 

It is important that “causal” in SEM terminology does not mean “causal” as we defined it 

here; i.e. it does not mean that the change in a parent variable affects a change in a child 

variable. SEM “causal” is better understood as “predictive” or “explanatory”, like regression 

modeling. But, in this paper, we use “causal” in the usual, non-SEM, definition. Beginning in 

the next section, we describe the conditions your SEM must meet to allow declaration of 

cause and effect. 

WHAT MAKES A STRUCTURAL EQUATION MODEL A STRUCTURAL 

CAUSAL MODEL? 

A SCM (Structural Causal Model), proposed by Pearl, integrates SEM and graphical models 

to help us understand causal relationships. SEMs are predominantly used to confirm a 
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model rather than to explore a phenomenon. SEMs can be interpreted for cause and effect, 

that is, as SCMs, when the following conditions are met: 

• The structure is a valid representation of reality 

• The relationships are directed and acyclic 

• Variables, conditioned on their parents, are independent of their ancestors 

• There are no “back doors” from cause to effect 

We discuss each of these in turn. 

MODEL STRUCTURE IS A VALID REPRESENTATION OF REALITY 

Causal modeling begins by drawing a graphical representation, like Figure 2, that represents 

all factors, that might affect the effect of interest. Subject matter experts should be 

consulted to ensure that no factors are omitted. You should not be concerned whether the 

factors have been measured; it is important to include all factors in a structure so that it 

reflects reality, or at least as you believe it to be. In this example, nutrition, motivation, and 

fitness are latent variables (we did not measure and record their values in the analysis data 

set), yet we believe them to be important variables to include so that our model is a valid 

representation of reality. Suppose we measure each person’s activity level, perhaps in hours 

of rigorous physical activity per week. If we can assume that the measure of activity 

accounts for a person’s general health and motivation, then activity captures unobserved 

attributes (of an individual) that affect heatstroke.

 

Figure 2 Hypothesized Dehydration-Heatstroke Model 

RELATIONSHIPS BETWEEN VARIABLES ARE DIRECTED AND ACYCLIC 

Directed Acyclic Graphs (DAGs) are a subset of all graphical models. Directed means that 

the relationships must be single-headed arrows, starting from one variable, (called the 

parent) and ending in another variable, (called the child). Acyclic means that no loops exist 

in the graph. To illustrate, consider the example in which heatstroke is assumed to be 

caused by dehydration from playing summer sports, like soccer. In Figure 2, we hypothesize 

a directed, acyclic causal path for heatstroke. Note that the double-headed arrow indicates 

the variance for heatstroke and not a relationship. Variables are independent, conditional on 

parents  

Another condition for causal inference is that each variable is conditionally independent of 

its ancestors, given its parents. In Figure 2, soccer is an ancestor of heatstroke. If 

heatstroke is independent of soccer given that we observe dehydration, then the condition 

is met. To say another way, soccer affects the occurrence of heatstroke only through its 
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cause of dehydration. If soccer affects heatstroke directly, or through another mediating 

variable, such as fatigue as shown in Figure 3 then heatstroke is not conditionally 

independent of soccer, our model is incomplete (does not reflect reality), and causal 

inferences are suspect.  

If our SEM meets the above 3 conditions to interpret cause and effect, then we can conclude 

that it is a causal model. However, if conditional it is appropriate to mention one caveat to 

the criterion of conditional independence, known as the ‘Back-Door’ criterion. 

THERE ARE NO “BACK-DOORS” FROM CAUSE TO EFFECT  

The backdoor criterion in a DAG requires that we have accounted for all possible paths from 

a cause under study to its effect of interest. Alternatively, ‘Which variables to control in the 

model to control for confounding?’. A back-door path can convey a spurious relationship 

between the cause and effect, but never explains causation.  

 

 
Figure 3 Back-Door Criterion 

Consider the model in Figure 3. Suppose we are interested in the causal relationship 

between dehydration and heatstroke; i.e. dehydration is the cause under study and 

heatstroke is the effect of interest. On consultation with a subject matter expert, we decided 

that our model should include endurance as one of the causes of heatstroke. Do we need to 

control for endurance when estimating the causal effect of dehydration? In Figure 3, there 

are other variables that affect both dehydration and heatstroke; i.e. activity, endurance and 

soccer. Therefore, to correctly estimate the causal effect of dehydration on heatstroke, we 

need to “block” the path (i.e. close the backdoor) by controlling for a measured variable 

within the backdoor path to heatstroke; soccer in this example. Dehydration has backdoor 

access to heatstroke via soccer and endurance (the highlighted orange dashed arrow). 

However, if we control for soccer, then the backdoor is blocked and our causal conclusions 

about dehydration will be valid.  

A thorough discussion of the backdoor criterion is beyond the scope of the paper. Readers 

are encouraged to consult one of the references by Pearl. 

THE CALIS PROCEDURE 

PATH MODELING LANGUAGE 

PROC CALIS (Covariance Analysis and Linear Structural Equations) is the procedure in 

SAS/STAT for fitting SEMs. PROC CALIS incorporates eight different modeling languages, 
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such as AMOS, COSAN, LINEQS, and LISREL, to appeal to a wide audience from different 

backgrounds. We use the PATH modeling language because it is an intuitive method to 

program graphical models. For example, the PATH statement used to code the model in 

Figure 2 is: 

path 

 heatstroke <--- dehydration, 

 dehydration <--- soccer, 

soccer <--- activity, 

activity <--- individual, 

heatstroke <---> heatstroke; 

or: 

path 

dehydration ---> heatstroke, 

soccer ---> dehydration, 

activity ---> soccer, 

individual ---> activity, 

heatstroke <---> heatstroke; 

You might choose the first syntax, as we do in this paper, because it mimics a MODEL 

statement in other SAS/STAT procedures. Or you might choose the second syntax because 

it is consistent with a graphical representation of a model that reads from left to right.  Note 

that because nutrition, motivation, and fitness were not measured, they will not be variables 

in the input data set and will be represented by a single latent cause. These 3 variables, 

which are attributes of an individual, are collectively termed as ‘individual’ in our PATH 

statement. 

