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ABSTRACT

Valid causal inferences are of paramount importance both in medical and social research and in public policy
evaluation. Unbiased estimation of causal effects in a nonrandomized or imperfectly randomized experiment (such as
an observational study) requires considerable care to adjust for confounding covariates. A graphical causal model
is a powerful and convenient tool that you can use to remove such confounding influences and obtain valid causal
inferences. This paper introduces the CAUSALGRAPH procedure, new in SAS/STAT® 15.1, for analyzing graphical
causal models. The procedure takes as its input one or more causal models, represented by directed acyclic graphs,
and finds a strategy that you can use to estimate a specific causal effect. The paper provides details about using
directed acyclic graphs to represent and analyze a causal model. Specific topics include sources of association and
bias, the statistical implications of a causal model, and identification and estimation strategies such as adjustment and
instrumental variables. Examples illustrate how to apply the procedure in various data analysis situations.

INTRODUCTION

In an experimental setting, the effect of an intervention (for example, a drug treatment or a public policy) can be
investigated by randomly assigning experimental units (for example, individuals or households) to either a treatment
group or a control (untreated or unexposed) group. Then the magnitude of the causal effect can be estimated by
directly comparing the measured outcomes in the two groups. This estimate has a valid causal interpretation because
the randomization step enables you to safely assume that no confounding variables are associated with both the
treatment assignment and the outcome.

However, in many situations the randomization of units into treatment and control groups is either impractical or
unethical. In these cases, you must rely on observational data in order to estimate a causal effect. Causal analysis
of observational data, in contrast to data from randomized experiments, requires great care to identify possible
confounding variables that are associated with both treatment and outcome, and to adjust for the bias that is created
by these variables.

A causal graph is a powerful, easy-to-use tool that you can use to analyze the relationships among treatment variables,
outcome variables, and other covariates. A causal graph is created when a causal model is encoded in the form of a
directed acyclic graph (Pearl 2009a, b) that depicts the assumed causal relationships in a data generating process.
The CAUSALGRAPH procedure, new in SAS/STAT 15.1, examines the structure of causal graphs and suggests
statistical strategies or steps that enable you to estimate causal effects that have valid causal interpretations. This
paper reviews the role of causal graphs in the analysis of observational data and includes examples of how you can
use the CAUSALGRAPH procedure to help conduct a valid causal analysis.

The next section uses a small example to demonstrate the care required when performing a causal analysis that uses
observational data. That section is followed by a larger, more practical example of the CAUSALGRAPH procedure.
Next, the section “Main Features of the CAUSALGRAPH Procedure” summarizes the capabilities of the procedure.
This is followed by the section “Theory of Causal Graph Analysis,” which establishes the definitions and theoretical
foundations on which the CAUSALGRAPH procedure is based. This theoretical section contains technical details that
you can skip in a first reading. Finally, the paper concludes with several examples of the use of the CAUSALGRAPH
procedure. Complete code for all examples in this paper is available online."

MOTIVATION FOR GRAPHICAL MODELS IN CAUSAL ANALYSIS

In order to understand some of the practical difficulties that arise when you use observational data to estimate a
causal effect, consider the two simple data generating processes that are represented graphically in Figure 1. Both
processes contain three variables: Treatment, Outcome, and a covariate X. Also in both cases, Treatment plays
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a direct causal role in determining the value of Outcome, as is indicated by the directed edge that links Treatment
to Outcome. The meaning and interpretation of causal graphs is discussed in more detail in the section “Theory of
Causal Graph Analysis.”

Figure 1 A Confounding Covariate (Left) and a Mediating Covariate (Right)
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The two processes differ in terms of the role of the covariate. In the left panel of Figure 1, X is a common cause of
both Treatment and Outcome. One example of such a data generating process would be if Treatment is a binary
variable that indicates whether a person is taking a particular drug and Outcome is a binary variable that indicates
whether a person has experienced a particular side effect. If men are more likely than women to be prescribed the
drug and also more likely to experience the side effect, then gender is a common cause of Treatment and Outcome
and plays the role of X in the left panel of Figure 1.

In the right panel of Figure 1, X is caused by Treatment, and X in turn causes Outcome. In other words, X mediates
a portion of the causal effect of Treatment on Outcome. As an example of such a data generating process, consider
a variation of the example in the preceding paragraph in which the drug can cause a change in blood pressure and
this change then increases the probability of the side effect (say, fainting). In this case, blood pressure mediates part
of the effect of Treatment on Outcome and plays the role of X in the right panel of Figure 1.

Now, assume you have data for all three variables from an observational study and you want to quantify the magnitude
of the causal effect of Treatment on Outcome. This leads to a seemingly simple question: should you adjust for
the covariate X in order to estimate the effect? This decision has important consequences for the accuracy of the
estimate because adjustment can change not only the magnitude of the estimated effect but even the sign of the
causal effect (Pearl 2014).

Intuitively, in the left panel of Figure 1 the variable X creates association between Treatment and Outcome because
it plays a role in causing both. However, the association between Treatment and Outcome that is the result of their
common cause is not a part of the causal association that you are interested in computing. In other words, some of
the association between Treatment and Outcome is explained by the biasing path that runs from Treatment through
X to Outcome. In order to compute the causal effect, this biasing path must be blocked by adjusting for X.

