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Abstract 

Statistical models for analyses of failure times include the proportional hazards model and the 
accelerated failure time model. These models can be extended to assess the influence of a 
longitudinally assessed biomarker (a time-varying covariate) on the survival distribution by modeling 
the hazard function or the scale parameter of a parametric survival distribution. If the biomarker is 
updated intermittently at a few time points, a straight-forward approach applies the most recent 
values preceding the failure times. SAS® procedures PHREQ, LIFEREG and SEVERITY can be 
used for analyses.  Joint models for the failure time and biomarker parse their joint distribution into 
conditionally independent components given random effects. Using the GLIMMIX procedure, the 
biomarker trajectory is constructed as a linear function of random effects and polynomials or splines 
of time. When incorporated into the survival model as a time-varying covariate, the joint model, 
called a shared parameter model is estimated using the NLMIXED procedure.  The joint model 
provides a more complete use of the data on failure times and the longitudinal data on the 
biomarker. Recent software developments, including a SAS macro, have harnessed SAS procedures 
to address analyses of shared parameter models. We provide a brief overview of methods and 
demonstrate their application with previously published biomedical data. 

 

1. Introduction 

The Cox proportional hazards (PH) model and the accelerated failure time (AFT) model are two 
standard approaches to analysis of survival times. Data on sampled units comprise covariates x 
assessed at the time origin t=0 and a single time to event T that may be observed in the follow up 
period ending at U, if T ≤U or the right censoring time U is observed if T >U. The objective is to 
assess the influence of x on some aspects of the (conditional) survival distribution of T, 

( | ) [ | ]S t P T t= >x x . In the PH model the hazard function has the form 0( | ) ( )exp( )h t h t β′=x x where 
the baseline hazard 0( )h t is unspecified. In biomedical applications the importance of the parameters 
β  cannot be overemphasized. They have an interpretation as log hazard ratios. For example, if 1x  is 
a binary indicator for treatment, and all other covariates are held fixed, the hazard ratio 1exp( )β  
measures the adjusted relative impact of treatment on survival. Estimation of 1β  via optimization of 
the partial likelihood provides a basis for inference. For specified covariate profiles, we get an 
estimate the survival function from ( )0( | ) exp ( )exp( )S t H t β′= −x x where 0( )H t is the cumulative 
baseline hazard. PROC PHREG provides for comprehensive analyses of the PH model.  

The AFT model structures logT β σε′= +x  where the random ε  has a specified parametric 
distribution independent of x and σ >0 is a scale parameter. The AFT class includes the lognormal, 
log-logistic and Weibull distributions. The Weibull distribution is the only continuous distribution 
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that is in both AFT and PH classes. Its survival and hazard functions are ( )( | ) exp ( / ( )) ,S t t γθ= −x x
1( | ) exp( ),h t t γγ γ β− ′= −x x where the scale is modeled as log ( )θ β′=x x  and 1γ σ −=  is the shape 

parameter. Scale parameter (SP) models have the form ( )0( | ) ( / ( ))S t S t γθ=x x  where 0S  is a survival 

distribution. A prototype is the Burr distribution that specifies ( )1
0 ( ) 1S t t

α
α

−−= + where 0α >  is a 
shape parameter. Special cases are the log-logistic ( 1)α = and Pareto ( 1)γ = distributions, and the 
Weibull, 0 ( ) exp( )S t t= − is obtained as a limiting case as .α → ∞  

PROC LIFEREG is dedicated to the analysis of the AFT model from left, right or interval censored 
data. For SP models, PROC SEVERITY offers many options for defining survival distributions by 
calling subroutines written in PROC FCMP.  Data on survival times may have combinations that are 
left, right or interval censored and left or right truncated. 

 

Time-varying covariates 

With time-varying covariates (TVC) ( ),tx  the foregoing needs modification. The hazard function is 

0( | ( )) lim [ | , ( )]/th t t P t T t t T t t t∆ ↓= ≤ < + ∆ ≥ ∆x x with the heuristic interpretation that ( | ( ))h t t t∆x  is 
approximately the probability of the event occurring in[ , )t t t+ ∆ , conditional on the covariate 
history up to t  and being at risk of the event. Studies where the TVC are piecewise constant can be 
handled by construction of the likelihood for ( , )T U δ∧  given { ( ), 0, , 1}mt m M= = −x x   where 

0 1 10 M Mt t t T U t−= < < < < ∧ ≡ are the observation times of the covariates, and [ ]T Uδ = ≤ . The 
maintained assumptions are: conditional independence of (T, U), given x and strict exogeneity on 
the conditional distribution, 1 1 1( | , ) ( | , ( )), 1, ,m m mD T T t D T T t t m M− − −≥ = ≥ =x x   (Wooldridge, 2010). 
With ( )tx constant ( 1( )mt −= x ) on 1[ , )m mt t− , the contribution to the likelihood by a censored 

observation U (at Mt ) is ( )
1

1 1 111
[ | , ( )] exp ( | ( )m

m

tM M
m m m mmm t

P T t T t t h u t du
−

− − −==
> ≥ = −∑∏ ∫x x . An observed 

event time T (at Mt ) contributes 1 1 1( | ( ) [ | , ( )]M M M M Mh t t P T t T t t− − −× > ≥x x .  The log-likelihood for a 

single datum can be written compactly as ( )
1

1 11
log ( | ( ) ( | ( ))m

m

tM
M M mm t

h t t h u t duδ
−

− −=
− ∑ ∫x x . 

From a random sample of observations {( , , ( )) : 0 1,1 }
ii i i i m i iT U t m M i nδ∧ ≤ ≤ − ≤ ≤x a data set can 

be constructed with multiple records for each subject that stacks vertically the records at the 
measurement times. The number of records may vary by subject, and it is not necessary that all 
TVCs change at the measurement times in the subject. The last record has information on whether 
or not 

iMt is a failure or a censoring time. The log-likelihood for the sample is  

[1]   ( )
1

1 11 1
log ( | ( ) ( | ( ))mii

i i ii mi

tn M
i M i M i mi m t

h t t h u t duδ
−

− −= =
 − 
 ∑ ∑ ∫x x . 

Section 2 focuses on implementing [1] with some examples on specifying the hazard function. The 
choices are a fully specified parametric distribution (e.g., Weibull, lognormal, log-logistic), or a PH 
model with the baseline hazard expressed as a piecewise constant function.  
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Joint Models 

In joint modelling, a separate process models the TVC data { ( ) : 0 1}.
ii m i it m M≤ ≤ −x We focus on an 

univariate continuous covariate with observations for the i-th subject denoted by  1( , , )
ii i iMY Y ′=Y   

at the measurement at times { : 1 }ij it j M≤ ≤ . A linear mixed model is posited for ( | , )i i iE Y x b with 
fixed covariates ix and random effects ib . It permits modeling the time dynamics of the underlying 
process ( )iY t  where ( )ij ijY t Y= , usually with low order polynomials of t. PROC GLIMMIX is ideal 

for this purpose. Next, some features of the conditional mean ( )( , ) ( )| ,i i i i it E Y tµ =b x b are 

transferred into the conditional hazard function of iT , ( )0( | , ) ( )exp ( ( , ), )i i i i ih t h t f tβ µ λ′= +x b x b  
where f  is a scalar function. The parameters of the joint model are ( , )β λ  and parameters in the 
specification of the baseline function 0( )h t , e.g., piecewise constant or Weibull form 1

0( )h t t γγ −= . 
The log-likelihood [1] is replaced by a joint log-likelihood for (log , )i iT Y conditional on ( , )i ix b , and 
the marginal distribution obtained by integrating with respect to random effects distribution. Section 
4 addresses a series of joint models. PROC NLMIXED is the computational engine. 