Recall from our introduction that SEM is intended to confirm or refute a hypothesized 

model; SAS/STAT documentation refers to PROC CALIS as a “confirmatory analytic 

procedure”. After fitting your hypothesized model, you might wish to refine the model based 

on the initial model fit. PROC CALIS provides capabilities for a process such as the following. 

Step PROC CALIS 

1. Draw your hypothesized 

model diagram 

1. Use a whiteboard, pencil and paper, or your 

favorite presentation software 

2. Fit the model 2. PATH statement 

3. Assess the fit 3. FITINDEX statement: goodness of fit statistics 

4. Refine the model 
4. MOD option on PROC statement: modification 

indices 

5. Repeat steps 2, 3 and 4 5. PATH statement, FITINDEX statement, MOD option 

6. Display final model diagram 6. PATHDIAGRAM statement 

7. Assess causality 7. Evaluate the conditions for causal criteria 

Table 1 Model Development Steps 
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COVARIANCE MATRIX 

The fundamental unit of information in an SEM is the covariance matrix of the model 

variables. The number of unique elements within a covariance matrix with ‘k’ variables is 

equal to  

   𝑖 =
1

2
𝑘(𝑘 + 1) 

The number of unique observations including means is equal to 

   𝑖 =
1

2
𝑘(𝑘 + 3) 

For example, if we have 5 variables, then the variance-covariance matrix is 5x5 having 25 

total elements. Out of these 25, 15 (5 variances and 10 covariances) are unique and 

capture the covariance structure of the data. The number of parameters that we estimate in 

our model cannot be greater than the number of unique elements, 15. If our analysis 

includes estimating means and intercepts, then we can estimate up to 20 parameters. 

An ‘Under-Identified’ model is a model in which it is not possible to estimate all the model 

parameters because there are too few unique elements. A ‘Just-Identified’ model is a model 

in which the number of unique covariance elements equals the number of parameters being 

estimated. An ‘Over-Identified’ model is a model in which the number of unique covariance 

parameters is greater than the number of parameters being estimated. The difference is the 

degrees of freedom available for hypothesis tests. The total number of estimated 

parameters in the model should always be lower than fundamental unit of information in the 

data; i.e. the model should be over-identified. 

There are some advantages to using a covariance matrix, rather than the raw data, as 

input, including; 

• Covariance matrices preserve anonymity; e.g. protecting the identity of participants 

in clinical trials  

• Ability to re-analyze a published covariance matrix  

• Ability to analyze “big data” much more easily    

GOODNESS OF FIT 

PROC CALIS has more than two dozen different fit statistics that can be used to assess how 

well the model fits the data. Use the FITINDEX statement to specify which fit statistics to 

display in the Fit Summary table. Table 2 lists common indices, which fall into one of three 

categories; 

1. Absolute or Standalone indices compare the fitted model to a saturated model and 

do not account for model complexity 

2. Parsimony indices indicate how well the model fits the data, equivalently fits almost 

well any new data. These indices account for model complexity, penalizing complex 

models 

3. Incremental indices compare the fitted model to the baseline model or null model 

containing only variance parameters, no covariances or coefficients 
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Symbol Name Description 
Recommended 

Cut-offs 

χ2 Chi Square 

An absolute index. Compares the 

hypothesized model to the full 

model with no constraints. 

Sensitive to sample size. 

p-value >0.05 

SRMR 

Standardized Root 

Mean Square 

Residual 

An absolute index. Root mean 

squared standardized residuals. 

Smaller is better. 

< 0.08 

RMSEA 

Root Mean Square 

Error of 

Approximation 

A parsimony index. If you use only 

one index, use this one. See Kelley 

and Lai (2011) 

<.05=close fit 

<.08=mediocre 

>.1=poor fit 

RMSEA 90% Confidence Interval 
Narrower is 

better 

PROBCLFIT 
Probability of 

Close Fit 

A parsimony index. A chi-square 

test in which the null hypothesis is 

“close fit” 

> 0.05 

CAIC 
Bozdogan 

Criterian AIC 
Parsimony indices. Likelihood 

based. Penalizes for large samples 

and number of parameters. 

Smaller is better 

SBC 
Schwarz Bayesian 

Criterion 

CFI 

Bentler 

Comparative Fit 

Index 

Incremental indices. Indexes 

amount of variance explained. 

Analogous to R2. Preferable for 

smaller samples. NNFI is also 

known as Tucker Lewis Index (TLI).  

>0.90 

NNFI 

Bentler-Bonett 

Non-normed 

Index 

Table 2 Common Goodness of Fit Statistics 

Use a combination of fit indices to get a ‘good-fitting’ model before making causal 

inferences from the fitted SEM.  

EXAMPLE 1: NAVIGATION WITHIN A WEBSITE 

The weblogs example is a real-world data set of anonymized logs from a web site (Grozea, 

2008). The data set consists of 20 variables whose values are the counts of daily visits to 

each of 20 web pages recorded over a period of 512 days; each row corresponds to one 

day’s counts. 