Meanwhile, in the right panel of Figure 1, the variable X is a part of the total causal effect of Treatment on Outcome.
In other words, some of the association between Treatment and Outcome is explained by the causal path that runs
from Treatment through X to Outcome. This means that you should not adjust for the variable X when computing the
causal effect, or else you would block a causal path.

Notice that the adjustment decision is based entirely on a representation of a data generating process in the form of a
graphical causal model. It is important to realize that the causal model associated with a set of variables represents a
set of assumptions about the data generating process. Although the assumptions that form the causal model do have
implications that can be tested in the data (see the section “Theory of Causal Graph Analysis”), these assumptions
generally cannot be determined from the data. Rather, you must justify the causal model on the basis of expert
knowledge, prior analysis, and so on. You can then use this causal model to determine whether it is possible to
estimate a causal effect from observational data and, if so, how to estimate that effect.

Rather than relying on intuition as in the preceding discussion, you can use the CAUSALGRAPH procedure, new
in SAS/STAT 15.1, to help you decide which covariates should be included in the adjustment. This procedure is
particularly useful in situations where causal models are more complicated and unmeasured variables are involved.
You can use the following code to examine the effect of adjusting for the covariate X in the two causal models shown
in Figure 1:

proc causalgraph;
model "Confounding Covariate" Treatment ==> Outcome, X ==> Treatment Outcome;
model "Mediating Covariate" Treatment ==> Outcome, Treatment ==> X ==> Outcome;
identify Treatment ==> Outcome;



testid "No Adjustment";
testid "Covariate Adjustment" X;
run;

Each of the causal models shown in Figure 1 is defined in a separate MODEL statement. The causal effect of interest
is specified in the IDENTIFY statement. Each of the TESTID statements specifies an adjustment set (a null set and
the singleton set X) and requests an analysis of whether that set can be used to obtain a valid estimate of the causal
effect for each of the causal models.

The analysis results are shown in Figure 2 and Figure 3. As expected, the null set (Figure 2) is a valid adjustment
for the mediating covariate causal model, but it is not a valid adjustment for the confounding covariate causal model.
Conversely, adjustment for the covariate (Figure 3) is valid for the confounding model but not for the mediating model.

Figure 2 Test Results for the Null Adjustment Set Applied to the Causal Models in Figure 1

Covariate Adjustment Test: No Adjustment
Causal Effect of Treatment on Outcome

Covariates
Model Size Valid Minimal X
Confounding Covariate 0 No No
Mediating Covariate 0 Yes Yes

Figure 3 Test Results for the Covariate Adjustment Set Applied to the Causal Models in Figure 1

Covariate Adjustment Test: Covariate Adjustment
Causal Effect of Treatment on Outcome

Covariates
Model Size Valid Minimal X
Confounding Covariate 1 Yes Yes *
Mediating Covariate 1 No No *

The CAUSALGRAPH procedure analyzes causal models and suggests identification strategies (such as which variable
to include in an adjustment set) that you can use to obtain unbiased estimates of causal effects. This brings to mind
several questions. First, how can you create causal graphs that represent a data generating process? Second, how
does the CAUSALGRAPH procedure construct identification strategies? Third, can the CAUSALGRAPH procedure
be used for more practical examples, such as those involving many covariates, multiple paths, and unmeasured
variables? The first two questions are addressed in the section “Theory of Causal Graph Analysis.” The (affirmative)
answer to the third question is demonstrated through several examples.

EXAMPLE 1: CAUSAL EFFECT IDENTIFICATION WITH PROC CAUSALGRAPH

The example in the previous section uses two very simple data generating processes to demonstrate the care that is
required when you attempt to estimate causal effects from observational data. As shown in that example, you use
covariate adjustment in order to block noncausal association between a treatment variable and an outcome variable.
On the other hand, if the covariate mediates a part of the causal association, then you should avoid adjusting for that
variable so that you do not block part of the causal association.

Although this justification is intuitive, most practical examples are too large to be considered in this way. Rather, you
need a software tool that can analyze a causal graph and suggest statistical strategies that can be used in order to
compute an unbiased estimate of a causal effect. The CAUSALGRAPH procedure can perform such an analysis, as
demonstrated in the following example.

The causal model shown in Figure 4 is adapted from Thornley et al. (2013), where it was used to examine the
relationship between an individual’s serum urate and risk of cardiovascular disease. The model includes the following
variables:

e Urate: the treatment variable
e CVD: the outcome variable



AntiHypertensiveUse: indicator of antihypertensive drug use
Creatinine: measured serum creatinine level

Diabetes: indicator of diabetes diagnosis

Ethnicity: classification variable for ethnicity

Gender: indicator for biological male

Gout: indicator of gout diagnosis

HbA1c: measured glycated hemoglobin
MedicationPropensity: latent construct that reflects an individual’s propensity to take prescribed medication
Nutrition: latent construct that reflects diet or nutrition
Obesity: indicator of body mass index > 30

CurrentBP: measured blood pressure

CurrentHDL: measured HDL cholesterol

PreviousBP: previous (prior to study) blood pressure
PreviousHDL: previous (prior to study) HDL cholesterol
Smoking: indicator of current smoking status

StatinUse: indicator of statin drug use

The variable MedicationPropensity corresponds to a latent construct and thus cannot be observed. Itis also assumed
that the variables PreviousBP and PreviousHDL are not observed. The unobserved variables are indicated by
broken outlines in Figure 4.

