
1

Paper 3156-2019

SAS® Viya® reportImages Service: The Report Optimization

Speedometer

Michael Drutar, SAS Institute Inc., Cary, NC

ABSTRACT

SAS® Viya® offers several techniques that can maximize the speed of SAS® Visual Analytics

reporting: data partitioning, user-defined formats, and the use of aggregated data.

However, every SAS Visual Analytics report can be different: different data, different

graphs, and other differences in terms of filters, interactive widgets, and more. Testing how

changes to individual reports affect speed can be laborious and might involve manually

opening reports in the SAS® Report Viewer several times and meticulously reviewing each

report’s diagnostics or microservice logs. Even with this information, external factors such

as network performance can confound the diagnostics. This paper presents a programmatic

way to call a SAS Visual Analytics report to quickly determine how long it takes the report to

render using the reportImages service, available via the SAS Viya REST API. This paper

provides all of the code for an automated, end-to-end process that leverages the SAS Viya

REST API to retrieve the server-side render time of a SAS Visual Analytics report. Code is

provided for testing an individual report on demand. This process can be repeated

automatically while the report designer tests several versions of the report. Macro code

demonstrates how to test a suite of reports for comprehensive A/B comparisons. Data

gathered from these repeated API calls enables designers to quickly determinate the best

performance techniques to meet their specific reporting needs.

INTRODUCTION

SAS Viya includes many REST APIs that enable developers to interact with the SAS®

platform in new and exciting ways. Before using these APIs, developers should become

familiar with basic REST concepts, such as endpoints, methods, headers, and content that

can be contained within the body of a request. This paper assumes that you have a general

understanding of using PROC HTTP to make REST API calls using these principles.

ACCESSING SAS VIYA SERVICES USING SAS® STUDIO 5.1

Before clients can leverage the many assets that SAS Viya REST APIs provide, they must

first be authenticated using an access token. Methods for how to acquire access tokens

vary, based on the language and method that clients use to interact with the SAS Viya REST

APIs.

When logged on to the SAS Viya platform and submitting SAS code using SAS Studio 5.1,

developers can connect to the SAS Viya services by placing the keyword sas_services in the

PROC HTTP option oauth_bearer. This ensures that the access token for the current

authenticated user is automatically obtained and attached to the request, thus enabling SAS

programmers who are already logged on to the SAS Viya environment to seamlessly

connect with the resources that are available in SAS Viya services. Details on the

sas_services keyword and oauth_bearer option are beyond the scope of this paper;

however, more information can be found in the SAS documentation in the References

section of this paper.

The example SAS code for achieving this access is below:

* Base URI for the service call;

%let BASE_URI=%sysfunc(getoption(servicesbaseurl));

https://www.contentet.com/sasgf2019/index.cfm?do=ev.viewEv&ev=3812
https://www.contentet.com/sasgf2019/index.cfm?do=ev.viewEv&ev=3812

2

/*Assign filename for output*/

filename reports temp;

/*Call reports Service*/

proc http url="&BASE_URI/reports/"

 method='get'

 oauth_bearer=sas_services

 out=reports;

run;

This paper assumes that all code is submitted in a SAS Studio 5.1 session within a SAS Viya

3.4 (and beyond) environment that contains the SAS Viya services being called.

REPORTIMAGES SERVICE OVERVIEW

The reportImages service can be used by clients to create an SVG image of a SAS® Visual

Analytics report. The process flow for using this service consists of two steps. Each step

involves the client making a request to the service and the service sending a response. The

requests and responses for these two steps are outlined below:

• Step 1

• The client requests that a new job be created, which generates an SVG image of a

specific SAS Visual Analytics report.

• The service initiates the job and sends a response to the client containing

information about the job (such as the job’s ID).

• Step 2

• The client requests the status of the job using the job ID returned from Step 1.

• The service sends a response to the client containing the current status of the job

specified in the request.

When Step 2 returns a state of completed for the specified job, additional information is also

contained in the response. Specifically, the response contains the duration the job took to

generate the SVG image. After the service returns a completed status, the client can use

other features of the reportImages service to retrieve the generated SVG image file itself.