The web pages have links to other pages within the website that visitors use to navigate the 

site. The purpose of the SEM analysis is to infer page dependencies; i.e. which pages lead 

visitors to visit which other pages? For conciseness and to better visualize the path diagram, 

we limit the data to pages 1–7 in this example.  

With the growing privacy concerns, weblog data such as cache, location, and IP addresses 

that are currently available to advertisers and ad platforms might become unavailable. More 

users are opting to prevent the tracking of their online navigation. Website owners and 

service providers may no longer be able to store or use such data. However, web designers 

and marketers will continue to be interested in the effectiveness of their website and ads in 

leading visitors to a target page such as a checkout page. SEMs using only the covariance 

matrices as input resolve this dilemma. 
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VISUALIZE THE HYPOTHESIZED MODEL 

A DAG is drawn to visualize the relationships between the 7 variables in the weblogs data 

set. This graph helps us visualize our hypothesized dependencies. This first step is typically 

performed by subject matter experts; web designers and online marketing agents in this 

case. We did not have access to the SMEs, so we hypothesized that a visit to a page 

depended upon visits to the four preceding pages. For example, a visit to page 05 depended 

on visits to pages 01 – 04. The DAG for our hypothesized model, displayed in Figure 4, was 

generated using the PATHDIAGRAM statement in PROC CALIS. 

 

Figure 4 Graph of Weblogs Data 

GENERATE THE COVARIANCE MATRIX 

To demonstrate using a covariance matrix as input to PROC CALIS, we used the CORR 

Procedure to create the matrix. The following PROC CORR and DATA steps create two data 

sets; one containing the covariance matrix for pages 01 to 07, and the other containing the 

correlation matrix (which PROC CALIS also accepts as input): 

   proc corr data=weblogs outp=corrout cov; 

   var page01-page07; 

run; 

 

data webcorr(type=corr) webcov(type=cov); 

  set corrout; 

  if _type_ ne "COV" then output webcorr; 

  if _type_ ne "CORR" then output webcov; 

run; 

PROC CALIS will read the metadata of the input data set to check the data set’s type. 

Therefore, we set the type to CORR or COV using the TYPE= data set option. The OUTP= 

data set created by PROC CORR will contain a variable named _TYPE_. Rows corresponding 

to the covariance matrix will have _TYPE_ equal to “COV”. Other rows will have _TYPE_ 

equal to “MEAN”, “STD”, or “N”. PROC CALIS needs these statistics, so keep those rows in 

your data set.  

Here we have 7 variables (page01-page07). Therefore, the variance-covariance matrix is 

7x7. Out of 49 values in the matrix, 28 (7 variances, 21 covariances) are unique values 

representing the covariance structure. Therefore, our SEM will be over-identified if we are 

estimating fewer than 28 parameters. 

TRANSLATE THE DAG TO A PATH STATEMENT 

Each of the single headed arrows in Figure 4 represents a hypothesized dependency. For 

each of these paths, PROC CALIS will estimate a path coefficient and test whether the 

coefficient statistically differs from zero. A PROC CALIS step, using the PATH language, that 

fits our hypothesized model in Figure 4 is:  
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   proc calis data=webcov toteff mod; 

   fitindex on(only) = [chisq df probchi bentlernnfi cfi rmsea rmsea_ll    

rmsea_ul probclfit srmsr caic sbc];  

   path  

    page02 <-- page01 = one_2, 

    page03 <-- page01 page02 = one_3 two_3, 

    page04 <-- page01 page02 page03 = one_4 two_4 three_4, 

    page05 <-- page01 page02 page03 page04 = one_5 two_5 three_5 four_5, 

    page06 <-- page02 page03 page04 page05 = two_6 three_6 four_6 five_6, 

    page07 <-- page03 page04 page05 page06 = three_7 four_7 five_7 six_7; 

   pathdiagram notitle fitindex=[chisq df probchi cfi rmsea srmsr caic sbc]; 

  run; 

The TOTEFF=option on the PROC CALIS statement requests estimates and significance tests 

for total, direct and indirect effects (we discuss these later). The MOD= option requests 

modification indices, Lagrange Multipliers (LM) and Wald statistics, which we will use to 

guide model modifications. The FITINDEX statement ON(ONLY)= option limits the fit 

statistics to those specified in Table 2. The PATH statement specifies path coefficients to be 

estimated. Following the equal sign for each path we specify names that we want PROC 

CALIS to use to label parameters in the output. The names we use indicate the “from” and 

“to” pages in a path. For example, “one_3” will label the parameter associated with the path 

from page 01 to page 03. When there is more than one variable in a single path, the names 

must be in the same order as the variables. Otherwise you will misinterpret your output. 

The PATHDIAGRAM statement draws the path diagram of the model. The FITINDEX= option 

specifies which fit indices you want displayed within the diagram. This gives a complete 

picture of the model with fit indices in a single display. 

ASSESS FIT STATISTICS 

Only certain output from PROC CALIS is discussed here. The ‘Modeling Information’ table 

shows that the model was fit using 512 observations, which PROC CALIS read from the row 

of the input data set in which _TYPE_=N. 