Figure 4 Causal Model of the Effect of Serum Urate on Risk of Cardiovascular Disease
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In the causal model in Figure 4, some of the association between the variables Urate and CVD is attributable to
several causal paths. For example, it is assumed that there is a direct causal effect of Urate on CVD. It is also
assumed that there are several indirect causal effects, such as the path from Urate to Gout to CVD. Finally, some
of the association between the variables Urate and CVD is assumed to be attributable to noncausal pathways. For
example, Ethnicity, Nutrition, and Smoking together create a confounding association between Urate and CVD.

In a causal analysis, you must determine whether it is possible to isolate and remove the noncausal association
between a treatment and an outcome. One possible strategy for doing so is to use covariate adjustment. You can use
the CAUSALGRAPH procedure to determine which covariates to include in an adjustment set in order to estimate the
total effect of Urate on CVD. To do so, you use the following code:



proc causalgraph compact minimal;
model "Thorl2"
AntiHypertensiveUse ==> CurrentBP,
Creatinine ==> AntiHypertensiveUse CurrentBP,
CurrentBP ==> CVD,
CurrentHDL ==> CVD,
Diabetes ==> AntiHypertensiveUse Creatinine,
Ethnicity ==> Nutrition Smoking,
Gender ==> Nutrition Urate,
Gout ==> CVD,
HbAlc ==> Diabetes,
MedicationPropensity ==> AntiHypertensiveUse StatinUse,
Nutrition ==> PreviousHDL Urate Obesity,
Obesity ==> PreviousBP HbAlc,
PreviousBP ==> AntiHypertensiveUse,
PreviousHDL ==> StatinUse,
Smoking ==> CVD,
StatinUse ==> CurrentHDL,
Urate ==> PreviousBP Creatinine CVD Gout;
identify Urate ==> CVD;
unmeasured PreviousBP PreviousHDL MedicationPropensity;

run;

In the MODEL statement, you specify the causal model to be analyzed. The quoted string in the statement labels
the model, and the remainder of the MODEL statement specifies all the variables and edges in the model. These
variables and edges encode the hypothesized data generating process that is shown in Figure 4.

In the IDENTIFY statement, you specify the causal effect of interest. In this example, you are interested in the causal
effect of Urate on CVD. In the UNMEASURED statement, you specify variables that are not observed and thus cannot
be included in an adjustment set. In this example, three variables are specified as unmeasured.

The MINIMAL option in the PROC CAUSALGRAPH statement requests only those adjustment sets that cannot
be made smaller while remaining valid adjustments. The COMPACT option displays the output table in a compact
manner.

The results of the CAUSALGRAPH analysis are shown in Figure 5. There are three valid minimal adjustment sets for
the model shown in Figure 4. Under the assumption that the causal graph in Figure 4 is an accurate representation of
the true data generating process, you can use any one of these three adjustment sets in order to estimate the causal
effect of Urate on CVD. For more information about how to use adjustment sets to estimate a causal effect, see the
section “Theory of Causal Graph Analysis.” For an example, see “Example 2: Estimating a Causal Effect.”

Figure 5 Valid Minimal Adjustment Sets for the Model in Figure 4

Covariate Adjustment Sets for Thor12
Causal Effect of Urate on CVD

Covariates
Size Minimal Ethnicity Gender Nutrition Smoking
1 2 Yes * *
2 2 Yes * *
3 2 Yes * *

MAIN FEATURES OF THE CAUSALGRAPH PROCEDURE

This section summarizes the most important features of the CAUSALGRAPH procedure.



Inputs to the CAUSALGRAPH Procedure

The primary input to the CAUSALGRAPH procedure is one or more causal models in the form of directed acyclic
graphs (DAGs). In the context of causal models, a DAG is a collection of nodes (variables) and edges (arrows) that
define the assumed causal relationships in a data generating process. For more information about the use of DAGs to
represent a causal model, see the section “Theory of Causal Graph Analysis.”

In the CAUSALGRAPH procedure, you use a MODEL statement to specify a DAG. The MODEL statement supports
a pathlike syntax to input causal relationships among variables. For example, to specify the causal path X — Y,
you can use eitherthe X ==> YorY <== X syntax in the MODEL statement. You can also specify multiple causal
relationships as a chain of causal paths: for example, X ==> Y ==> 2z, 2 <== ==> Y <== W, and so on.

You can specify variables that are not measured by using the UNMEASURED statement. Any variable that is not
included in the UNMEASURED statement is assumed to be measured or observed. You can use only measured
variables to estimate the causal effect.

The CAUSALGRAPH procedure supports the specification of bidirected edges. A bidirected edge syntax, such as X
<==> Y (for X < YY), is interpreted as unmeasured confounding between the two variables, so that the graph is
still a DAG. That is, X <==> Yis equivalentto X <== L ==> Y (for X <~ L — Y), where the node L represents
some unmeasured variable.