MAKING REPORTIMAGES SERVICE REQUESTS USING SAS

STEP 1: CREATING A JOB

As described in the previous section, the client begins the process of using the reportImages

service by first making a request to create a job to render a specific SAS Visual Analytics

report as an SVG image. This request has the following components:

• Endpoint: https://www.example.com/reportImages/jobs

• Method: POST

The parameters of the API call are contained within the body of the request. For the

purposes of leveraging the reportImages service as a speedometer, specific parameters and

values must be included. The body should be composed of the following components:

• reportUri: /reports/reports/<report id>

• layoutType: entireSection

3

• selectionType: report

• refresh: true

• size: <Desired SVG Image Size>

• sectionIndex: <section number>

The reportURI parameter tells the service which SAS Visual Analytics report is to be

rendered as an SVG. The layoutType parameter tells the service to create an SVG image of

the entire report section that is specified in the sectionIndex parameter, which defines

which report tab the service should render. The first tab in a report has an index value of

zero, the second tab in the report has an index of 1, and so on. Similar to the layoutType

parameter, the selectionType parameter tells the service to generate a single image,

representing the entire report. The size parameter defines the desired width and height

dimensions of the SVG image. Typically, these dimensions should be set so that they are

similar to the size of the screen on which the SAS Visual Analytics Report is shown, when

opened in the SAS® Report Viewer (for example, 1680x1050).

To retrieve the most accurate image generation data, it is important to set the refresh

parameter to true. Ordinarily, when a request is made to generate an SVG of a specific

report, the reportImages service first checks to see whether the requested image already

exists within its cache. If it does, the service instantly returns the cached image, rather than

rebuilding the image. However, this behavior is not desirable when using the reportImages

service to gain insight into how long it takes the SAS Report Viewer to render a report in

real time. Setting the refresh parameter to true forces the reportImages service to

regenerate the SVG from scratch for each request. Therefore, the same report can be called

several times and each resulting duration metric is much more accurate.

The following SAS code requests that a job be created to render a SAS Visual Analytics

report:

* Base URI for the service call;

%let BASE_URI=%sysfunc(getoption(servicesbaseurl));

/* create filenames to hold responses*/

filename startjob temp;

filename resp_hdr temp;

/* Make request */

proc http

 method="POST"

 oauth_bearer=sas_services

 url="&BASE_URI/reportImages/jobs"

 ct="application/vnd.sas.report.images.job.request+json"

 in='{

 "reportUri" : "/reports/reports/<- report id ->",

 "layoutType" : "entireSection",

 "selectionType" : "report",

 "refresh":true,

 "size" : "<Desired Image Size>",

 "sectionIndex" : 0

 }'

 /* place response in filenames */

 out=startjob

 headerout=resp_hdr

 headerout_overwrite;

4

run;

Submitting the code above results in successfully sending a request and the reportImages

service sending a response. This response is captured in the filename startjob. The JSON

LIBNAME engine can be used to read the contents of startjob filename as a SAS library.

After this library has been assigned, the response from the reportImages service can be

viewed as SAS tables. A subset of the contents of the startjob.root table is shown in Figure

1.

Figure 1. Subset of Table: startjob.root

Several pieces of important information are contained within table startjob.root. Most

importantly, it contains the unique ID and current state of the job that has been initiated to

create the SVG image. Because the job has just begun, the job’s state is returned as

running; or rather, it hasn’t completed yet.

In order to move on to the next step of using the reportImages service, the ID of the job

must be captured for use later in the SAS program. To achieve this, use the SYMPUTX

function to save the value of the ID variable as the SAS macro variable id:

/* Use JSON LIBNAME engine to read in response */

libname startjob json;

data _NULL_;

 set startjob.root;

 call symputx('job_id',id);

run;

STEP 2: RETRIEVING JOB DURATION

After the job has successfully started and the job ID has been stored in the macro variable

id, the developer can move on to the second step of using the reportImages service:

retrieving how long it takes to render the SAS Visual Analytics report as an SVG image. This

is achieved by making a second request to the reportImages service for the status of a job.

This API request has the following components:

• Endpoint: https://www.example.com/reportImages/jobs/<- job id ->

• Method: GET

It is important to note the value at the end of the endpoint: job id. This must be the unique

job ID that was stored in the macro variable id in Step 1. With a valid job ID value in the

endpoint, the reportImages service successfully returns the status of the specified job. As in

Step 1, the JSON LIBNAME engine is used to read the response in the form of a SAS table.

