
1

Paper SAS3212-2019

Macro-mize Your Time: Using SAS® to Email Hundreds of
Individualized Reports in Minutes

Salma Ibrahim, SAS® Institute Inc.

ABSTRACT

Sending out individualized reports can take days if you have hundreds (or thousands) of
recipients. SAS® can help you get that time back by generating and sending these emails.
In this paper, we use SAS® macros to send hundreds of individualized reports in a matter
of minutes. This process can be fully automated with a single input table that maps
recipients to their respective reports. We cover options that can be applied to the emails,

including personalizing the content of the email, sending from a designated email
address, and marking the emails as high priority. In addition, we discuss creating summary
reports that provide you with useful information, such as invalid email addresses and a

snapshot of the emails sent out in a given run.

INTRODUCTION

Whether you need to send quarterly invoices to customers or annual reports to your
employees, SAS® can help you avoid the need to manually draft emails. A combination of
SAS® macros and the Email Access Method allows you to send these reports out at the click

of a button. You can then schedule the program to run at the interval you need so that you

no longer worry about drafting and sending these emails.

This paper will provide instruction and sample code for sending individualized emails with
report attachments to recipients using SAS® macros and SAS® DATA step email options.
The use case referenced in this paper is sending out annual employee compensation reports
using sample HR data. You can replace the input data and modify report content for use
cases relevant to your goals. We will start with a simple email and add useful options in

subsequent sections. By the end, you will be able to send distinct reports to recipients given
that you have a variable that maps a recipient to their respective report. You will also be
able to add options like marking email importance and modifying sender or reply to email
addresses, as well as create a simple report of invalid email addresses and emails that were

sent out successfully.

EMAILING REPORTS AS ATTACHMENTS FROM SAS®

If the reports you have already exist, then you can send these emails out in just two steps.
The first is a macro that reads in your end recipient’s contact variables and generates the

email. This macro will encompass all email options and the email body. The second step is a
DATA step that passes the macro input using the data set that holds employee information

and executes the macro for every employee (unique employee number) in the data set.

In this case, our inputs are employee name, email address, and department. Our reports
are named using the employee’s name and division, so we can reuse those input macro
variables in the attachment specification. If that is not the case for you, you will need a
variable in your data set for report name. Note that year is not a parameter that is read into

the macro; this variable is defined earlier in the SAS® program because it is static.

The data set that holds your input variables will need a unique variable for each recipient.
Because names can repeat, we use employee number as the BY-variable here. It is also a

good idea to check and filter for duplicates so that recipients only receive one email each.

2

The macro sendreports defines your email options and email body:

 %macro sendreports(name,email,department);

filename outbox EMAIL;

data _null_;

 FILE outbox

to=("&email.")

subject="&year. Annual Compensation Report: &name."

attach=("C:\SGF_Reports\&name._&department..pdf");

file outbox;

put "Dear &name.:"; put ;

put "Thank you for being a valuable part of our company's growth

and success. Every year, we aim to reward our employees

with merit increases and bonuses."; put ;

put "Your annual employee compensation report is attached. Please

follow up with your manager if you have any questions."; put ;

put "Thank you,";

put "Company";

run;

 %mend sendreports;

You can use put statements to add text and break lines to the email body. In the above
example, we personalize the body with the name macro. You can use additional macros to

further personalize the email body. For example, you could reference the employees’
division, completed training for the year, years with the company, and so on. The only
contingency is that you have that data available to you in the input data set (that we use to
read in variables in the next step) and that you include those variables in the macro
definition above as well as the call execute command below. You can take the email body

customization a step further. There is a reference in the recommended reading at the end of
this paper that provides guidelines for this.

The following DATA step reads the input variables into the send reports macro from our

contact data set and invokes the macro for each employee:

 data _null_;

 set employee.contact;

by employee_number;

if first.employee_number then do;

call execute(cats('%sendreports(',name,',',email,',',department,')'));

 end;

 run;

The DATA step above simply uses each employee’s row of data to populate the macro’s
input variables. We sort by employee_number because it is our unique variable and it is

necessary to use the first. qualifier in our if-then statement. The first. if statement qualifier
will take care of the possibility of sending multiple emails to the same employee, but it is
still a good idea to check for and resolve duplicates before running the code. As mentioned
before, if you would like to include additional information (completed training for the year,
years with the company, and so on.) in the email body, you will need to add those variables

to the call execute statement in the DATA step above.

EMAIL OPTIONS

3

In the example above, we only define recipient, subject and attachment. There are many

options available to you to further personalize to your use case.