 

2.  Application 

The data set used for illustration comes from a study of patients who had primary biliary cirrhosis 
(now called primary biliary cholangitis), an autoimmune disease of the liver (Murtaugh et al, 1994). 
Patients (n=312) were randomized to D-penicillamine or placebo. Over the follow-up period of 
nearly 13 years there were 140 deaths. A small number of patients (n=29) received a transplant. The 
event of interest is death or transplant. Time to event is in years from date of randomization. Age at 
baseline, gender and treatment group are fixed covariates. There are several biomarkers with follow-
up measurements. Assessments of serum bilirubin (in mg/ml) vary from 1 to 16 with about 59% of 
patients having at least 5 records. L_BILI is serum bilirubin log transformed. An indicator for liver 
enlargement, hepatomegaly (HEPATOM) is also time-dependent. We consider only the baseline 
value HEPATOM0. 

The data file PBCSEQ2 has multiple records for patients (ID) with time variables t0, t1 that identify 
the interval [t0, t1) in which L_BILI is assumed constant. START and STOP in days are converted 
to years in t0, t1. EVENT labels patient status at t1, with LAST signaling the last record. 

 Data for ID=3 

Obs id start stop t0 t1 event last drug age sex hepatom bili 
12 3 0 176 0.00 0.48 0 . 1 70.07 0 0 1.40 
13 3 176 364 0.48 1.00 0 . 1 70.07 0 1 1.10 
14 3 364 743 1.00 2.03 0 . 1 70.07 0 0 1.50 
15 3 743 1012 2.03 2.77 2 1 1 70.07 0 0 1.80 

 

Although formats could be gainfully applied, to save ourselves some consternation indicators are 
included in PBCSEQ2 as well has time variables RCTIME and LTTIME. 
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data pbcseq2; 
set g.pbcseq2; 
by id; 
retain hepatom0; 
if first.id then hepatom0=hepatom; 
if t0>0 then lttime=t0; 
if event=0 then rctime=t1; 
else rctime=.; 
drug_PENCL=(drug=1); 
sex_female=(sex=1); 

proc format; 
value affirm 0='no' 1='yes'; 
value  sex   0='male' 1='female' ; 
value status 0='alive' 1='transplant' 2='dead';  
value  drug  1='D-pencl' 0='Placebo'; 
run; 

Parametric models  

Consider fitting parametric distributions using the log-likelihood [1]. The key statements in PROC 
SEVERITY are DIST, LOSS and SCALEMODEL. The analysis variable is t1. The right-censored 
and left-truncated options are used to exploit the formation of [1]. Covariate values for each input 
record are supplied through  

[2] 0 1 2 3 4 5log ( ) _ _ 0 _drug pencl sex female age hepatom L BILIθ β β β β β β= + + + + +x  

proc severity data=pbcseq2 vardef=n outest=est covout; 
dist burr logn llogistic weibull; 
loss t1/rightcensored=rctime lefttruncated=lttime; 
scalemodel drug_pencl sex_female age hepatom0 L_BILI; 
nloptions gconv=0 tech=quanew singular=1.0e-9 covfuzz=1.0e-12; 
run; 

Table 1: Estimates from Weibull, Lognormal and Log-logistic scale parameter models 

 Weibull Lognormal Log-logistic 
Parameter Estimate StdErr p-value Estimate StdErr p-value Estimate StdErr p-value 
drug_PENCL 0.0454 0.1178 0.7000 –0.0462 0.1474 0.7542 –0.0359 0.1432 0.8022 
sex_female –0.0719 0.1631 0.6593 0.0533 0.2111 0.8005 –0.0870 0.2175 0.6893 
age –0.0316 0.0059 <.0001 –0.0335 0.0069 <.0001 –0.0331 0.0071 <.0001 
hepatom0 –0.4041 0.1289 0.0017 –0.2804 0.1546 0.0697 –0.3453 0.1498 0.0212 
L_BILI –1.0227 0.0863 <.0001 –1.0279 0.0809 <.0001 –0.9063 0.0773 <.0001 
Intercept 5.5960 . . 4.9213   5.0126   
Gamma 1.3321 0.0867 <.0001 1.0277 0.0582 <.0001 1.9425 0.1294 <.0001 
–2 LOGL 786.12   852.20   858.64   
–2 LOGL0

∗ 1110.34   1120.91   1111.01   
∗ –2 LOGL for model omitting L_BILI.  
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We make a few remarks at this juncture.  

(1) The fitted Burr distribution (not shown) gave almost identical estimates to that of the Weibull.  
The shape α was very large that made the Weibull a good approximation to the Burr: as  α→∞,

( ) ( )1( ) 1 ( / ) exp ( / ) .S t t t
αγ γα θ θ

−−= + → −  SEVERITY has its lexicon for shape and intercept 

parameters. Here, we use 0β for intercept and γ for shape. The lognormal survival distribution is 

( )( )( ) log /S t t γθ= Φ − . 

(2) Although the log-logistic distribution is not predefined in SEVERITY, its distribution and 
density functions can be programmed in PROC FCMP, and then called within SEVERITY 
(Gardiner, 2014). 

(3) The covariance matrix G of the model parameters is obtained from the OUTEST=EST and 
COVOUT options. VARDEF=N prevents the multiplier / ( )N N q−  being applied to G where q is 
the number of model parameters. In testing the significance of effects, SEVERITY uses the t-
distribution with N−q degrees of freedom. Our input file has N=1945 records for n=312 subjects. 

(4) The Weibull hazard 1( | ) exp( )h t t γγ γ β− ′= −x x with TVC, 5 _x L BILI≡  provides an interpretation 
for 5β in [2] from the hazard ratio (HR) for one unit increase in L_BILI at time  t. Keeping all other 

covariates “fixed”, 5 5 5( | 1)/ ( | ) exp( )HR h t x h t x γβ≡ + = − . With estimates, γ̂ = 1.3321, 5β̂ = –1.0227 

we obtain HR = 3.91. A 95% confidence interval (CI) for HR is constructed using the 
approximation of the variance 2 2

5 5 5 5 5
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( , )Var Var Var Covγβ β γ γ β γβ γ β= + + . Assuming 

asymptotic normality of the MLE, a routine calculation gives the 95% CI, (3.32, 4.60). 