After you have specified the theoretical data generating model, you can state the causal effect of interest by using the
IDENTIFY statement to specify a set of treatment variables and a set of outcome variables. When you specify multiple
treatment variables, the CAUSALGRAPH procedure interprets the causal effect as a joint (that is, simultaneous)
treatment effect. You cannot use the CAUSALGRAPH procedure to analyze a dynamic treatment regime. When you
specify multiple outcome variables, the CAUSALGRAPH procedure examines whether it is possible to use a single
identification strategy (for example, a single adjustment set) to estimate the effect of the treatment variables on each
outcome variable.

Methods for Causal Effect Identification

A causal effect is said to be identified if it is possible to use the available data to construct an estimate of the effect that
has a valid causal interpretation. For more information about causal effect identification, see the section “Theory of
Causal Graph Analysis.” You can specify the following methods for causal effect identification by using the METHOD=
option in the PROC CAUSALGRAPH statement:

e constructive backdoor criterion method (Van der Zander, Liskiewicz, and Textor 2014) (METHOD=ADJUSTMENT)
e backdoor criterion method (Pearl 2009b) (METHOD=BACKDOOR)
e instrumental variables method (Van der Zander, Textor, and Liskiewicz 2015) (METHOD=IV)

The first two methods use adjustment-based criteria for identifying a causal effect. The constructive backdoor criterion
method is complete for covariate adjustment. This means that if there is any set of covariates that can be used as a
valid adjustment set to estimate a causal effect, this method can locate that set. Because of this completeness property,
the constructive backdoor criterion method is typically the first method you should use if you want to determine
whether a causal effect can be identified. This method is also the default if you do not specify the METHOD= option.
The backdoor criterion method is very similar to the constructive backdoor criterion method. It is a popular adjustment
method as a result of its intuitive graphical interpretation of adjusting for covariates that explain the assignment into
treatment (Elwert 2013). In a causal diagram, these covariates appear in paths that contain an edge that points to a
treatment variable. Although the backdoor criterion method is also computationally more efficient than the constructive
backdoor criterion method, it is not complete for adjustment. This means that even if the backdoor criterion method
fails, it might still be possible to identify a causal effect by using an adjustment set.

The instrumental variables method is an alternative technique for identification that does not rely upon adjustment.
This method can be useful when latent or unobserved confounding is believed to exist between a treatment variable
and an outcome variable, which means that you cannot use adjustment to correct for the confounding association.

Other Important Features

PROC CAUSALGRAPH has two primary modes of operation:

e Listing mode: The procedure enumerates the criteria under which the causal effect is identified. This is the
default mode, or you can specify this mode by using the LIST option.
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e Testing mode: The procedure tests whether a user-specified identification criterion is valid. This mode operates
when you use the TESTID statement to specify the identification criterion.

You can use both of these modes in a single run of the procedure.

Although a causal model is based on assumptions about the data generating process and cannot be determined from
the data alone, a causal model does have implications for the statistical properties in any data set that is consistent
with the causal model. For more information about these statistical properties, see the section “Theory of Causal
Graph Analysis.” You can use the IMAP option in the PROC CAUSALGRAPH statement to request an enumeration of
these properties. This can be a useful tool to build confidence that a causal model is consistent with an underlying
data generating process. It can also provide a useful method to distinguish between competing causal models on
the basis of which is a better representation of the data. For an example of the IMAP option as a tool to distinguish
between alternative causal models, see “Example 4: Distinguishing between Alternative Models.”

THEORY OF CAUSAL GRAPH ANALYSIS

This section describes the definitions and theoretical foundations on which the CAUSALGRAPH procedure is based.
It contains technical details that you can skip in your first reading.

In order to estimate a causal effect by using data from a nonrandomized study, you must supplement the data with a
set of causal assumptions. These assumptions collectively form a causal model. Once a causal model has been
defined, you can use a set of algorithmic tools to determine strategies for unbiased estimation of the causal effect.
These algorithmic tools are implemented in the CAUSALGRAPH procedure.

You should always keep in mind that all inferences, estimates, and conclusions that are drawn from a causal model
are contingent on the accuracy of the causal model. For example, the estimation strategies suggested by the
CAUSALGRAPH procedure are “unbiased” only under the assumption that the input causal model is an accurate
representation of the true data generating process. One of the strengths of graphical models for causal inference
is that the causal graph provides a concise tool to represent the assumptions of a causal model. When defining a
causal graph, you should carefully consider the causal assumptions that are encoded in the graph and defend these
assumptions on the basis of expert knowledge, prior experience, and so on. The next subsection provides information
on the manner in which causal assumptions are encoded in a causal graph.

Causal Graphs as Nonparametric Structural Equation Models

The primary input to the CAUSALGRAPH procedure is a causal model in the form of a directed acyclic graph (DAG).
Each node in a DAG represents a variable that is assumed to play a role in the data generating process that you
want to study. It is not necessary for every node in the DAG to correspond to a variable that has been (or could be)
measured. For example, some variables in the DAG might correspond to latent constructs that are assumed to play a
causal role in the process being modeled but that cannot be observed directly.

Nodes in the DAG are joined together by edges, which are directed arrows that point from one node to another node.
Each edge represents a causal assumption. For example, the edge X — Y represents the assumption that the
variable X has a possible direct causal role in determining the value of the variable Y. Because each edge in a DAG
is given a causal interpretation, each edge is associated with a temporal ordering of a pair of nodes. For this reason,
the DAG cannot contain a directed cycle.