Table 1 outlines some useful email options.

Email Options Description

BCC=”bcc@email.com” Allows you to send blind copy of the email. In
our example, we could blind copy the

employee’s manager and HR partner.

CC=”cc@email.com” Allows you to send a copy to other recipients.
This is another option to include the employee’s

manager and/or HR partner

FROM=”from@email.com” Allows you to designate a sender address in

place of the default address of run user.

SENDER=”from@email.com” When you use the FROM= option, the email

shows both the FROM email address and the
email address of the user running the program.
If you’d like to just show the FROM= email
address, set the SENDER= option to the same

email address as FROM=.

REPLYTO=”reply@gmail.com” Allows you to designate a different email

address for recipients to reply to.

IMPORTANCE=”HIGH” Allows you to set importance level for the email.
Options are “LOW”, “NORMAL” (default), or

“HIGH”.

SENSITIVITY=”COMPANY-

CONFIDENTIAL”

Allows you to set sensitivity level for the email.
Options are “NORMAL” (default), ”PRIVATE”,
”PERSONAL”, ”CONFIDENTIAL”, “COMPANY-

CONFIDENTIAL”.

EMAILSYS=SMTP Set before your FILE outbox EMAIL statement.
Specifies which e-mail protocol to use for

sending email within SAS.

EMAILPORT=25 Set before your FILE outbox EMAIL statement.
Specifies the port number that is used by the

SMTP server specifies in the EMAILHOST option.

EMAILAUTHPROTOCOL=NONE Set before your FILE outbox EMAIL statement.
Specifies whether the LOGIN authentication

protocol should be used.

EMAILHOST=”mailhost.company.com” Set before your FILE outbox EMAIL statement.
Specifies one or more SMTP server domain

names for your site.

Table 1. Email Options: Email Options for EMAIL (SMTP) Access Method

Note: If you are receiving one or both error messages below, please set the last four
options listed in Table. 1 above. This error can appear when the “bitness” of SAS® and
Microsoft Office do not match. Please reach out to your email administrator for assistance if

unsure of the option values for your organization.

• “Either there is no default mail client or the current mail client cannot fulfill the
messaging request. Please run Microsoft Outlook and set it as the default mail

client.”

4

• ERROR: Undetermined I/O failure

There are additional options that can be viewed in the SAS® 9.4 Global Statements:

Reference. The ones listed above are most useful to these use cases.

I prefer to use all the above options in my code to ensure that the emails turn out exactly
as I would like them too. I recommend adding these in one by one and reviewing how they

impact the way a test email appears in your inbox.

Here is the EMAIL options segment of our code with the options above defined:

filename outbox EMAIL;

data _null_;

 FILE outbox

to=("&email.")

from=("replies-disabled@company.com")

sender=("replies-disabled@company.com")

bcc=("&mgremail." "deptmgremail.")

cc="hr@company.com"

replyto="hr@company.com"

importance="HIGH"

sensitivity="COMPANY-CONFIDENTIAL"

subject="&year. Annual Compensation Report: &name."

attach=("C:\SGF_Reports\&name._&department..pdf");

If you have more than one email address or attachment, you will need to separate them
with a space. Note that you will need to include any additional input variables (&mgremail
and &deptmgremail in this case) in the macro definition and in the macro call.

Display 1. is a sample of the emails generated by the code above. Notice the changes to

the sender, recipients, importance, and sensitivity setting at the top of the email. Note: I’ve
mapped sender and recipient email addresses to my email addresses for testing. If I were to
select the reply button at the top of the email, the email address I defined in the replyto=

statement above would populate the “To:” field in place of the default option (sender).

Display 1. Sample Email Generated Using Additional Options

5

GENERATING REPORTS WITHIN THE EMAIL MACRO

The above code assumes that your reports exist and are ready to attach to your emails. If
the reports you’re interested in sending out do not already exist (or you’re interested in

automating their creation), you can include their creation within the send reports macro
created above. SAS® offers many options for creating customized reports that allow for
creativity and detail. For the purposes of this paper, we will create very simple PDF reports.
If you are interested in further customization, please visit the recommended references. You

can also review Appendix A code for a more elaborate report.

We can accomplish creating the reports and emailing them out in the same two steps we
referenced before. The report creation will be a part of the macro for sending them out. It is
important to note that any variables to be used in the report are to be read into the macro

with the employee contact information we mentioned before. This means that the input
table we use to call the macro needs to include the variables you’re reporting on. In this

example, the additional variables for the report already exist in the input data set.