The SAS code that requests the status of a specific job ID and reads in the response via the

JSON LIBNAME engine is below:

* Base URI for the service call;

%let BASE_URI=%sysfunc(getoption(servicesbaseurl));

https://www.example.com/reportImages/jobs#requestBody

5

/* create filenames to hold responses*/

filename j_status temp;

filename res_hdr temp;

/*Make the request */

 proc http

 method="GET"

 oauth_bearer=sas_services

 url="&BASE_URI/reportImages/jobs/&job_id"

 out=j_status

 headerout=res_hdr

 headerout_overwrite;

 run;

/* Use JSON LIBNAME engine to read in response */

 libname j_status json;

The current status of the job specified in the request is contained as the variable state in

the j_status.root table. If at the time of the request the reportImages service has not

completed generating the SVG, the response has a value of running, as shown in Figure 2.

Figure 2. Subset of Table: j_status.root

If the service has completed generating the SVG image, the response has a value of

completed and there is a new variable named duration in the status.root data set. (See

Figure 3.) The duration variable contains the total time it has taken to successfully render

the report as an SVG image. This value is the key to using the reportImages service as a

speedometer for report rendering time.

Figure 3. Subset of Table: j_status.root Including the Variable duration

Because it might take several seconds for the SVG to be completely generated, developers

might have to repeat the request in Step 2 several times before successfully retrieving a

status of completed. To avoid having to manually re-run the SAS code that performs the get

status request, developers can invoke a SAS macro to automatically make repeated

requests until the variable state returns a value of completed.

An example of such a macro is below:

* Base URI for the service call;

%let BASE_URI=%sysfunc(getoption(servicesbaseurl));

/* initially set status */

%let status=0;

%macro jobstatus;

6

 %do %until (&status ne 0);

 /* clear filenames and librefs */

 filename res_hdr clear;

 filename j_status clear;

 libname j_status clear;

 /* assign filenames */

 filename j_status temp;

 filename res_hdr temp;

 /* Make request */

 proc http

 method="GET"

 oauth_bearer=sas_services

 url="&BASE_URI/reportImages/jobs/&job_id"

 out=j_status

 headerout=res_hdr

 headerout_overwrite;

 run;

 /* Read response */

 libname j_status json;

 /* Determine state and reset status */

 data job_status;

 set j_status.root;

 if state = 'running' then status = 0;

 else if state = 'completed' then status = 1;

 call symputx('status',status);

 run;

 %end;

%mend jobstatus;

/*call the macro*/

%jobstatus;

The code above begins by creating a macro variable named status and setting its value to

zero. After this, the definition for the jobstatus macro begins with creating a DO UNTIL loop

that runs until the value of the macro variable status is not zero. Because this loop is

expected to run several times, the libref and filename j_status are cleared of values that

might have been assigned in the loop’s previous iteration.

After this setup, the request is made to get the status of the job that is specified in the

job_id macro variable. Its response value is captured in the j_status filename and libref. A

DATA step is then run to create a numeric variable named status, based on value of the

state variable in the j_status.root table. If the value of state is running, the value of the

status variable is created and set to zero. Alternatively, if the value of state is completed,

the value is set to a quantity other than zero. The SYMPUTX function then reads the value of

the status variable and uses it to reset the value of the status macro variable. Finally, the

DO UNTIL loop is ended and macro definition is completed.

End to end, the macro jobstatus simplifies the process of retrieving the duration of a

reportImages job by offering an automated way to make repeated requests until a status of

completed is returned.

COMPARING MULTIPLE REPORT RENDER DURATIONS

The following example demonstrates how the reportImages service can be used as a

speedometer for server-side report rendering time. This scenario consists of a SAS Visual

7

Analytics report that visualizes data containing information about the names of roads within

the United States. Specifically, the report shows which states have roads that contain the

word “Parkway” in their names. The data source of this report is a SAS data set named

“us_roads” that contains 10 variables and 20 million observations. Figure 4 and Figure 5

show screenshots of the data source and report, respectively.