Modeling Information 

Maximum Likelihood 
Estimation 

Data Set WEBCOV 

N Obs 512 

Model Type PATH 

Analysis Covariances 

Table 3 Modeling Information for Weblogs Data 

The ‘Variables in the Model’ table can be used to verify if we correctly translated our 

hypothesized model on the PATH statement; i.e. if the endogenous, exogeneous, manifest, 

and latent variables are as we intended. In this model, all the variables are identified as 

manifest (observed) variables of which 6 are endogenous variables and 1 is an exogeneous 

variable (page 01 has no arrows going into it). Latent variables can be specified on the 

PATH statement but do not correspond to any variables represented in the raw data or input 

covariance matrix. 
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Variables in the Model 

Endogenous Manifest page02  page03  page04  page05  page06  
page07 

 Latent  

Exogenous Manifest page01 

 Latent  

Number of Endogenous Variables = 6 
Number of Exogenous Variables  = 1 

Table 4 Variables Information for Weblogs Data 

The model satisfied convergence criterion; confirmed by a note in the SAS log. The ‘Path 

List’ table, not shown here, displays the path coefficients for every path coded on the PATH 

statement. The ‘Variance Parameter’ table, also not shown here, displays the estimates of 

exogeneous variables and error variances of the endogenous variables in the model.  

Fit Summary 

Absolute Index Chi-Square 7.3652 

 Chi-Square DF 3 

 Pr > Chi-Square 0.0611 

 Standardized RMR (SRMR) 0.0028 

Parsimony Index RMSEA Estimate 0.0534 

 RMSEA Lower 90% Confidence Limit 0.0000 

 RMSEA Upper 90% Confidence Limit 0.1035 

 Probability of Close Fit 0.3779 

 Bozdogan CAIC 188.3233 

 Schwarz Bayesian Criterion 163.3233 

Incremental Index Bentler Comparative Fit Index 0.9993 

 Bentler-Bonett Non-normed Index 0.9952 

Table 5 Fit Summary for Weblogs Initial Model 

The ‘Fit Summary’ table shows only the fit indices that we requested on the FITINDEX 

statement. The chi-square is non-significant, indicating that our hypothesized model is not 

statistically different from the saturated model. The SRMR is below 0.08, signifying a small 

deviation in residuals between the fitted model and hypothesized model. The RMSEA is in 

the mediocre range, signifying a medium amount of variance explained by the model. The 

probability of close fit is greater than 0.05 which suggests a good fit. The comparative fit 

index and non-normed index are both greater than 0.9. We will interpret SBC and BCAIC 

only after refitting a modified model; decreasing values will suggest a better fitting model. 
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IMPROVE MODEL FIT USING MODIFICATION INDICES 

The overall model fit was good, so we could stop here and conclude that our hypothesized 

model has been confirmed. However, the RMSEA = 0.0534, is a bit higher than we would 

like, so we decide to explore model modifications to improve the fit. The model can be 

modified by: 

1. Increasing the number of paths (i.e. allowing the corresponding coefficients to be 

estimated) 

2. Reducing the number of paths (i.e. constraining the corresponding coefficients to 

zero) 

PROC CALIS computes Wald Test Indices that suggest paths to remove without affecting the 

chi-square statistic, and Lagrange Multiplier Indices that suggest paths to add to increase 

the chi-square statistic.  

Wald Test 

Stepwise Multivariate Wald Test 

Parm 

Cumulative Statistics Univariate Increment 

Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq 

four_6 0.00134 1 0.9708 0.00134 0.9708 

five_7 1.23489 2 0.5393 1.23355 0.2667 

three_6 2.65728 3 0.4475 1.42239 0.2330 

three_7 4.56762 4 0.3346 1.91034 0.1669 

two_6 6.95511 5 0.2240 2.38749 0.1223 

Table 6 Partial Results from Wald Test 

Following the recommendations from Wald Test Indices, the model was refit without the 

direct paths page 02 to page 06, page 03 to page 06, and page 04 to page 06. We chose 

these 3 out of the top 5 because they are common to page 06. The revised PATH statement, 

which we label ‘Deletion Model’ in Table 8 is: 

       path  
    page02 <-- page01 = one_2, 

    page03 <-- page01 page02 = one_3 two_3, 

    page04 <-- page01 page02 page03 = one_4 two_4 three_4, 

    page05 <-- page01 page02 page03 page04 = one_5 two_5 three_5 four_5, 

    page06 <-- page05 = five_6, 

    page07 <-- page03 page04 page05 page06 = three_7 four_7 five_7 six_7; 

 

The overall chi-square is still non-significant, so we succeeded in simplifying our model 

without damaging its comparison to a saturated model. Note that the degrees of freedom 

increased by 3 because we are estimating 3 fewer parameters. We see improved error 

variance with the RMSEA=0.0410 now in the close-fit range. We can now use our 

incremental indices, BCAIC and SBC. For both, smaller values are better, and the values 

reduced significantly. This ‘Deletion Model’ shows a better fit to the data than the ‘Initial 

Model’.  
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Lagrange Multiplier Test 

Rank Order of the 10 Largest LM Stat for Path 
Relations 

To From LM Stat Pr > ChiSq 
Parm 

Change 

page05 page07 6.21768 0.0126 0.02115 

page02 page07 3.48662 0.0619 0.20863 

Table 7 Partial Results from LM Statistics 

The model fit might also be improved by using the Lagrange Multiplier (LM) Indices to guide 

us in adding paths. Subject matter experts should provide input to decisions about model 

modifications. In this example, we lack the subject matter expertise but, based on the LM 

indices, we added a direct path from page 07 to page 05. The revised PATH statement, 

which we label ‘Addition Model’ in Table 8 is: 

       path  
    page02 <-- page01 = one_2, 

    page03 <-- page01 page02 = one_3 two_3, 

    page04 <-- page01 page02 page03 = one_4 two_4 three_4, 

    page05 <-- page01 page02 page03 page04 page07 = one_5 two_5 three_5 

               four_5 seven_5, 

    page06 <-- page05 = five_6, 

    page07 <-- page03 page04 page05 page06 = three_7 four_7 five_7 six_7; 

We can see that model fit is improved compared to the ‘Deletion Model’; the CFI and NNFI 

have values 1.0, the RMSEA value of zero indicates an acceptable model fit, and the chi-

square p-value jumped to 0.43. 