 %macro sendreports(name,email,department,salary,increase,newsalary,bonus);

ods pdf file="C:\SGF_Reports\&name._&department..pdf";

title j=center bold "&name. &year. Employee Compensation Report";

ods text= "Dear &name.: "; ods text=" ";

ods text= "Please see below your salary increase and bonus

information for &year.. Changes and bonus disbursement will take

effect in your next pay cycle. "; ods text=" ";

ods text= "Current Salary: &salary. "; ods text=" ";

ods text= "Salary Increase: &increase. "; ods text=" ";

ods text= "New Salary: &newsalary. "; ods text=" ";

ods text= "Bonus: &bonus. "; ods text=" ";

run; quit;

ods pdf close;

data _null_;

 FILE outbox

to=("&email.")

from=("replies-disabled@company.com")

sender=("replies-disabled@company.com")

cc="hr@company.com"

replyto="hr@company.com"

importance="HIGH"

sensitivity="COMPANY-CONFIDENTIAL"

subject="&year. Annual Compensation Report: &name."

attach=("C:\SGF_Reports\&name._&department..pdf");

file outbox;

put "Dear &name.:"; put ;

put "Thank you for being a valuable part of our company's growth

and success. Every year, we aim to reward our employees

with merit increases and bonuses."; put ;

put "Your annual employee compensation report is attached. Please

follow up with your manager if you have any questions."; put ;

put "Thank you,";

put "Company";

run;

 %mend sendreports;

6

 data _null_;

 set employee.contact;

by employee_number;

if first.employee_number then do;

call

execute(cats('%sendreports(',name,',',email,',',department,',’,salary,’

,’,increase,’,’,newsalary,’,’,bonus,’)'));

 end;

 run;

We use ODS PDF file to create the report attachment of employee compensation updates.
As discussed before, we have added the relevant variables as input variables in the macro
definition, and to the call execute statement that feeds the values into the macro during the
DATA step that executes it. Please see the recommended reading references below for

additional information about ODS reporting.

CREATING A SEND SUMMARY REPORT

When relying on automation to send important documents to several individuals, it’s

important to create a summary report to account for successful sends and failed sends due
to missing or invalid syntax email addresses. Of course, you could manually review the log
and identify these cases, However, it is more efficient to have a report sent to you that
identifies these cases so that you can correct for them. There are two relatively

straightforward ways to accomplish this.

The first is using a code snippet to check the email variables in your data set for proper
syntax. These checks will not catch everything but are a good start and will be useful paired

with the log scrape. Here are some good checks to perform:

• Is the value missing?

• Is the value at least 7 characters long (the bare minimum for an email address is

@.com, org, edu, and so on.)?

• Does the value include an “@” and a “.”?

The second way to do this is by parsing your log for the success and error statements

associated with the EMAIL (SMTP) Access Method. The message “Message sent” indicates a
successful send, and the line directly below that provides the email address of that

successful send. We can use that line for reporting purposes.

The following are statements that indicate a syntax or send issue with an email address:

• 'WARNING: Bad e-mail address:'

• 'ERROR: Email:'

The message ends with the errored email address, so we can pull it for the summary report.

I prefer to use both methods mentioned above so that I am confident that I caught as many
scenarios as I could. I also prefer to schedule this as a separate program from the program
that generates the emails. The reason for doing this is so that there is a separate complete

log to pull information from.

NOTE: Emails that are populated and have proper syntax won’t be identified as invalid,
even if they no longer represent an active email account. In these cases, the sender will

receive a bounced email in his or her inbox indicating the send has failed and a reason why.
When reviewing your summary report, be sure to also look at the sender inbox for bounced

7

emails that had valid syntax but presented another issue.

CREATING A TABLE OF INVALID SYNTAX EMAILS

The following code allows for the first check referenced above by creating a table of email

addresses that do not meet the three conditions defined:

 data employee.invalidsyntax;

set employee.contact;

if find(email,'@','i') ge 1 and find(email,'.','i') ge 1 and

length(email) >= 7 then delete;

 run;

The FIND function paired with the greater than or equal to operator is useful for determining

whether a character exists in the value of a variable. This works similarly to CONTAINS but is
compatible with if-then statements.