The strongest assumptions made in a causal model occur in the form of edges that are missing from the DAG.
Specifically, if there is no edge that directly connects two variables U and V' in a causal graph, then these variables
are assumed to have no direct influence on each other. This is the the strong null hypothesis for graphical models,
and it corresponds to an exclusion restriction in econometrics literature (Elwert 2013).

A causal graph is fully nonparametric in the sense that no assumption is made regarding the distribution function of
the variables included in the graph and no assumption is made regarding the functional form of the edges that are
included in the graph. The only requirement is the assumption that the value of each variable is uniquely determined
by the values of its parents and any exogenous (disturbance or error) terms. In this sense, a causal graph can be
interpreted as a form of nonparametric structural equation model (NPSEM) (Elwert 2013). In other words, the DAG
defines the causal relationships that determine how the value of each variable in the model is determined. Your beliefs
about these relationships reflect an existing state of knowledge about both the subject matter being studied and the
measurement process used for data collection.



By convention, error random variables that are assumed to play a causal role in determining the value of a single
modeled variable are not included in the DAG. However, any variable (including random disturbances) that affects two
or more modeled variables must be included in the causal model. You cannot omit any confounding variable from the
causal model.

Although a DAG provides a formal semantics for defining a causal model, causal analysis that is based on a DAG is
valid only if the DAG (interpreted as a NPSEM) is an accurate representation of the true data generating process.
The good news is that a DAG encodes certain statistical implications for the data generating process, and these
implications can be tested in the available data. This is discussed in the next subsection.

Association and Bias in Causal Graphs

A DAG encodes structural relationships between the variables in a causal model. These structural relationships
between variables in a causal model have implications for the statistical associations between variables in a data
set. You can think of these implications as reflecting the flow of information in the data generating process. This
information flow is determined by three fundamental structures (Elwert 2013) that are summarized in Table 1.

Table 1 Three Fundamental Structures in a Directed Acyclic Graph

Path Association between U  Role of V in the Effect of Conditioning
and W along the Path Path onV
U—-V —>W Causal Mediator Blocks the causal path
U<~V —-W Noncausal Confounding common  Blocks the noncausal path
cause
U—-V <« W None Collider Opens the noncausal path

The first of the three fundamental structures is causation or mediation. This construct is the most intuitive, and reflects
a sequence in which a variable U plays a causal role in determining the value of V, which in turn plays a causal role
in determining the value of W. For example, this construct would apply if taking a drug (U) caused a drop in blood
pressure ( V), which in turn increased the probability of fainting (/). In the causal structure, each of the variables is
associated with each of the other variables, and this association is the result of a causal effect. However, if you were
to condition on the variable V, the flow of information between U and W would be blocked. Continuing the example
of a drug that causes a change in blood pressure, once you have controlled for a person’s blood pressure, there is no
longer any association between taking the drug and fainting.

The second fundamental structure is confounding. In this construct, a variable V' is a common cause of two additional
variables U and W. For example, parental socioeconomic status ( 1) might be a common cause of both enroliment
in private school (U) and academic achievement (1W/). Much like the causal structure, each of the variables in
the confounding structure is associated with each of the other variables. However, in the case of the confounding
structure, the association between U and W is not causal. Rather, this association is induced by the common cause
V. If you were to condition on V, the flow of information between U and W would be blocked. Returning to the
example of private school enroliment and academic achievement, controlling for parental socioeconomic status blocks
the noncausal association and thus would be useful for studying the causal effect of private school enrollment on
academic achievement.

The third and final fundamental structure is the collider. In this construct, two variables U and W jointly play a causal
role in determining the value of a third variable, V. A standard example is provided by Pearl (2009b): the weather (U)
and a sprinkler (W) both play a role in determining whether the grass is wet (V). In the collider structure, both U
and W are causally associated with V, but U and W are not associated with each other. However, conditioning on
V' would create association between U and W where previously no association existed. Returning to the sprinkler
example, if you know that the grass is wet (conditioning on V'), then knowing the value of either U or W can provide
information about the other. For example, if the sprinklers were not used, then it must have rained. Because this
induced association is not causal, it represents a form of bias called endogenous selection bias. See Elwert and
Winship (2014) for a discussion and additional examples.

Each of the three fundamental structures that form a graphical model corresponds to a source of association and to a
source of bias. Whether an association is biasing (that is, noncausal) depends not only on a set of causal assumptions
(that is, the edges in a causal graph) but also on the conditioning decisions you make during an analysis. A detailed



understanding of the relationships between the structures in Table 1 and the sources of association and bias can
help you reason about causal relationships among variables in your model. Once you have assembled these causal
relationships into a causal graph, you can use the rules of causal graphs to assess the extent to which your causal
model is consistent with the available data. This is discussed in the next subsection.

Statistical Properties of Causal Graphs

The ideas summarized in the preceding subsection are extended to paths that have an arbitrary length by the notion
of d-separation. A path in a causal graph is said to be d-separated by a set of variables X if either of the following
conditions holds:

e The path containsachainU — V — Worafork U < V — W suchthatV € X.
e The path contains a collider U — V <« W such that V' ¢ X and such that no descendant of V isin X.