Fit Index Initial Model Deletion Model Addition Model 

Chi-Square 7.3652 11.1622 4.8937 

Chi-Square DF 3 6 5 

Pr > Chi-Square 0.0611 0.0835 0.4290 

Standardized RMR (SRMR) 0.0028 0.0043 0.0045 

RMSEA Estimate 0.0534 0.0410 0.0000 

RMSEA 90% CI Lower 0.0000 0.0000 0.0000 

RMSEA 90% CI Upper 0.1035 0.0780 0.0608 

Probability of Close Fit 0.3779 0.6023 0.8818 

Bozdogan CAIC 188.3233 170.4054 171.3751 

Schwarz Bayesian Criterion 163.3233 148.4054 148.3751 

Bentler Comparative Fit 0.9993 0.9992 1.0000 

Bentler-Bonett Non-normed 0.9952 0.9972 1.0001 

Table 8 Comparison of Fit Indices for Weblogs Data 
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CONCLUSION 

Recall the conditions for a structural equation model to be a structural causal model. Let us 

now examine the final weblogs model to see if it met the criteria for a causal model.  

Condition Is Weblogs a Causal Model? 

1. Reflect Reality? 

1. No. Our model did not capture unobserved causes like page 

loading time (connectivity) or attributes of a visitor, such as 

socioeconomic status. 

2. Directed and 

Acyclic 

2. No. We added a path from page 7 back to page 5, which 

introduced a loop between the pages. That path is well supported 

by the data (indeed, it was suggested by the data). But a SME 

should assist in determining if this is reasonable or even possible 

given the website design. 

3. Conditionally 

Independent 

3. Maybe. Due to the lack of an available SME, we are unsure if our 

formulated hypothesis represents reality; i.e. whether we have 

omitted any paths. 

4. “Back-Doors” 

Blocked? 

4. Maybe. Yet again, we need a SME to confirm if there are any 

spurious relationships in the model across pages or via latent 

variables such as one representing ‘computing environment’.  

Table 9 Causal Criteria for the Weblogs Model 

EXAMPLE 2: PROTEIN SIGNALING NETWORKS IN HUMAN T-CELLS 

Our second example uses data from a designed experiment described in “Causal Protein-

Signaling Networks Derived from Multiparameter Single-Cell Data” published in Science 

(Sachs at al., April 2005). The data set contains approximately 700 to 900 single cell 

readings of 11 different phosphoproteins or phospholipids measured under 9 experimental 

conditions in human naïve CD4+ T cells. Simultaneous expression of multiple proteins is 

recorded via flow cytometry. The data was used to analyze signaling pathways. 

A protein, in response to an extracellular signal, might trigger a response in a subsequent 

protein molecule, affecting its physiochemical properties. Proteins gain new functional 

capabilities via these signaling pathways. The extracellular signals are either stimulatory or 

inhibitory conditions. This experiment introduced extracellular signals and measured protein 

responses via flow cytometry. The purpose of the SEM analysis was to confirm hypothesized 

pathways, discover novel pathways, and to understand the protein signaling network 

causalities.  

Cancer and autoimmune disease can occur at any age. The network connections between 

the molecules in a protein signaling pathway helps in understanding the underlying 

biological process, which, in turn, aids in developing new therapeutics for diseases that have 

abnormal signaling pathways.  

Sachs et al. do not use SEMs to analyze their data. Instead, they use Bayesian Networks 

(BNs), which is an alternative method to understand causal pathways. BNs estimate 

conditional probabilities; i.e. the probabilities of outcome values conditioned on values of 

parent nodes. For an introduction to Bayesian Networks using SAS Enterprise Miner, see 

Wang and Amrhein, 2018.  
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VISUALIZE THE HYPOTHESIZED MODEL 

The graph displayed in Figure 5 is the model hypothesized by Sachs et al. as shown in their 

Fig. 3.A. It represents relationships between 11 different signaling proteins. The pathways 

represented by blue arrows and the sole purple arrow are the pathways which we translated 

to a PATH statement in PROC CALIS. 

 

Figure 5 Protein Signaling Pathways (Fig. 3.A in Sachs et al) 

TRANSLATE THE DAG TO A PATH STATEMENT 

As per common practice with flow cytometry data, we transformed the values using the 

natural logarithm. 

PROC CORR was again used to create the covariance matrix from the raw data. We have 11 

variables (praf, pmek, plcg, PIP2, PIP3, p44/42, pakts473, PKA, PKC, P38, pjnk). Therefore, 

the variance-covariance matrix is 11x11. Out of 121 values in the matrix, 66 (11 variances, 

55 covariances) are unique values representing the covariance structure. Therefore, our 

SEM will be over-identified if we are estimating fewer than 66 parameters. 