SCRAPING THE LOG FOR SUCCESSFUL AND FAILED SENDS

The following code allows for the second check referenced above by creating a table of
successful sends based on the success message mentioned above, and creating a table of

errored sends based on the error messages mentioned above:

data error;

 infile "C:\SGF_Reports\logs\sendemails.log" truncover;

 input email_error $200.;

 if index(email_error, 'WARNING: Bad e-mail address:') > 0 or

 index(email_error, 'ERROR: Email:') > 0

 then output;

 run;

 data error ;

set error;

email=scan(email_error,-1," ");

 run;

 proc sort data=error; by email; run;

 proc sort data=employee.contact out=mergecontact; by email; run;

 proc sql;

create table errorlog as

select *

from error left join mergecontact

on error.email=mergecontact.email;

 run;

 proc sort data=errorlog nodupkey;

by employee_number;

 run;

 data success;

 infile "C:\SGF_Reports\logs\sendemails.log" truncover;

 input email_sent $100.;

 if index(email_sent, 'Message sent') > 0

 then do;

 count = 2;

 do until (count=0);

8

 output;

 count=count-1;

 if count = 1 then input email_sent $100.;

 end;

 end;

 run;

data success (drop=email_sent count);

 set success;

 if email_sent="Message sent" then delete;

 email_sent=compress(email_sent,'"');

 email=substr(email_sent,14,-1);

 run;

 proc sort data=success; by email; run;

 proc sql;

create table successlog as

select *

from success left join mergecontact

on success.email=mergecontact.email;

 run;

 proc sort data=successlog nodupkey;

by employee_number;

 run;

The INDEX function allows us to search the log for our success and error messages of interest.

In the case of the error messages, the errored email address is in the same line as the error
message. For this reason, we can just extract the email address from the error message using
the SCAN function and then use that to merge the email with the employee’s other
information. Because the successful error message appears in the line following the successful
send message, we use a do loop to pull the text from the second line and then use the
compress and substring functions to pull the email address from that line. We can then merge

the successful email addresses with employee data as well.

For your reference, the line containing the email address for successful sends is as follows:

• To: “employee@company.com”

That is why we compressed to remove the quotation marks and then pull the email address
starting at position 14. In comparison, we can just scan -1 from the end of the error statement
to pull the errored email addresses in those cases.

Note: If you have recipients with valid email addresses copied on the email but your main
recipient has an invalid email address, your email will still successfully send to those who
were copied. In this case, the recipient will appear in both the successful sends report and

the error log report.

EMAILING OUT THE SUMMARY REPORT

Here we combine the two code snippets above and send out the summary report of invalid

email syntax, successful sends and errored email addresses:

 ods excel file="C:\SGF_Reports\Syntax_Check_&year..xlsx";

proc print data=employee.invalidsyntax;

9

title "Invalid Email Syntax in Employee Dataset";

run;

 ods excel close;

 ods excel file="C:\SGF_Reports\SENT_TODAY_&year..xlsx";

proc print data=success;

title "Reports Successfully Sent Today";

run;

 ods excel close;

 ods excel file="C:\SGF_Reports\INVALID_EMAIL_&year..xlsx";

proc print data=errorlog;

title "Errors Due to Invalid Email";

run;

 ods excel close;

 filename outbox EMAIL;

data _null_;

FILE outbox

to=("my_email@company.com")

importance="HIGH"

subject="Summary Report for Sending Employee Compensation Reports"

attach=("C:\SGF_Reports\Syntax_Check_&year..xlsx"

"C:\SGF_Reports\SENT_TODAY_&year..xlsx"

"C:\SGF_Reports\INVALID_EMAIL_&year..xlsx");

file outbox;

put "Please see attached a summary of all reports that were sent

out today, and a report of errors due to email addresses that are

invalid.";

put;

put "Failed sends will need to be investigated and/or sent

manually.";

put;

 run;

Here we use ODS again to create Excel files of the error and successful send data sets. You
will need to define year as a macro somewhere in your program to use it in the file names.
Note: You will not be able to open the excel attachment for any data sets that were empty.

CONCLUSION

You can use SAS® as a great time-saving tool for generating and sending emails, whether
you need to send a few or few thousand reports. Concerns about customization can be a
deterrent from automating these processes but using macro variables can help you

overcome that concern and customize as much as you’d like.

There is a lot of opportunity to build on the examples we’ve walked through today. You can

add more employee information in the email body by reading in additional macro inputs,
create a more elaborate PDF File report (perhaps with logos, images or text customization)
when generating the report within the send reports macro, or you can pull more information
from the log for a more robust summary report. I recommend that you brainstorm what
features are most useful for you, and reference additional SAS® resources to incorporate

them into your code.