 

Piecewise constant hazard function 
 
Let 0( | ) ( )exp( )h t h t β′=x x  with a flexible form for the baseline hazard, 0 11

( ) [ ]J
j j jj

h t a t aλ −=
= ≤ <∑  

where 0 10 Ja a a= < < < = ∞  partitions the time axis into J intervals. The constants 1( , , )Jλ λ=λ    
and regression coefficients β constitute the parameters of the model. Parametrization in terms of 
log-hazards logj jα λ=  is preferred. The corresponding survival distribution is piecewise 

exponential.  PHREG provides a Bayes analysis of the posterior distributions of (α, β). Our 
objective here is the obtain the MLE of  (α, β) from the log-likelihood [1]. Fortunately, PHREG 
produces the MLE as starting values for the full Bayes analysis.  
 
By default J=8 intervals partition the time axis, with cut-points to get approximately the same number 
of events in each interval—169/8 ≈ 21. The partition does not depend on covariates. The cut-points 
are saved in the PARTITION output (Table 2). The BAYES statement asks for only a single Monte-
Carlo iteration (NMC=1) and the default PIECEWISE option is sufficient. The default burn-in 
NBI=2000, default priors for parameters are maintained, but all plots are switched off. The piecewise 
exponential model produces the MLE in Table 3. 
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ods output partition=partition; 
proc phreg data=pbcseq2; 
class drug(ref='Placebo') sex(ref='male') 
 hepatom0(ref='no')/param=ref; 
format drug drug. hepatom0 affirm. sex sex.; 
model (t0,t1)*event(0)=Drug_pencl sex_female age L_BILI; 
bayes nmc=1 plots=none piecewise=loghazard; 
run; 
 
Table 2: Cut-points for time axis in the piecewise exponential model 

cut1 cut2 cut3 cut4 cut5 cut6 cut7 cut8 
0 1.008926 2.221827 2.951484 3.957672 5.098018 6.492991 8.462928 

 
 
Table 3: Estimates from the Piecewise Exponential model (PROC PHREG) 

Maximum Likelihood Estimates 
Parameter Estimate Standard 

Error 
95% Confidence Limits 

Alpha1 –7.1506 0.6173 –8.3605 –5.9406 
Alpha2 –7.2728 0.6079 –8.4642 –6.0814 
Alpha3 –6.6224 0.6069 –7.8119 –5.4329 
Alpha4 –6.6326 0.5841 –7.7774 –5.4877 
Alpha5 –6.5534 0.5841 –7.6983 –5.4085 
Alpha6 –6.6137 0.5945 –7.7790 –5.4484 
Alpha7 –6.2153 0.5693 –7.3310 –5.0996 
Alpha8 –6.2700 0.5656 –7.3786 –5.1613 
Drug (D_pencl) –0.0618 0.1575 –0.3706 0.2469 
Sex (female) 0.0815 0.2176 –0.3450 0.5080 
age 0.0424 0.00778 0.0272 0.0577 
hepatom0 (yes) 0.5589 0.1770 0.2120 0.9059 
L_BILI 1.3696 0.0841 1.2047 1.5345 

 

The adjusted HR for one-unit increase in L_BILI is 3.93, (95% CI, 3.34, 4.64).  In joint modeling of 
the failure time and L_BILI, we will return to the piecewise exponential model for initial parameter 
values. The models described thus far all concern the conditional distribution ( , | )D T U δ∧ x  with 
fixed binary covariates DRUG, SEX, HEPATOM0, and one continuous covariate AGE. Serum 
bilirubin, logged (L_BILI) is a continuous TVC. From the log-likelihood construction [1] we 
estimated the Weibull, lognormal, log-logistic and the piecewise exponential models (Table 1 and 
Table 3). Overall, all models show a significant effect (on survival) of L_BILI, HEPATOM0, and 
AGE, but non-significance of DRUG and SEX, at least at the 10% level. Of course L_BILI is the 
most convincing of these effects.  In proportional hazards models--- Weibull, piecewise exponential, 
the effect of L_BILI can be summarized by the hazard ratio. It is assuring that the results are 
practically the same.  However, it must be emphasized that these results for L_BILI are not results 
of joint modelling. They can be biased and often are appreciably so (Ye and Yu, 2014). We now turn 
to true joint models. 
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 3.   Joint Models: Preliminary sub-models for failure time and marker 

The failure time T is assumed to have a piecewise exponential distribution. We begin with the 
construction of the log-likelihood to replace [1].  Each interval  1[ , )m mt t− is split by the cut-points 
{ : 0 }ja j J≤ ≤ . For example, if 1 1[ , )j jt a a−∈  the first interval 1[0, )t is split by 1 2 1 1{0, , , , }ja a a t− . 
Multiple records with variable names TSTART, TSTOP are created for the j intervals ending with 
the interval 1 1[ , )ja t− . The next interval 1 2[ , )t t is split by 1 1 2{ , , , , }j kt a a t− , if 2 1[ , )k kt a a−∈ , k j>  or, 

not split if 2 1[ , )j jt a a−∈ . To generalize, define

1 1 1 1 1( max( , ))[ ] ( max( , ))[ ]jm m m j j m j j m j m jt t a a t a a t a t a− − − − −∆ = − ≤ < + − ≥ , provided 1 1max( , ) ,m j j mt a a t− − ≤ . 

Next, replace in [1] for a single subject, 
1

1 11
( | ( )) exp( ( ) )m

m

t J
m j m jmjt

h u t du tα β
−

− −=
′= + ∆∑∫ x x . At the last 

record, 1[ , )M Mt t− we have   ( )1 11
log ( | ( ) ( )J

M M j jM Mj
h t t tα β− −=

′= ∆ +∑x x . Once again we have applied 

the covariate value at the beginning of the interval 1[ , )m mt t− .  Therefore the contribution to the log-
likelihood of a single subject with multiple records on 1[ , )m mt t− , 1, ,m M=   is  
 

[3]  11
( )J

j jM Mj
tδ α β−=

 ′∆ + ∑ x 11 1
exp( ( ) )M J

j m jmm j
tα β−= =

′− + ∆∑ ∑ x . 

  
The piecewise exponential model was estimated using PHREG by calling the BAYES option 
(Tables 2 and 3). Instead, we can use LIFEREG with an expanded data to reflect the log-likelihood 
[3]. The duration variables jm∆  (RISKTIME) are exponentially distributed.  We also add indicators 
alpha1,…,alpha8 for the intervals of constant hazard. 
 

Expanded records for ID=3 

The original records are Obs=20, 21, 22, 24. Two additional records are created by cut-points 1.0089 
and 2.2218. Last observation is a failure time. alpha4 to alpha8 are zero. 