Figure 4. Subset of the Source Table: us_roads

Figure 5. Visual Analytics Report Using the Source Table: us_roads

The data for this report is refreshed nightly. To ensure that a fast report load time occurs

when the first user opens the report after the nightly data refresh, the developer is

exploring various methods to maximize report speed.

One method is to create an aggregated version of the data source named us_roads_agg

that contains only 3 variables and 12 observations. The report developer then creates a new

version of the “Parkway Roads” report that uses us_roads_agg as its data source.

8

Screenshots of the us_roads_agg aggregated data source and its associated report appear

in Figure 6 and Figure 7, respectively.

Figure 6. Aggregated Table: us_roads_agg

Figure 7. Visual Analytics Report Built Using the Source Table: us_roads_agg

Now that the report developer has created two different versions of the report, the

reportImages service can be used to test the server-side rendering time for each of them.

Leveraging the previously discussed concepts of using the reportImages service to retrieve

a job’s duration, the report developer writes one comprehensive macro to test these two

examples reports and return their respective server-side rendering times. The macro is

9

called by using the parameters datasource, report_name, and report_URI. This macro’s

definition is displayed below:

* Base URI for the service call;

%let BASE_URI=%sysfunc(getoption(servicesbaseurl));

%macro report_generation_duration(sourcedata,report_name,report_uri);

/* Refresh Data in CAS */

cas myses;

proc casutil;

 droptable incaslib="PUBLIC" casdata="&sourcedata" quiet;

 load incaslib="PUBLIC" outcaslib="PUBLIC"

casdata="&sourcedata..sashdat" casout="&sourcedata" promote;

run;

/* create dynamic proc http 'in=' statement */

data create_params;

 request_params = "'" || trim('{"reportUri" : "') || "&report_uri" ||

trim('","layoutType" : "entireSection","refresh":true,"selectionType" :

"report","size" : "1680x1050","version" : 1}' || "'");

 call symput('request_params',request_params);

run;

/* create job and get response */

filename resp_hdr clear;

filename startjob clear;

libname startjob clear;

filename startjob temp;

filename resp_hdr temp;

proc http

 method="POST"

 oauth_bearer=sas_services

 url="&BASE_URI/reportImages/jobs"

 ct="application/vnd.sas.report.images.job.request+json"

 in=&request_params.

 out=startjob

 headerout=resp_hdr

 headerout_overwrite;

run;

libname startjob json;

/* capture job id into macro variable job_id */

data _NULL_;

 set startjob.root;

 call symputx('job_id',id);

run;

/* Set initial &status to be zero */

%let status=0;

/* macro to check status until job is completed */

%macro jobstatus;

 %do %until (&status ne 0);

 filename res_hdr clear;

 filename j_status clear;

10

 libname j_status clear;

 filename j_status temp;

 filename res_hdr temp;

 /* Make API Call */

 proc http

 method="GET"

 oauth_bearer=sas_services

 url="&BASE_URI/reportImages/jobs/&job_id"

 out=j_status

 headerout=res_hdr

 headerout_overwrite;

 run;

 libname j_status json;

 /* create &status macro variable */

 data job_status;

 set j_status.root;

 if state = 'running' then status = 0;

 else if state = 'completed' then status = 1;

 call symputx('status',status);

 run;

 %end;

%mend jobstatus;

/* call macro %jobstatus */

%jobstatus;

/* create and print final data set */

data report;

 set j_status.root;

 reportName = "&report_name";

 reportURI = "&report_uri";

 label id = "reportImages Job ID"

 duration = "Job Duration"

 label state="Job Status";

run;

/* Print output */

title "reportImages Duration - Report: '&report_name'";

proc print data= report noobs label;

 var reportName reportURI id state duration;

run;

%mend report_generation_duration;

The macro begins by reloading the report data sources from sashdat files to simulate a

nightly refresh of the data. This is achieved by using the PROC CASUTIL statement in

conjunction with the sourcedata parameter. The next step is to dynamically generate the

value for PROC HTTP’s ”in=” argument using the value contained the report_uri parameter.

This value is placed in a macro variable named request_params via the SYMPUT function.