A path that is d-separated is said to be blocked. A path that is not d-separated is said to be d-connected or nonblocked.
This terminology reflects the flow of information through the paths in a causal graph. If a path is blocked, then
information does not flow through that path. If every path between two sets of variables is blocked, then any two
variables (one from each set) are not associated. That is, the sets are independent. Thus, d-separation is a tool that
converts a set of causal assumptions (the edges in a causal graph) into statements about statistical independence.

These statistical independence statements play two useful roles. First, you can use these statements to determine
whether your causal model is consistent with the data generating process, or you can use them to distinguish between
competing models on the basis of the independence statements that those models encode. For an example, see
“Example 4: Distinguishing between Alternative Models.” Second, you can make a careful choice of the set X to
define an unbiased estimator for a causal estimand (for example, the average treatment effect). This is the goal of
causal effect identification, as discussed in the next subsection. For an example, see “Example 2: Estimating a Causal
Effect”

Causal Effect Identification

At this point, you have seen that once a causal graph has been specified, a set of graphical properties dictates all
the causal and noncausal associations between the variables in the model. Moreover, these associations can be
blocked or nonblocked as the result of conditioning on certain variables. This principle forms the basis for causal effect
identification.

The goal of a causal analysis is to examine the association between one or more treatment variables and one or
more outcome variables and to isolate the part of the total association that can be attributed to causal mechanisms.
If it is possible to isolate and remove all noncausal association between treatment and outcome variables, leaving
behind only causal association, then the causal effect is said to be identified. Identification analysis is the process of
determining whether a causal effect can be identified and, if so, how to identify that effect.

Identification and Estimation by Adjustment

One intuitive approach to identification is to examine the sources of association between the treatment and outcome
variables and determine which of these sources is causal. This is the basis for identification by adjustment, in which
you attempt to find a set of variables that will block all noncausal paths between the treatment and outcome variables
while leaving all causal paths unblocked. If such a set of variables exists, the causal effect is identified and the set of
variables is called an adjustment set. For a set of treatment variables T' and a set of outcome variables Y, a set of
observed variables X is a valid adjustment set if all the following conditions are present (Shpitser, VanderWeele, and
Robins 2010; Perkovi¢ et al. 2018):

e X blocks all noncausal paths between T and Y.
e No variable in X lies on a causal path or descends from a causal path from T to Y.
e No variable in X is a descendant of any variable on a causal path (except possibly the variables in T').

You can use the CAUSALGRAPH procedure to find valid adjustment sets by specifying the METHOD=ADJUSTMENT
option or the METHOD=BACKDOOR option. Once you have chosen a valid adjustment set X, you can estimate the



total causal effect of the treatment T" on the outcome Y by using the stratification estimator (Shpitser, VanderWeele,
and Robins 2010; Elwert 2013). For discrete data, this estimator has the form

P(Y = yldo(T =1)) =Y P(Y =y|T =t.X =x)P(X =x)

where the do-operator is intended to emphasize the interpretation of a causal effect as the result of an action or
intervention (Pearl 2009b). This formula is exact in the asymptotic limit (so that each of the probabilities in the
preceding expression are known exactly) and for countably many values of X . However, in practice a causal effect
must be computed from a finite sample. Moreover, the number of terms in the sum (the number of possible values
) can be quite large. A typical approach to circumvent these difficulties is to replace the nonparametric terms in
the stratification estimator by some parametric or semiparametric form that accounts for the biasing effects of the
covariates in the set X .

One approach that you can use to simplify the stratification estimator is to model the effect of the variables X on
the treatment T'. For example, matching and weighting methods that are based on propensity scores are general
methods of adjustment for the effect of covariates on the treatment. These methods are available in the PSMATCH
and CAUSALTRT procedures. Another possible approach is to model the effect of the variables X on the outcome
Y (more exactly, on the potential or counterfactual outcomes). This is the logic of regression adjustment methods.
Such methods are available in the CAUSALTRT procedure. Finally, you can simultaneously model the effect of the
covariates on both the treatment and the outcome variables. This leads to so-called “doubly robust methods.” PROC
CAUSALTRT also supports some doubly robust methods.

It is also possible to perform adjustment in the design stage of an observational study. For example, you can specify
particular inclusion criteria so that only individuals with certain characteristics are included in the sample. You should
also take care to avoid (or at least recognize) the possibility that a variable has been conditioned on as a result of
survey nonresponse or loss to follow-up (Elwert 2013).

Identification and Estimation by an Instrumental Variable

An alternative approach to identification is to use an instrumental variable. This approach is particularly useful when
using adjustment to identify a causal effect is not possible because there is unmeasured confounding between a
treatment variable and an outcome variable. The instrumental variable method attempts to find a surrogate variable
(the instrument) that is associated with the treatment variable but not associated with the outcome variable except
through the treatment variable. If such an instrument exists, then the causal effect is identified. For single variables 7,
Y, and Z, and a set of variables X, Z is an instrumental variable for the direct effect of 7" on Y if all the following
conditions are met (Van der Zander, Textor, and Liskiewicz 2015):

There is a single causal path from T to Y that consists of a single edge.

T and Z are d-connected conditional on X.