Obs t0 t1 tstart tstop risktime alpha1 alpha2 alpha3 L_BILI event 
20 0.0000 0.4819 0.0000 0.4819 0.4819 1 0 0 0.3365 0 
21 0.4819 0.9966 0.4819 0.9966 0.5147 1 0 0 0.0953 0 
22 0.9966 2.0343 0.9966 1.0089 0.0123 1 0 0 0.4055 0 
23 0.9966 2.0343 1.0089 2.0343 1.0254 0 1 0 0.4055 0 
24 2.0343 2.7708 2.0343 2.2218 0.1875 0 1 0 0.5878 0 
25 2.0343 2.7708 2.2218 2.7708 0.5490 0 0 1 0.5878 2 

 

ods output parameterestimates=parms_pe; 
proc lifereg data=TVC_PE2; 
model risktime*event(0)=alpha1-alpha7 drug_pencl sex_female age 
hepatom0 L_BILI/dist=exponential; 
run; 



Paper 3175-2019 

 

8 
 

Table 4: Estimates from the Piecewise Exponential model (from PROC LIFEREG) 

Maximum Likelihood Parameter Estimates 
Parameter Estimate Standard 

Error 
95% Confidence Limits Chi–Square p-value 

Intercept 6.2701 0.5656 5.1615 7.3788 122.87 <.0001 
alpha1 0.8806 0.3160 0.2613 1.4999 7.77 0.0053 
alpha2 1.0028 0.3172 0.3810 1.6246 9.99 0.0016 
alpha3 0.3524 0.3153 –0.2656 0.9705 1.25 0.2637 
alpha4 0.3626 0.3120 –0.2489 0.9741 1.35 0.2451 
alpha5 0.2835 0.3114 –0.3268 0.8938 0.83 0.3627 
alpha6 0.3437 0.3112 –0.2663 0.9537 1.22 0.2695 
alpha7 –0.0547 0.3096 –0.6614 0.5521 0.03 0.8598 
drug_PENCL 0.0618 0.1575 –0.2469 0.3706 0.15 0.6946 
sex_female –0.0815 0.2176 –0.5080 0.3449 0.14 0.7079 
age –0.0424 0.0078 –0.0577 –0.0272 29.73 <.0001 
hepatom0 –0.5590 0.1770 –0.9060 –0.2120 9.97 0.0016 
L_BILI –1.3696 0.0841 –1.5346 –1.2047 264.93 <.0001 

–2 LOGL=783.64 
 
Table 3 and Table 4 are for the same model. LIFEREG parameterizes the piecewise exponential  
hazard as 1( | ) exp( ( )), [ , )j j jh t t a aα β −′= − + ∈x x with intercept. The indicators alpha1 to alpha7 are 
contrasts with the intercept alpha8. We will use the parameter estimates saved in parms_pe to 
inform starting values in the joint model. 
 

Linear mixed model for the marker L_BILI 

Let ( )Y t denote the continuous serum bilirubin (logged) at time t. Observations for the i-th subject 
are 1( , , )

ii i iMY Y ′=Y  at assessment times { : 1 }ij it j M≤ ≤ . Henceforth ( ) .ij ijY t Y=  

Plotting the longitudinal profiles for a sample of subjects might suggest how to structure the time 
component. Figure 1 is similar to figure 1.1 in Rizopoulos (2012). (Loess smoother could be 
different). We might consider linear and quadratic terms for ijt .  Other empirical data sets may 
support more complex structures such as splines (Crowther et al, 2012). We consider the model: 

[4]  
2 2 2

1 0 1 1 2 3 1 4 5 1 0 1 2

2
1

( | , )

( | , )
ij i i i ij i ij ij i ij i i ij i ij

ij i i

E Y x x t x t t x t b b t b t

Var Y x

β β β β β β

σ

= + + + + + + + +

=

b

b
  

where 1ix ≡ drug_pencl and 0 1 2( , , ) ~ ( , )i i i ib b b NORMAL′=b 0 G . 

From [4] in the placebo group, 2
1 0 2 4( | 0)ij i ij ijE Y x t tβ β β= = + + , and in the D-pencillamine treated 

group 2
1 0 1 2 3 4 5( | 1) ( ) ( ) ( )ij i ij ijE Y x t tβ β β β β β= = + + + + + .  
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Figure 1:  Profiles of serum bilirubin (logged) in selected subjects 

 

The figure is generated by  
 
ods graphics /height=6 in width=6 in; 
proc sgpanel data=pbcseq2 noautolegend; 
where id in (38 39 51 68 70 82 90 93 134 148 173 200 216 242 269 290); 
panelby id DRUG/columns=4 rows=4; 
loess x=t0 y=L_BILI/ smooth=.4 lineattrs=(color=red); 
colaxis label='Assessment time, years'; 
rowaxis label='Bilirubin (logged)'; 
format drug drug.; 
run; 
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Assuming { : 1 }ij iY j n≤ ≤ are independent and normally distributed given ib , the mixed model [4] is 
estimated by maximum likelihood. The unstructured covariance matrix G is parameterized by the 
Cholesky decomposition, type=Chol. If ′=G CC where C is lower triangular, then

11 21 22 31 32 33[ , , ]s s s s s s=C .  

ods output parameterestimates=parms_gl covparms=covparms; 
proc glimmix data=pbcseq2 noclprint gradient method=quad(qpoints=1); 
class id; 
model L_BILI=drug_pencl|t0|t0 /s dist=normal; 
random intercept t0|t0 /subject=id type=Chol; 
nloptions gconv=0; 
run; 

Estimated parameter estimates in Table 5 appear to support most profiles in Figure 1. We could use 
COVTEST statements to see if a simpler structure for G is warranted.  

Table 5. Estimates of fixed effects in the Linear Mixed model  

Effect Estimate Standard 
Error 

DF t Value p-value Gradient 

Intercept 0.5854 0.08245 310 7.10 <.0001 –0.00001 
drug_PENCL –0.1434 0.1159 1087 –1.24 0.2160 –9.55E–6 
t0 0.1626 0.03171 284 5.13 <.0001 0.000035 
drug_PENCL*t0 0.007118 0.04370 1087 0.16 0.8706 0.000027 
t0*t0 0.001444 0.003497 258 0.41 0.6799 –0.00027 
drug_PENCL*t0*t0 –0.00231 0.004445 1087 –0.52 0.6026 0.000031 

–2 LOGL=2864.84 
 
Our mixed model is a way station to building the joint model. The syntax is more than that needed. 
The two output data sets parms_gl and covparms save the estimates that will be used as initial 
values for parameters in the joint model.  