Each of the single headed arrows in Figure 5 represents a hypothesized dependency. A 

PROC CALIS step, using the PATH language, that fits our hypothesized model in Figure 5 is:  

 proc calis data=procov toteff mod; 

   fitindex on(only) = [chisq df probchi bentlernnfi cfi rmsea rmsea_ll  

rmsea_ul probclfit srmsr caic sbc];  

   path  

     pjnk p38 praf pmek <-- pkc,  

     pjnk p38 pakts473 "p44/42"N pmek praf <-- pka, 

     pmek <-- praf, 

     "p44/42"N <-- pmek, 

     plcg <-- pip3, 

     pip2 <-- pip3 plcg; 

   pathdiagram notitle fitindex= [chisq df probchi cfi rmsea srmsr caic sbc]; 

run; 

The PROC CALIS options used in the code are described in the weblogs example. In this 

example we chose not to label the parameters associated with the paths. Note that, to 
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retain the p44/42 column name from the article, we use the “variable-name”N naming 

construct. This allows non-standard characters, such as /, in variable names. This requires 

that you specify the VALIDVARNAME=ANY system option on the OPTIONS statement. 

ASSESS FIT STATISTICS 

Only certain output from PROC CALIS is discussed here. The ‘Modeling Information’ table 

shows that the model was fit assuming 7466 observations were used to create the 

covariance matrix.  

Modeling Information 

Maximum Likelihood Estimation 

Data Set PROCOV 

N Obs 7466 

Model Type PATH 

Analysis Covariances 

Table 10 Modeling Information for Protein Signaling Data 

The ‘Variables in the Model’ table can be used to verify if we correctly translated our 

hypothesized model on the PATH statement. In this model, all the variables are identified as 

manifest (observed) variables of which 8 are endogenous and 3 are exogeneous.  

Variables in the Model 

Endogenous Manifest P38  p44/42  pakts473  PIP2  pjnk  plcg  pmek  praf 

 Latent  

Exogenous Manifest PIP3  PKA  PKC 

 Latent  

Number of Endogenous Variables = 8 
Number of Exogenous Variables  = 3 

Table 11 Variables Information for Protein Signaling Data 

The ‘Fit Summary’ table shows only the fit indices that we requested on the FITINDEX 

statement. The chi-square is significant, indicating that our hypothesized model differs 

significantly from the saturated model. The SRMR and RMSEA both indicate high residual 

error. The probability of close fit suggests a poor fitting model, as do the two incremental 

indices. 

Fit Summary 

Absolute Index Chi-Square 15800.9551 

 Chi-Square DF 37 

 Pr > Chi-Square <.0001 

 Standardized RMR (SRMR) 0.2114 

Parsimony Index RMSEA Estimate 0.2389 
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Fit Summary 

 RMSEA Lower 90% Confidence Limit 0.2358 

 RMSEA Upper 90% Confidence Limit 0.2420 

 Probability of Close Fit <.0001 

 Bozdogan CAIC 16088.5804 

 Schwarz Bayesian Criterion 16059.5804 

Incremental Index Bentler Comparative Fit Index 0.6396 

 Bentler-Bonett Non-normed Index 0.4643 

Table 12 Fit Summary for Protein Signaling Initial Model 

IMPROVE MODEL FIT USING MODIFICATION INDICES 

Given that the initial model fit is not acceptable, we conclude that our hypothesized model is 

inadequate, and we therefore modify it to improve the fit.  

Wald Test 

Stepwise Multivariate Wald Test 

Parm 

Cumulative Statistics Univariate Increment 

Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq 

_Parm08 2.42271 1 0.1196 2.42271 0.1196 

Table 13  Results from Wald Test 

All the estimates for the paths specified in the model were statistically significant except for 

the direct path from pka to p44/42 (Parm08) as recommended by the Wald Test Indices 

(see Table 13). Therefore, we refit the model without this path. The revised PATH statement 

is: 

    path  
   pjnk p38 praf pmek <-- pkc,  

   pjnk p38 pakts473 /*"p44/42"N*/ pmek praf <-- pka,   

   pmek <-- praf, 

   "p44/42"N <-- pmek, 

   plcg <-- pip3, 

   pip2 <-- pip3 plcg; 
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Lagrange Multiplier Test 

Rank Order of the 10 Largest LM Stat for Path Relations 

To From LM Stat Pr > ChiSq 
Parm 

Change 

p44/42 pakts473 3525 <.0001 0.76253 

pakts473 p44/42 3510 <.0001 0.59219 

plcg PKA 2377 <.0001 -0.49547 

PIP3 plcg 2169 <.0001 2.95210 

PKA PKC 2007 <.0001 0.36651 

PKA plcg 1710 <.0001 -0.51008 

PKC PKA 1652 <.0001 0.32101 

plcg P38 1568 <.0001 0.42232 

plcg pakts473 1432 <.0001 0.56034 

plcg pjnk 1256 <.0001 0.33952 

Table 14 LM Statistics for ‘Deletion Model’ 

Removing path pka → p44/42 did not improve the fit appreciably (see ‘Deletion Model’ in 

Table 16), so we used the Lagrange Multiplier (LM) Indices to guide us in adding 

parameters. Based on the LM statistics and subject matter expertise (Fig. 3.A in Sachs et 

al.), we made the following changes: 

• Added path p44/42 → pakts473 

• Reversed path pip3 → plcg to plcg → pip3 

• Added pkc →pka  

The new path statement is: 

   path  

    pjnk p38 praf pmek pka <-- pkc,  

    pjnk p38 pakts473 /*"p44/42"N*/ pmek praf <-- pka,  

    pmek <-- praf, 

    "p44/42"N <-- pmek, 

    pip3 <-- plcg, 

    pip2 <-- pip3 plcg, 

    pakts473 <-- "p44/42"N; 

 

The fit indices for this model are labeled ‘Addition Model’ in Table 16. Overall, the fit 

statistics improved but still indicate a poor fit. 