X d-separates Z and Y in G, (the graph formed by taking the original DAG and removing the edge T — Y).
X consists of either ancestors of Y or ancestors of Z that are not descendants of Y (or both of these
ancestors).

Specifically, this is the definition of an ancestral instrumental variable. In the CAUSALGRAPH procedure, you can
specify the METHOD=IV option in the PROC CAUSALGRAPH statement to find ancestral instrumental variables.
Once you have chosen a valid instrumental variable Z and its corresponding (possibly empty) conditioning set X,
you can use regression modeling to estimate the direct effect of T on Y.

EXAMPLE 2: ESTIMATING A CAUSAL EFFECT

This example features a small causal model and a simulated data set. The purpose of this example is to demonstrate
how to use the CAUSALGRAPH procedure in combination with other procedures to obtain an estimate of a causal
effect that has a valid causal interpretation. Although this example is idealized in the sense that the true data
generating process is known exactly, it nevertheless provides an important demonstration of the use of a causal model
to identify and eliminate sources of bias in a causal analysis.

The causal model shown in Figure 6 is used in Ferro et al. (2015) to examine the relationship between the use of
statin drugs and levels of prostate specific antigen (PSA). The model includes the following variables:
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StatinUse: the treatment variable

PSA: the outcome variable

Age: the subject’s age in years

BMI: the subject’s body mass index in kilograms per square meter
ProstateCancer: indicator for diagnosis with prostate cancer
DailyAspirin: indicator for daily aspirin regimen

The treatment variable StatinUse is an indicator for whether the subject is taking any member of the statin class of
drugs. The outcome variable PSA is the measured total circulating levels of PSA in a subject’s blood, measured in
ng/mL.

Figure 6 A Causal Model for the Effect of Statin Drug Use on PSA

Age

Prostate
Cancer

Statinlse PSA

The first 10 lines of a simulated data set are shown in Figure 7. The code to create this data set is available online.

Figure 7 First 10 Lines of the Simulated Data Set

Obs Age BMI Aspirin StatinUse Cancer PSA

1 67.8219 26.5741 0 1 0 4.19232
2 56.3722 26.4821 0 0 0 4.92659
3 57.8478 26.4788 0 0 1 6.97768
4 74.1587 26.6207 1 0 1 6.88858
5 69.4976 26.3082 0 0 0 5.89829
6 71.6984 26.0927 1 0 0 4.87417
7 61.0182 26.8058 0 0 0 6.14052
8 69.9975 27.0862 0 0 0 4.87205
9 56.6626 26.4457 0 0 0 4.55604
10 56.7639 24.1488 0 0 1 5.45989

Given the causal model (Figure 6) that describes the data generating process, you can use the CAUSALGRAPH
procedure to analyze the identifiability of the causal effect of StatinUse on PSA. The following code uses the
procedure to list the valid adjustment sets that you can use to identify this causal effect:

proc causalgraph;
model "StatinUse Effect on PSA"
BMI ==> Cancer StatinUse PSA Aspirin,
StatinUse ==> Cancer PSA,
Cancer ==> PSA,
Age ==> BMI StatinUse Aspirin PSA Cancer,
Aspirin ==> PSA Cancer;
identify StatinUse ==> PSA;
run;
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The initial output from the CAUSALGRAPH procedure is shown in Figure 8 and Figure 9. These figures contain,
respectively, a summary table for the variables in the models and a summary table for the nodes and edges in each
model. These outputs provide a useful check that your model syntax accurately reflects the causal models that you
want to analyze.

Figure 8 Summary of Variables in the Models

Variables in Model
N Variables
Measured 6 Age Aspirin BMI Cancer PSA StatinUse
Unmeasured 0

Figure 9 Summary of the Models

Graphical Model Summary
Model Nodes Edges Treatments Outcomes Measured Unmeasured
StatinUse Effect on PSA 6 14 1 1 6 0

The list of adjustment sets that the procedure produces is shown in Figure 10. Notice that the null set does not appear
in this list. This means that the marginal association between StatinUse and PSA cannot be used to estimate a
causal effect that has a valid causal interpretation. In fact, it is shown later that the marginal association between these
two variables would produce a biased estimate of the causal effect. Rather, you must use an alternative estimation
strategy, such as estimation by adjustment that uses one of the adjustment sets in Figure 10.

Figure 10 Possible Adjustment Sets for the Model in Figure 6

Covariate Adjustment Sets for StatinUse
Effect on PSA

Causal Effect of StatinUse on PSA
Covariates
Size Minimal Age Aspirin BMI Cancer
1 2 Yes * *
2 3 No * * *

Figure 10 shows two valid adjustment sets, and you can use either of these sets to obtain an estimate for the causal
effect of StatinUse on PSA. For the sake of comparison, this example uses both adjustment sets to compute the
causal effect.

The simulated data set in Figure 7 is constructed so that the true value of the average treatment effect (ATE) is —0.608.
Intuitively, this means that in an ideal randomized controlled trial, subjects assigned to treatment would have total
measured PSA that is 0.608 ng/mL lower on average than subjects assigned to control. (The formal definition of the
average treatment effect is based on counterfactual outcomes and is beyond the scope of this paper. For details, see
Hernan and Robins (2018).) Simulation code that computes the true value of the ATE is available online.