 

Construction of the joint likelihood 

The expanded data set used to fit the piecewise exponential model (Table 4) is appended with 
relabeled variables t0_L, t1_L, Y together with the previous t0, t1, L_BILI. All other fixed covariates 
DRUG_PENCL, SEX_FEMALE, AGE, HEPATOM0 are included. The original data set 
PBCSEQ2 is a multiple record file of 1945 records for 312 patients. It is expanded in JOINT_1 to 
3412 records to accommodate the log-likelihood [3] of the piecewise exponential model. The mixed 
model [4] uses 1945 records that are extracted by IND=1. 
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Expanded data records for ID=3 in data set JOINT_1 

Obs t0 t1 tstart tstop risktime L_BILI alpha1 alpha2 alpha3 t0_L t1_L Y IND 
20 0.0000 0.4819 0.0000 0.4819 0.4819 0.3365 1 0 0 0.0000 0.4819 0.3365 1 
21 0.4819 0.9966 0.4819 0.9966 0.5147 0.0953 1 0 0 0.4819 0.9966 0.0953 1 
22 0.9966 2.0343 0.9966 1.0089 0.0123 0.4055 1 0 0 0.9966 2.0343 0.4055 1 
23 0.9966 2.0343 1.0089 2.0343 1.0254 0.4055 0 1 0 . . . 0 
24 2.0343 2.7708 2.0343 2.2218 0.1875 0.5878 0 1 0 2.0343 2.7708 0.5878 1 
25 2.0343 2.7708 2.2218 2.7708 0.5490 0.5878 0 0 1 . . . 0 

 

For starting values of parameters assemble a data set PARMS_ALL from parms_pe, parms_gl 
and covparms. See Tables 4 and 5. The covariance parameters are the residual variance 2σ  and 
from the lower triangular matrix  C. Not all of them are needed or appropriate in joint models. For 
example, a12 below will not be used. 

Parameters in the piecewise exponential model   Parameters in the linear mixed model  

 

4.  Joint models for failure time and longitudinal marker 

We now proceed to estimating a series of joint models with NLMIXED. Broadly, they involve 
passing some aspect of the conditional mean function for the marker L_BILI 

[5.0] 2 2
1 4 5 1 0 0 2 1 3 2( ) ( ) ( ) ( ) ( )i i i i it t t x b b t b tµ β β β β β β= + + + + + + + +   

with random effects 0 1 2( , , )i i i ib b b=b  into the individual hazard function. For example, Rizopoulos 
(2012) considers 

[5.1] ( )1 2 0 1 1 2 2 1 2 2( | , , ) exp { ( ) ( )}i i i i j i i i ih t x x c c x c x x tα λ λ µ= − + + + + +b , 1[ , )j jt a a−∈   

where 1ix =DRUG_PENCL and 2ix = HEPATOM0.  This is our Model 1. The intercept 0c and 
{ ,1 7}j jα ≤ ≤ , parameterize the piecewise constant baseline hazard as in Table 4. Parameters 1λ , 2λ

are called association parameters. The log-likelihood [3] is no longer tenable because from [1] the 
cumulative hazard terms are 

Obs pname Estimate parameter 
14 Intercept 0.5854 b0 
15 drug_PENCL –0.1434 b1 
16 t0 0.1626 b2 
17 t0*t0 0.0014 b3 
18 drug_PENCL*t0 0.0071 b4 
19 drug_PENCL*t0*t0 –0.0023 b5 
20 CHOL(1,1) 0.9961 s11 
21 CHOL(2,1) 0.0519 s21 
22 CHOL(2,2) 0.2977 s22 
23 CHOL(3,1) 0.0003 s31 
24 CHOL(3,2) –0.0224 s32 
25 CHOL(3,3) 0.0109 s33 
26 Residual 0.0931 sigsq 

Obs pname Estimate parameter 
1 Intercept 6.2701 a0 
2 alpha1 0.8806 a1 
3 alpha2 1.0028 a2 
4 alpha3 0.3524 a3 
5 alpha4 0.3626 a4 
6 alpha5 0.2835 a5 
7 alpha6 0.3437 a6 
8 alpha7 –0.0547 a7 
9 drug_PENCL 0.0618 a8 

10 sex_female –0.0815 a9 
11 age –0.0424 a10 
12 hepatom0 –0.5590 a11 
13 L_BILI –1.3696 a12 
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[5.2]  ( ) ( )
1 1

1 2 0 1 1 2 2 1 2 2( | , , )) exp ( )) exp ( ) ( )m mi i

m mi i

t t

i i i i j i i i it t
h t x x dt c c x c x x t dtα λ λ µ

− −

= − + + + − +∫ ∫b , 

with some caveats. Our multiple record data file JOINT_1 may further split 1[ , )
i im mt t− by the cut-

points ja . For example, for ID=3 we see that 2 additional records (IND=0) are added to the 

original 4 records (IND=1), making the integral over 6 sub-intervals [TSTART, TSTOP). In general, 
evaluation of the integral in [5.2] would need numerical methods. Gauss-Kronrod quadrature is the 
most cited (Garcia-Hernandez and Rizopoulos, 2018, Crowther et al, 2012).  

We will proceed here with a simple expedient knowing well that it would introduce some bias. 
Heckman and Singer (1986) caution that the bias could be appreciable in some empirical 
applications. The expedient evaluates the integral in [5.2] at the beginning (TSTART) of the sub-
intervals, and therefore approximates the integral as a crude Riemann-sum over sub-intervals. But 
this will vary by individual. The JMFit SAS macro (Zhang et al, 2016) that fits several shared 
parameter models employs 200 sub-intervals. The %JM SAS macro (Garcia-Hernandez and 
Rizopoulos, 2018) is the most versatile and comprehensive. It has options for fitting models with 
other baseline hazards (e.g., Weibull, splines, fractional polynomials (Royston and Parmar (2002)) 
and generalized linear mixed models for the marker process. It calls Gauss-Kronrod quadrature for 
numerical integration.  

NLMIXED assembles the log-likelihood from ( ) 2( )| ( ( ), )i i iD Y t NORMAL tµ σ≡b  and 
( , | )i i i iD T U δ∧ b specified via [5.1] and [5.2].  The integration with respect to random effects is by 

the default Gauss-Hermite quadrature, method=gauss. Optimization of the log-likelihood with 
respect to model parameters is governed by tech=newrap. Starting values of parameters are 
extracted from PARMS_ALL(where=(parameter not in ("a9" "a10" "a12" ))); An 
educated guess for (lam1,lam2)completes the initial values specification. 

Fortitude and patience, together with aid from an arsenal of options in NLMIXED often lead to 
satisfactory convergence and plausible results. Applying the parameter estimates from a previous run 
as starting values for the next invocation, and tweaking the quadrature points (qpoints=) and 
gradient convergence (gconv=) options support confidence in the final results. Also, look for 
convergence with small gradients. We have asked for empirical standard errors (empirical) 
probably adding slightly to the overall computational effort. The execution time for the entire 
program was 1 hr, 27 mins, on a desktop 4 core Xeon processor. Table 6 shows the results. 

From [5.1] for an unit increase in the marker at time t, the log hazard-ratio is (− 1λ ) in subjects 
without hepatomegaly ( 2 0ix = ) and  (− 1λ − 2λ ) in subjects with hepatomegaly ( 2 1ix = ). Estimates 
and standard errors are obtained from two estimate statements, and then transformed to hazard 
ratios in a simple data step. Confidence limits are based on the t-distribution (DF=309). 