Ranked Error Variances and Covariances 

You can continue to modify your model using the modification indices and input from 

subject matter experts until you are satisfied with the final model. Keep in mind that you 

should not treat your modified model as the original hypothesized model, but rather as a 

“discovered” model that will need to be confirmed using new data. 
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So far, we have discussed only the addition or deletion of paths. However, you can also 

consider variances and covariances. PROC CALIS automatically estimates error variances for 

all manifest and latent variables, and all covariances between exogenous variables. The LM 

test indices might suggest adding covariances between endogenous variables. Covariance 

between endogenous variables is between their residuals, which might be correlated. 

Accounting for this correlation might improve the model fit.   

Rank Order of the 10 Largest LM Stat for Error Variances and Covariances 

Error of Error of LM Stat Pr > ChiSq Parm Change 

pakts473 p44/42 2500 <.0001 6.76646 

praf pakts473 1394 <.0001 0.28986 

pmek pakts473 1129 <.0001 0.24614 

Table 15 Partial Results for highest ranked covariances from ‘Addition Model’ 

Based on the LM test indices for the ‘Addition Model’ (Table 15), we added the 3 highest 

ranked error covariances to the model using the PCOV statement. On the PCOV statement, 

you specify the two endogenous variables followed by an equal sign and then a name to 

identify the covariance parameter: 

  pcov  

    pakts473 “p44/42”N = cov_pakt_p44, 

    praf pakts473 = cov_praf_pakt, 

    pmek pakts473 = cov_pmek_pakt; 

It is evident from the fit statistics, which we label ‘Covariance Model’ in Table 16, that this 

model does not fit the data much better than ‘Addition Model’. Again, the subject matter 

expert should determine if this a reasonable approach. 

Fit Indices Initial Model 
Deletion 

Model 

Addition 

Model 

Covariance 

Model 

Chi-Square 15800.9551 15803.3774 10393.8438 7235.1369 

Chi-Square DF 37 38 38 35 

Pr > Chi-Square <.0001 <.0001 <.0001 <.0001 

SRMR 0.2114 0.2120 0.1632 0.1541 

RMSEA Estimate 0.2389 0.2357 0.1911 0.1660 

RMSEA Lower CL 0.2358 0.2327 0.1880 0.1628 

RMSEA Upper CL 0.2420 0.2388 0.1942 0.1692 

Prob(Close Fit) <.0001 <.0001 <.0001 <.0001 

Bozdogan CAIC 16088.5804 16081.0846 10671.5510 7542.5985 

SBC 16059.5804 16053.0846 10643.5510 7511.5985 

Bentler CFI 0.6396 0.6396 0.7633 0.8354 

NNFI 0.4643 0.4784 0.6573 0.7413 

Table 16 Comparison of Fit Indices for Protein Signaling Data 
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Latent Variables 

Our two examples have not included any latent variables. In the weblogs example, we did 

conclude that some latent constructs, such as the visitor’s socioeconomic status, might 

affect their navigation behavior. But, in the absence of subject matter expertise, it is 

difficult to insert this into the model.  

In the protein experiment, Sachs et al. discuss the possible effects of unmeasured proteins. 

For example, they illustrate in their Figure 3.B the hypothesized influence of unmeasured 

proteins mediating certain pathways (i.e. getting in between the parent and child), such as 

pkc to pjnk. We added latent variables to our model at the hypothesized positions, but these 

models failed to converge.                            

CONCLUSION 

As we did in the weblog example, we can evaluate the four conditions required to interpret 

our protein signaling model as a causal model. 

Condition Is Protein Signaling a Causal Model? 

1. Reflect 

Reality? 

1. Yes. The experiment was designed by subject matter experts. If 

no possible causes to protein inhibition or stimulation are 

omitted, then the network reflects reality.  

2. Directed, and 

Acyclic 

2. Maybe. As discussed by Sachs et al., protein signaling pathways 

contain feedback loops and cyclic paths, which confounds cause-

effect relationships, making it difficult to estimate the 

magnitude of a cause. However, if the feedback is lagged rather 

than simultaneous, then we may be able to conclude that the 

model is a DAG. 

3. Conditionally 

Independent 

3. Yes. These are classical signaling pathways that connect 

proteins in human T-cell, which were developed by subject 

matter experts (such as, cell biologists and geneticists). 

4. “Back-Doors” 

Blocked? 

4. If we meet the conditional independence criterion then there are 

no spurious backdoor paths. Again, this requires insight from a 

subject matter expert.  

Table 17 Causal Criteria for the Protein Signaling Model 

DISCUSSION 

MEDIATION 

The protein network in example 2 contains both direct and indirect connections between the 

signaling molecules. A direct connection does not have any variables between the parent 

and child variables; e.g. the direct connection between pip3 and pip2 (see Figure 6). An 

indirect connection is one that passes through another variable or variables; i.e. from 

ancestor to parent to child such as pip3 to plcg to pip2. PLCG is known as a mediator 

because it alters the effect that pip3 has on pip2. This begs the question of whether pip3 

effects pip2 primarily on its own via the direct connection or through its mediator, plcg. 

Mediation can be complete or partial. Complete mediation occurs when an indirect effect is 

significant, and the direct effect is not significant so that the effect is only through the 

mediator. Partial mediation is observed when both indirect effect and direct effects are 

significant, which means part of the effect is mediated and the remaining is direct. 
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A total effect does not have to be significant to validate mediation due to a property known 

as inconsistent mediation. Inconsistent mediation occurs when direct and indirect effects 

have different signs. For example: a positive indirect effect and a negative direct effect will 

cancel out each other resulting in a total effect that is not significant. 