APPENDIX A: CODE EXAMPLE FOR AN ELABORATE REPORT

10

The following code generates a more elaborate report when included within the send reports
macro. Note that we add variables for performance rating, years at company, and hours
spent in training. The report below includes a company logo, formatted titles, a table of

compensation changes, and a table of milestones achieved. Please refer to the associated
SAS® programs for more details around input tables, format, and options.

ods _all_ close;

options nodate nonumber orientation=portrait;

ods escapechar="^";

ods noresults;

data comp_table;

set comp_table;

if Employee_Information="Department" then Value="&department.";

if Employee_Information="Prior Salary" then Value="$&salary.";

if Employee_Information="Increase" then Value="$&increase.";

if Employee_Information="New Salary" then Value="$&newsalary.";

if Employee_Information="Bonus" then Value="$&bonus.";

run;

data merit;

set merit;

if Metric="Performance Rating" then Milestone="&performancerating.";

if Metric="Years with Company" then Milestone="&yearsatcompany. Years";

if Metric="Training Hours Completed" then

Milestone="&trainingtimeslastyear. Hours";

run;

ods pdf file="C:\SGF_Reports\&name._&department..pdf";

title j=left bold "^S={preimage='C:\SGF_Reports\Logo.png'}";

title2 j=left bold "&year. Employee Compensation Statement^n";

title3 j=left italic "Personal and Confidential ^n^n";

proc report data=table split='00'x style(header)={background=CX3883A8

foreground=white font_size=7pt} style(column)=[font_size=7pt];

define Employee_Information / style(header)={cellwidth=3.5in}; define

Value / style(header)={cellwidth=3.5in};

label Employee_Information="Metric";

label Value="Compensation";

ods text= "&name.,^n^n";

ods text= "Company recognizes excellent performance and rewards employees

for helping the company achieve its business goals. When we succeed

together, we share the rewards. Thank you for continuing to help Company

solve our customers’ toughest business problems.^n^n";

ods text= "Congratulations, I am pleased to provide you with the following

pay increase effective the next pay cycle. You have also been awarded a

bonus, paid to you on the next pay cycle.^n^n";

ods text= "Company will provide eligible employees with an annual 401(k)

contribution of 3% to be funded in April. Eligible employees also receive

an additional 401(k) contribution of 3% of their eligible compensation each

pay period, regardless if the employee chooses to contribute or not,

bringing this year’s 401(k) contribution to 6%.

This combined total outranks our competitors in 401(k) employer

contributions. Helping you save for retirement is one of the ways Company

invests in its employees.^n^n";

11

ods text="^n^S={font_weight=bold}Table 1. Compensation Summary ^S={}";

ods startpage=no;

proc report data=merit split='00'x style(header)={background=CX3883A8

foreground=white font_size=7pt} style(column)=[font_size=7pt];

define Metric / style(header)={cellwidth=3.5in}; define Milestone /

style(header)={cellwidth=3.5in};

ods text= "^nSalary increases and bonses are awarded based on merit. Please

see below some of your milestones and contributions for the year that

helped Company succeed. Please reach out to your manager if you are

interested in training opportunities or have questions regarding your

milestones.^n^n";

ods text="^n^S={font_weight=bold}Table 2. Milestone Summary ^S={}";

run; quit;

ods pdf close;

Display 2. is a sample of the more elaborate report referenced above. Note that additional

variables are needed for this case.

Display 2. Sample Elaborate Report Generated Within Macro

12

REFERENCES

SAS® Institute. “FILENAME Statement, EMAIL (SMTP) Access Method.” SAS(R) 9.4 Global
Statements: Reference. Accessed March 4, 2019. Available at
https://go.documentation.sas.com/?docsetId=lestmtsglobal&docsetTarget=n0ig2krarrz6vtn

1aw9zzvtez4qo.htm&docsetVersion=9.4&locale=en.

RECOMMENDED READING

• Make it SASsy: Using SAS® to Generate Personalized, Stylized, and Automated Email Lisa Walter,
Cardinal Health, Dublin, OH available at https://www.mwsug.org/proceedings/2010/appdev/MWSUG-
2010-89.pdf

• Base SAS® ODS (Output Delivery System) available at

http://support.sas.com/rnd/base/ods/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Salma Ibrahim

Salma.Ibrahim@sas.com

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks
or trademarks of SAS® Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://www.mwsug.org/proceedings/2010/appdev/MWSUG-2010-89.pdf
https://www.mwsug.org/proceedings/2010/appdev/MWSUG-2010-89.pdf
http://support.sas.com/rnd/base/ods/