The results from NLMIXED are comparable to those shown in Rizopoulos (2012) via their R-
program JM. For HEP=0, HR=3.2 (95% CI: 2.5, 4.1), and for HEP=1, HR=4.0 (95% CI: 3.1, 5.2).  
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 Hazard Ratio (HR) and 95% CL 
Label HR LCL UCL 
HAZARD RATIO marker @ HEP=0 3.21 2.30 4.47 
HAZARD RATIO marker @ HEP=1 4.23 3.22 5.58 

LCL=95% lower CL; UCL=95% upper CL. HEP=hepatomegaly  

 

Table 6: Estimates from the Joint model (Model 1) 

Parameter Estimates 
Parameter Estimate Standard 

Error 
DF t Value p-value 95% Confidence Limits 

lam1 –1.1654 0.1691 309 –6.89 <.0001 –1.4981 –0.8327 
lam2 –0.2781 0.2157 309 –1.29 0.1983 –0.7025 0.1463 
a0 4.1419 0.3710 309 11.16 <.0001 3.4118 4.8720 
a1 0.4182 0.3547 309 1.18 0.2393 –0.2797 1.1161 
a2 0.6755 0.3565 309 1.89 0.0591 –0.02600 1.3770 
a3 0.1825 0.3566 309 0.51 0.6092 –0.5192 0.8842 
a4 0.2523 0.3465 309 0.73 0.4670 –0.4294 0.9341 
a5 0.1814 0.3476 309 0.52 0.6021 –0.5025 0.8654 
a6 0.1443 0.3474 309 0.42 0.6782 –0.5393 0.8278 
a7 –0.08040 0.3478 309 –0.23 0.8173 –0.7648 0.6040 
a8 drug –0.08110 0.1748 309 –0.46 0.6429 –0.4250 0.2628 
a11 hepatom0 –0.1774 0.4221 309 –0.42 0.6746 –1.0081 0.6533 
b0 0.5846 0.08943 309 6.54 <.0001 0.4086 0.7606 
b1 drug –0.1423 0.1161 309 –1.23 0.2210 –0.3707 0.08604 
b2 time 0.1650 0.03459 309 4.77 <.0001 0.09691 0.2330 
b3 time2 0.003314 0.004060 309 0.82 0.4151 –0.00468 0.01130 
b4 drug×time 0.001619 0.04391 309 0.04 0.9706 –0.08478 0.08802 
b5 drug×time2 –0.00204 0.004398 309 –0.46 0.6433 –0.01069 0.006616 
s11 0.9958 0.03712 309 26.82 <.0001 0.9227 1.0688 
s21 0.05478 0.02598 309 2.11 0.0358 0.003660 0.1059 
s22 0.3034 0.02165 309 14.01 <.0001 0.2608 0.3460 
s31 0.001345 0.003566 309 0.38 0.7062 –0.00567 0.008362 
s32 –0.02206 0.002899 309 –7.61 <.0001 –0.02777 –0.01636 
s33 0.01174 0.002144 309 5.48 <.0001 0.007525 0.01596 
sigsq 0.09188 0.007029 309 13.07 <.0001 0.07805 0.1057 

–2 LOG L=3709.0 
 
Syntax for Model 1 
 
ods output additionalestimates=estimates 
   parameterestimates=parms_NL5; 
proc nlmixed data=JOINT_1 method=gauss tech=newrap gconv=0   
 qpoints=7 empirical; 
parms/data=g.parms_NL4; /*parameter update from a previous call*/ 
dummy=1; 
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/*----SURVIVAL----*/ 
xb=b0+b1*DRUG_pencl+b2*tstart+b3*tstart*tstart+b4*drug_pencl*tstart
 +b5*drug_pencl*tstart*tstart 
  +Z0+Z1*tstart+Z2*tstart*tstart; 
xa=a0+a1*alpha1+a2*alpha2+a3*alpha3+a4*alpha4+a5*alpha5+a6*alpha6 
 +a7*alpha7+a8*drug_PENCL+a11*hepatom0 
 +lam1*xb+lam2*xb*hepatom0; 
fail=(event ~=0); 
LLIK_S= -fail*xa-risktime*exp(-xa);  
 
/*----LONGITUDINAL MIXED MODEL---*/ 
PI=constant("PI"); 
xb_L=b0+b1*drug_pencl+b2*t0_L+b3*t0_L*t0_L+b4*drug_pencl*t0_L 
   +b5*drug_pencl*t0_L*t0_L 
   +Z0+Z1*t0_L+Z2*t0_L*t0_L; 
resid=(Y-xb_L); 
 
if IND=0 then LLIK_L=0; 
else 
 LLIK_L=-.5*log(2*PI)-.5*resid**2/sigsq-.5*log(SIGsq); 
   
g11=s11**2;  
g21=s21*s11; g22=s21**2+s22**2;  
g31=s31*s11; g32=s31*s21+s32*s22; g33=s31**2+s32**2+s33**2; 
 
estimate "HAZARD RATIO marker @ HEP=0"  lam1; 
estimate "HAZARD RATIO marker @ HEP=1"  lam1+lam2; 
 
model dummy~general(LLIK_S+LLIK_L); 
random z0 z1 z2 ~normal([0,0,0], [g11, g21, g22, g31, g32, g33]) 
 subject=id; 
run;  

Model 2 (Shared parameter): The survival model is piecewise exponential with hazard function 

( )1 2 0 1 1 2 2 0 0 1 1 1( | , , ) exp ( ) , [ , )i i i i j i i i i j jh t x x c c x c x b b t a aα λ λ −= − + + + + + ∈b . 

Notice that there are no additional time-functions in the linear predictor. Among the models fit by 
the JMFit SAS macro (Zhang et al, 2016), this is called SPM2L. To fit this model, modify the syntax 
in the linear predictor xa for the random effects by lam0*z0+lam1*z1. With the same 
requests made for Model 1, and beginning the computations at initial values suggested by Model 1, 
satisfactory convergence was achieved in 1hr, 11mins. Results are in Table 7 (columns 1-3). 

Model 3 (Shared parameter with linear trajectory): The survival model is piecewise exponential 
with hazard function 

( )1 2 0 1 1 2 2 0 1 1( | , , ) exp { ( )} , [ , )i i i i j i i i i j jh t x x c c x c x b b t t a aα λ −= − + + + + + ∈b . 
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This model is called SPM1L in JMFit. The time function in the cumulative hazard can be integrated 
in closed form. Results in Table 7 (columns 4-6). 

Model 4 (Shared parameter with linear trajectory, but intercept and slope in marker model): 
The survival model is the same as Model 3, but the longitudinal marker model is reduced to linear 
variation only—Table 7 (columns 7-9). 

The association parameters in model 2 are significant pointing to a correlation between ( )iY t and 
log iT .  In models 3 and 4 the hazard function (conditional on ib ) has the form of the Gompertz 
distribution (Collett, 2015). Model 4 is a restriction of model 3 that involves fewer covariance 
parameters.  The 3 DF test for comparing the two models is significant. 