PROC CALIS provides estimates for direct, indirect and total effects for any two exogenous 

variables. The option TOTEFF on the PROC CALIS statement requests partitioning of total 

effects into direct indirect effects.  

The Stability coefficient 

Partitioning total effects into direct and indirect effects relies on a condition regarding the 

convergence of total effects. This condition can be assessed using a measure known as the 

stability coefficient and might be in question with models containing reciprocal or cyclic 

paths. Therefore, before we analyze total and indirect effects in our model, we should check 

this measure either in the SAS log or in the output table “Stability Coefficient”. The stability 

coefficient must be less than 1. 

In the SAS log: 

“NOTE: The stability coefficient is 0, which is less than one. The condition for 

converged total and indirect effects is satisfied” 

In the PROC CALIS output: 

Stability Coefficient of 
Reciprocal Causation = 0 

Stability Coefficient < 1 

Total and Indirect Effects 
Converge 

Table 18 Stability Coefficient for Protein Signaling Data 

Direct, Indirect, and Total Effects  

Consider the following mediation example, protein pip3 has a direct influence on protein 

pip2 and the influence of pip3 on pip2 is mediated by protein plcg. This suggests that pip3 

might directly or indirectly, through plcg, affect pip2.  

 

Figure 6 Mediation for ‘Deletion Model’ in Protein Signaling Pathway 
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where, a = First component of the indirect effect of pip3 on pip2 
          b = Second component of the indirect effect of pip3 on pip2 
          c’ = Direct effect of pip3 on pip2 

The estimates a, b, and c’ in Figure 8 are from the Deletion Model of the protein signaling 

example. The indirect effect of pip3 on pip2 is mediated by plcg and is estimated by the 

product of a and b (0.0396*0.7834) = 0.031 (p-value = .0068). The total effect of pip3 on 

pip2 is the sum of the indirect and direct effects; 0.031 + 0.5355 = 0.5665 (p-value < 

.0001). Because both the direct and indirect effects are significant, the mediation is partial. 

The interpretation is that a unit change in pip3 causes a 0.5665-unit change in pip2. 

CATEGORICAL VARIABLES 

Categorical variables are not supported by PROC CALIS unless an input covariance matrix is 

derived using polychoric or polyserial correlations. A polyserial correlation measures the 

correlation between a continuous variable and a categorical variable with a bivariate normal 

distribution. A polychoric correlation measures the correlation between any two categorical 

variables having bivariate normal distributions. 

A simple SAS code to do polyserial correlation using PROC CORR: 

    proc corr data=sashelp.cars polyserial; 

    with type; /* Categorical Variable */ 

    var weight horsepower; /* Continuous Variables */ 

    run; 

A simple SAS code to do polychoric correlation using PROC FREQ: 

    proc freq data=sashelp.cars; 

    tables make*origin/plcorr; 

    run; 

PROC CALIS treats this input matrix as usual covariance matrix for continuous variables and 

estimates the coefficients for the parameters. This approach can be used with any 

estimation method. The standard errors may not be correct, but the parameter estimates 

are reasonably close.  

NORMALITY 

PROC CALIS requires that the data used for analysis follow a multivariate normal 

distribution. When the data are non-normal, parameter estimates are not affected, but 

standard errors are under estimated, and the probability of type 1 error is high, goodness of 

fit chi square is over estimated and other fit statistics may not be meaningful. Significant 

skewness and kurtosis might indicate that the data is not normal; therefore, multivariate 

measures of skewness and kurtosis are available in PROC CALIS.  

MOORE-PENROSE INVERSE MATRIX 

When fitting the protein signaling models using the data on the original scale, we 

encountered the following note and warning in the SAS log:  

NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for 

parameter estimates. 

WARNING: Standard errors and t values might not be accurate with the use of the 

Moore-Penrose inverse.” 

The Moore-Penrose inverse is a pseudo inverse, which can be used to find an approximate 

solution that minimizes the error when a unique inverse cannot be found. Computed 
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standard errors, t values and modification indices are likely to be approximate values. 

Although the Moore-Penrose provides a usable solution, interpret the results with caution.  

We applied the natural log transformation to the raw data prior to creating the covariance 

matrix. Log transformations are a common method for handling skewed data. By doing so, 

we no longer had the computing issue with inverse matrix. 

CONCLUSION 

The purpose of this paper is to introduce the reader to interpret Structural Equation Models 

(SEMs) as Structural Causal Models (SCM); i.e. for causal relationships. To interpret an SEM 

as an SCM, you focus on the model structure, which is guided by subject matter experts. 

We described four conditions that a graphical SEM must meet to allow interpretation as a 

SCM. 

Using the PATH modeling language within PROC CALIS, a flexible approach whose syntax is 

closely related to the path diagrams representations, we suggested a modeling process 

beginning with drawing a path diagram of a hypothesized model, fitting the model, and 

assessing the model’s fit with the data. We also described the strategies used to improve 

overall model fit by using modification indices and understand the mediation effects in the 

model. 

We provided two examples of the model fitting process, one from observational data and 

one from a controlled experiment. Only after model-fitting did we evaluate the conditions 

that must be met to declare cause-and-effect pathways or relationships. We reinforced the 

difficulty of making causal inferences and the importance of subject matter expertise.  

While writing this paper, we learned about the CAUSALGRAPH Procedure introduced in 

SAS/STAT 15.1. This procedure provides capabilities to assess whether a cause-effect 

relationship within a graphical model meets the criteria to declare a causal relationship; i.e. 

is ‘identifiable’.  
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