The macro then uses the request_params value to make the needed requests to create a

reportImages service job and repeatedly check its status until a value of completed is

11

returned. Finally, a data set that contains the final desired variables from the macro’s

results is created and printed.

This macro can now be called with the values from the two reports in this example scenario:

/* call reports */

%report_generation_duration(us_roads,Parkway Roads - Source

Data,/reports/reports/c199d225-a536-44c9-a9c3-5d9e19aac6cc);

%report_generation_duration(us_roads_agg,Parkway Roads - Aggregated

Data,/reports/reports/e3704e78-2316-48b3-9f25-a056a2bccc3f);

The result of submitting these two macro calls (and their associated parameters) is the

following PROC PRINT outputs of the report data set for each of the two example reports

shown in Figure 8.

Figure 8. Printed Output from the Macro report_generation_duration

It is obvious from the results above that the report that uses the aggregated version of the

data source renders much faster than the report that uses the larger source data.

CONCLUSION

Creating reports that render quickly is a key component in ensuring that report viewers are

satisfied with their reporting systems. Though the true report rendering time for different

users might be slowed by external factors, such as network performance, developers should

ensure that their reports are as efficient as possible before the first customer opens the

report using SAS Report Viewer. Using the reportImages service job duration time as a

report optimization measuring stick greatly assists in this task.

As mentioned at the onset of this paper, there are several techniques that can maximize the

speed of SAS Visual Analytics reporting: data partitioning, user-defined formats, and the

use of aggregated data. Programmatically retrieving a report’s server-side rendering time

empowers the report developer to quickly explore all options for ensuing that a customer’s

data visualizations are returned in the shortest time possible. Armed with this new method

of determining which report optimization is best for each specific report and data source,

developers are ready to create their most optimized, fastest reports yet.

REFERENCES

Hemedinger, Chris. “How to secure your REST API credentials in SAS programs.” Available

https://blogs.sas.com/content/sasdummy/2018/01/16/hide-rest-api-tokens/. Accessed on

September 12, 2018.

https://blogs.sas.com/content/sasdummy/2018/01/16/hide-rest-api-tokens/

12

Henry, Joseph. 2016. “REST at Ease with SAS®: How to Use SAS to Get Your REST.”

Proceedings of the SAS Global 2016 Conference. Cary, NC: SAS Institute Inc. Available

http://support.sas.com/resources/papers/proceedings16/SAS6363-2016.pdf.

Roda, Mike. 2018. “OpenID Connect Opens the Door to SAS® Viya® APIs.” Proceedings of

the SAS Global 2018 Conference. Cary, NC: SAS Institute Inc. Available

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/1737-2018.pdf.

SAS Institute Inc. 2018. “SAS Viya REST APIs.” Available

https://developer.sas.com/apis/rest/Topics/.

SAS Institute Inc. 2018. “Authentication and Access Tokens.” Available

https://developer.sas.com/apis/rest/Topics/#authentication-and-access-tokens.

SAS Institute Inc. 2018. “Report Images.” Available

https://developer.sas.com/apis/rest/Visualization/#report-images.

SAS Institute Inc. 2018. “SAS Maps Online.” Available

http://support.sas.com/rnd/datavisualization/mapsonline/html/usroads.html.

SAS Institute Inc. 2018. SAS® Job Execution Web Application 2.1: User’s Guide. Available

https://go.documentation.sas.com/api/docsets/jobexecug/2.0/content/jobexecug.pdf.

SAS Institute Inc. 2018. “PROC HTTP Statement.” In Base SAS 9.4 Procedures Guide. 7th

edition. Cary, NC: SAS Institute Inc. Available

https://go.documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n197

g47i7j66x9n15xi0gaha8ov6.htm&locale=en.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Michael Drutar

SAS Institute Inc.

Michael.Drutar@sas.com

http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings16/SAS6363-2016.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1737-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1737-2018.pdf
https://developer.sas.com/apis/rest/Topics/
https://developer.sas.com/apis/rest/Topics/#authentication-and-access-tokens
https://developer.sas.com/apis/rest/Visualization/#report-images
http://support.sas.com/rnd/datavisualization/mapsonline/html/usroads.html
https://go.documentation.sas.com/api/docsets/jobexecug/2.0/content/jobexecug.pdf