 Table 7: Estimates from the Joint models (Models 2, 3, and 4) 

 

 

 MODEL 2 MODEL 3 MODEL 4 
Parms Estimate Stderr p-value Estimate Stderr p-value Estimate Stderr p-value 
lam . . . –0.7012 0.1804 0.0001 –1.2294 0.09505 <.0001 
lam1 –3.1127 0.4200 <.0001 . . . . . . 
lam0 –1.2355 0.1170 <.0001 . . . . . . 
a0 1.7102 0.3402 <.0001 2.1759 0.5872 0.0002 1.3530 0.4101 0.0011 
a1 2.8669 0.4619 <.0001 1.4342 0.6236 0.0221 2.5615 0.4342 <.0001 
a2 2.5378 0.4216 <.0001 1.5490 0.6249 0.0137 2.6428 0.4368 <.0001 
a3 1.5314 0.3865 <.0001 0.8332 0.6194 0.1796 1.8670 0.4231 <.0001 
a4 1.3599 0.3665 0.0002 0.9130 0.5952 0.1261 1.7958 0.4134 <.0001 
a5 1.0146 0.3556 0.0046 0.7644 0.5754 0.1850 1.5140 0.3983 0.0002 
a6 0.6900 0.3462 0.0471 0.5752 0.5523 0.2985 1.1832 0.3858 0.0024 
a7 0.2355 0.3368 0.4849 0.1810 0.4744 0.7031 0.5650 0.3626 0.1202 
a8 drug 0.1217 0.2542 0.6326 0.0650 0.2217 0.7695 0.03608 0.2572 0.8885 
a11 
hepatom0 

–0.7284 0.1881 0.0001 –1.0375 0.2275 <.0001 –0.6747 0.1922 0.0005 

b0 0.5800 0.08952 <.0001 0.5721 0.08934 <.0001 0.5439 0.08809 <.0001 
b1 drug –0.1440 0.1162 0.2161 –0.1332 0.1162 0.2526 –0.1118 0.1159 0.3356 
b2 time 0.1916 0.03553 <.0001 0.1732 0.03601 <.0001 0.1843 0.01906 <.0001 
b3 time2 –0.0009 0.00394 0.8285 –0.00044 0.003935 0.9102 . . . 
b4 drug× 
time 

0.00396 0.04508 0.9300 0.02130 0.05101 0.6765 0.00708 0.02428 0.7708 

b5  drug× 
time2 

–0.00213 0.00445 0.6332 –0.00349 0.005010 0.4860 . . . 

s11 0.9964 0.03721 <.0001 0.9890 0.03718 <.0001 0.9973 0.03717 <.0001 
s21 0.07698 0.02642 0.0038 0.08056 0.02468 0.0012 0.07849 0.01433 <.0001 
s22 0.3102 0.02274 <.0001 0.2820 0.02730 <.0001 –0.1654 0.01519 <.0001 
s31 –0.00132 0.00357 0.7127 –0.00337 0.003182 0.2906 . . . 
s32 –0.02289 0.00313 <.0001 –0.01948 0.004220 <.0001 . . . 
s33 0.01001 0.00156 <.0001 0.009400 0.001613 <.0001 . . . 
sigsq 0.09323 0.00723 <.0001 0.09689 0.008246 <.0001 0.1203 0.00988 <.0001 
–2 log L 3759   3830   3918   
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6. Bayesian Analyses of Joint Models 

Adopting a Bayesian framework, Guo and Carlin (2004) discuss a series of shared parameter models. 
The marker process has two random effects 0 1( , )i i ib b=b , for intercept and slope. For the survival 
component their model XI  specifies the hazard function, 0 0 0 1 1( | , ) ( )exp( )i i i i ih t h t b bβ λ λ′= + +x b x  
with Weibull baseline, 1

0 ( )h t t γγ −=  and shape parameter γ >0. A more complex model replaces the 
random component with 0 0 1 1 2 0 1( )i i i ib b b b tλ λ λ+ + + . The empirical application is a study of survival in 
AIDS patients who were treated by antiretroviral drugs, ddI vs ddC (Abrams et al, 1994). The 
longitudinal marker is the square-root of the CD4 cell count assessed at baseline and subsequently at 
2, 6, 12 and 18 months. This data set has been extensively adopted for illustration. See Garcia-
Hernandez and Rizopoulos (2018), Littell et al, (2006) Ye and Yu (2014) for different specifications 
of 0( )h t  and the random effects component. Ibrahim et al, (2001) has a discussion of the 
fundamentals of joint modeling in the Bayesian context. 

As note previously, one challenging complexity in fitting joint models is the need to carry out an 
integration of the hazard function with respect to t.  Crowther et al, (2012) and Royston and Parmer 
(2002) describe advantages of modeling the cumulative hazard ( | , )i iH t x b so that a proportional 
cumulative hazards on log ( | , )i iH t x b  can have flexible functions for log( )s t= , including the natural 
cubic spline (NCS), basis splines and fractional polynomials. Gauss-Kronrod quadrature is the 
conduit for numerical integration wherever it is needed. 

In the Bayes analysis, PHREG offers the piecewise constant hazard and the NCS for proportional 
hazards models (SAS/STAT Analytics 15.1). The joint model that we consider next, is far less 
ambitious in its scope. Consider model 4 of the previous section specifying marker process 

1 1 0 0 2 1 0 1( ) ( ) ( )i i i i i it x b b t U U tµ β β β= + + + + ≡ +  with hierarchically centered random effects 0 1( , )i iU U  
and 1ix is the binary indicator for drug_pencl. The hazard function has a Weibull baseline

( )1
1 0 2 1( | , ) exp ( ( )i i i i ih t x t c c x tγγ γ λµ−= − + +b .  

The PROC MCMC syntax for the marker component is entirely analogous to what is needed to fit a 
normal likelihood based linear mixed model. Figure 2 summarizes the features. 

The log likelihood for the survival component is composed of 1log ( | , )i i i i ih T xδ b  and 

1
1( | , )m

m

t

i i it
h t x dt

−

−∫ b  where  log ( )1 0 2 1 0 1( | , ) log( ) log ( ( ) logi i i i i ih t x t c c x U U t tγ γ λ= + − + + + −b . The 

integral contains 
1

1
1exp( )m

m

t

it
t U t dtγγ γλ

−

− −∫ . Whether or not re-parameterization could lead to 

efficiencies in computations by MCMC is unclear. Direct programing of the log-likelihood is simple. 
The integration is carried out via the QUAD CALL in PROC MCMC.  A subroutine in PROC 
FCMP must be invoked first, before initiating PROC MCMC. 

proc fcmp outlib=sasuser.funcs.QUAD; 
subroutine intfun(t, ft, c1, C); 
outargs ft; 
ft=c1*(t**(c1-1))*exp(-C*t); 
endsub;run;  
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Figure 2: Longitudinal component for Bayes analysis 

  
Random effects 0 1( , )i i iU U=U  

Bivariate normal distribution ~ ( _ , _ )iU mu c G c  

Mean vector =mu_c 

Covariance matrix =G_c 

mu_c is structured in terms of model 
parameters and effects 

mu_c0=z_c1+b1*drug_pencl; 
mu_c1=z_c2; 
 

PARMS given fixed prior distributions:  
mu0,G0 are fixed: 

(z_c1, z_c2) ~mvn(mu0,G0) 

array mu0[2] (0 0); 
array G0[2,2] (1000 0 0 
1000); 
 

 

 

 

  

PARMS in G_c given fixed prior 
distributions: G fixed 

PARMS and PRIORS 

parms z_c {.56 .18} G_c {.98 .07 .07 1.08};   
prior z_c~mvn(mu0, G0); 
prior G_c ~iwish(2, G); 
parms sigsq .12; 
prior sigsq~igamma(shape=.01, scale=.01); 
parms b1 -.128; 
prior b1~normal(0, var=1E6); 
 

random U~MVN(mu_c,G_c) subject=id; 
mt=U0+U1*t0; 
resid=(L_BILI-mt); 
PI=constant("PI"); 
 LLIK_L=-.5*log(2*PI)-.5*resid**2/sigsq-.5*log(SIGsq); 

array U[2] U0 U1; 
 

array mu_c[2] mu_c0 mu_c1; 
array z_c[2]; 

array G_c[2,2]; 
array G[2,2] (.02 0 0 20); 
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Survival component for Bayes analysis 

The parameters are labeled ( 0, 1, 2)c c c  for the intercept, shape γ (Weibull) and regression coefficient 
of drug_pencl, respectively. The association parameter is λ --lam. 

parms c0 2.3 c1 2.1 c2 .05; 
prior c0 c2 ~Normal(0, var=1E6); 
prior c1 ~gamma(shape=1E4, iscale=1E4); 
parms lam -3; 
prior lam ~Normal(0, var=1E4); 
 
xa=c0+c2*drug_pencl+lam*U0; 
fail=(event ~=0); 
LP=log(t1)-xa; 
C=c1*lam*U1; 
 
LLIK_S1=log(c1)+c1*LP-log(t1)-C*t1; LLIK_S1=fail*LLIK_S1; 
if C=0 then do; 
 if t0>0 then LLIK_s2=-exp(-c1*xa)*(t1**c1-t0**c1); 
  else LLIK_s2=-exp(-c1*xa)*(t1**c1); 
  end; 
else do; 
 call quad("IntFun",integral, t0, t1, c1, C); 
 LLIK_S2=-exp(-c1*xa)*integral; 
 end; 
 
LLIK_S=LLIK_s1+LLIK_s2; 
model general(LLIK_L+LLIK_S); 
run; 
 
The last two statements combine the longitudinal and survival components of the joint model.  

Parameters in Joint model  
Block Parameter Array 

Index 
Sampling 
Method 

Initial 
Value 

Prior Distribution 

1 z_c1   N–Metropolis 0.5600 MVNormal(mu0, G0) 
  z_c2     0.1800   
2 G_c1 [1,1] Conjugate 0.9800 iWishart(2, G) 
  G_c2 [1,2]   0.0700   
  G_c3 [2,1]   0.0700   
  G_c4 [2,2]   1.0800   
3 sigsq   N–Metropolis 0.1200 igamma(shape=.01, scale=.01) 
4 b1   N–Metropolis –0.1280 normal(0, var=1E6) 
5 c0   N–Metropolis 2.3000 normal(0, var=1E6) 
  c1     2.1000 gamma(shape=1E4, iscale=1E4) 
  c2     0.0500 normal(0, var=1E6) 
6 lam   N–Metropolis –3.0000 normal(0, var=1E4) 
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Results from PROC MCMC are summarized in Table 8. A burn-in of 5000 samples was discarded 
before 20000 Markov chain samples were generated. All other options are at their default values. 

proc mcmc data=pbcseq2 seed=22819 nmc=20000 nbi=5000; 
 
Table 8: Posterior Summaries and 95% HPD Intervals from Joint model 
 

Posterior Summaries and Intervals 
Parameter N Mean Standard 

Deviation 
95% HPD Interval 

z_c1 20000 0.5330 0.0813 0.3684 0.6863 
z_c2 20000 0.2092 0.0253 0.1595 0.2579 
G_c1 20000 0.9956 0.0854 0.8372 1.1686 
G_c2 20000 0.0861 0.0278 0.0310 0.1395 
G_c3 20000 0.0861 0.0278 0.0310 0.1395 
G_c4 20000 0.1505 0.0150 0.1227 0.1808 
sigsq 20000 0.1158 0.00439 0.1076 0.1248 
b1 drug 20000 –0.1161 0.1141 –0.3328 0.1190 
c0 20000 4.2355 0.2133 3.7733 4.6322 
c1 shape 20000 1.0011 0.0102 0.9803 1.0203 
c2 drug 20000 –0.0199 0.1670 –0.3385 0.3039 
lam 20000 –1.2452 0.0847 –1.4059 –1.0749 

  

Execution time for the PROC MCMC call was long, over 2.5 hrs cpu time. It could be that our 
parameterization was not ideal and a simpler evaluation of the survival likelihood could a made with 
one QUAD call.   Trace, autocorrelation and density (TAD) plots are shown next for parameters 
except G_c1 to G_c4—which did exceeding well because of our choice of starting values and priors.  
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7.  Concluding Remarks  

There has been considerable new development in the area of joint modeling of longitudinal markers 
and survival outcomes. Extensions of the basic model of single repeated measures marker, modelled 
by a linear mixed model and a single time-to-event, include competing risks for the latter and 
multivariate longitudinal outcomes for the former, as well as adoption of the Bayesian framework   
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(Hickey et al, 2018; Li and Luo, 2019; Lu, 2017). Generalized mixed models for the marker allow for 
repeated binary, binomial and count outcomes. In PROC GLIMMIX we have a versatile tool for 
this part of the analysis. For the survival part, modelling the hazard function posited in proportional 
hazards form pervades a majority of methods. However, flexible modelling of the baseline 
component as piecewise constant function, restricted cubic splines, or fractional-polynomials, permit 
a fairly broad catalog of models. The thorny part is the inclusion of functions of the marker process 
into the linear predictor of the hazard function. Shared random effects models are easier to handle 
primarily because the computational task is far less demanding than when incorporating a function 
of the marker that has covariates, random effects and time trajectories. Nevertheless, software 
programs in R, Stata and SAS have “softened” the burden. In this article we show how the suite of 
SAS procedures, LIFEREG, SEVERITY, GLIMMIX, MCMC with NLMIXED providing the 
“glue” can be gainfully applied to address some joint modelling problems.   

Several reviews highlight the breadth of theoretical developments and have sought to demonstrate 
real-world applications (Sudell et al, 2018; Hickey et al, 2016; Asar et al, 2015; Ye and Yu, 2014; 
Tsiatis and Davidian, 2004). A forthcoming book chapter promises to be a comprehensive review of 
the state of the art (Papageorgiou et al, 2019).  
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