This example uses the CAUSALTRT procedure to compute the average treatment effect from the available data. The
following code uses the variables Age and BMI as adjustments to compute the causal effect of StatinUse on PSA:

proc causaltrt data=StatinPSa;
class StatinUse Cancer Aspirin;
psmodel StatinUse(event='1l') = Age BMI;
model PSA;

run;

The CLASS statement indicates which variables in the data set are classification variables. The PSMODEL statement
identifies StatinUse as the treatment variable and the value ‘1’ as indicating a treatment event. The PSMODEL
statement also requests that the variables Age and BMI be used to model the probability of receiving treatment (that
is, the propensity score). It is this propensity score model that constitutes the covariate adjustment. Finally, the
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MODEL statement specifies PSA as the outcome variable. With these options, the CAUSALTRT procedure uses the
inverse probability weighting method with ratio adjustment to estimate the ATE. See Lunceford and Davidian (2004)
for details.

Adjusting for Age and BMI produces an estimated ATE of —0.632, as shown in Figure 11. This value is within one
standard error of the known true value of —0.608.

Figure 11 Causal Effect Estimated By Adjustment for Age and BMI

Analysis of Causal Effect

Treatment Robust Wald 95%
Parameter Level Estimate Std Err Confidence Limits Z Pr>|Z|
POM 1 53265 0.0289 52698 5.3832 184.17 <.0001
POM 0 59585 0.0147 59297 5.9874 405.20 <.0001
ATE -0.6320 0.0320 -0.6947 -0.5693 -19.76 <.0001

The same analysis can be repeated using the three variables Age, Aspirin, and BMI as an adjustment set:

proc causaltrt data=StatinPSa;
class StatinUse Cancer Aspirin;
psmodel StatinUse(event='l') = Age Aspirin BMI;
model PSA;

run;

Adjusting for these three variables produces an estimated ATE of —0.6207, as shown in Figure 12. As before, the
estimated value is within one standard deviation of the known true value.

Figure 12 Causal Effect Estimated By Adjustment for Age, Aspirin, and BMI

Analysis of Causal Effect

Treatment Robust Wald 95%
Parameter Level Estimate Std Err Confidence Limits Z Pr>|Z|
POM 1 53349 0.0285 52791 5.3907 187.37 <.0001
POM 0 59556 0.0146 59271  5.9841 409.08 <.0001
ATE -0.6207 0.0311 -0.6817 -0.5597 -19.93 <.0001

Note that the analysis results for the two adjustment sets are quite similar. This is expected because both adjustment
sets are valid for the estimation of the causal effect of interest. Even so, the addition of Aspirin as an adjustment
variable does lead to modest improvements in the accuracy and precision of the estimate because including additional
variables is often helpful to better block a biasing path when a finite data sample and a parsimonious function of the
adjustment variables (in this example, a propensity score model) are used. (This is true only if the adjustment set
remains valid after the inclusion of the additional variables!) In practice, the choice of an adjustment set (among
equally valid alternatives) must balance the need for accuracy and precision against the costs of data collection and
computation.

Finally, note that adjustment is absolutely required in this example in order to obtain an unbiased estimate of the causal
effect. To see this, consider the marginal association between StatinUse and PSA. The following code computes the
difference in PSA between subjects who are and are not taking statins:

proc ttest data=StatinPSA;
class StatinUse;
var PSA;

run;

The results are shown in Figure 13. The marginal (that is, associational) effect of taking statins is 5.419 — 5.931 =
—0.512, and the 95% confidence limit for the mean difference excludes the true value of the causal effect. These
results provide a computational demonstration of the fact that, in this example, the marginal association is a biased
estimate of the true causal effect.
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Figure 13 Marginal Effect of StatinUse on PSA

0,
StatinUse Method Mean 95% CL Mean Std Dev CL gfd/oDev
0 5.9308 5.9019 5.9598 0.9139 0.8939 0.9349
1 5.4194 53670 5.4717 0.9155 0.8800 0.9541
Diff (1-2) Pooled 0.5115 0.4517 0.5712 0.9143 0.8967 0.9326

Diff (1-2) Satterthwaite 0.5115 0.4516 0.5713

EXAMPLE 3: COMMON ADJUSTMENT SETS FOR MULTIPLE MODELS

This example demonstrates how you can use the CAUSALGRAPH procedure to examine the identifiability of a causal
effect when there is some uncertainty about the exact structure of the data generating process. In the CAUSALGRAPH
procedure, you can specify more than one causal model and attempt to find an adjustment set that can be used for all
the models. If such an adjustment set exists, then the causal effect can be identified regardless of which model better
represents the true data generating process.

Two causal models are represented in Figure 14: one model includes all the nodes and edges in the figure and the
other model is formed by deleting the dashed edge from AssistanceType to Mortality. These models were both
formulated by Evans et al. (2012) to examine the effect on five-year mortality of polycystic kidney disease (compared
to other nephropathies) among patients undergoing peritoneal dialysis. The models include the following variables:

PKD: the treatment variable

Mortality: the outcome variable

Age: current patient age

Gender: classification variable for patient gender

Comorbiditylndex: summary index of patient comorbidities
PeritonealDialysis: indicator for patients undergoing peritoneal dialysis
AssistanceType: classification variable for types of medical assistance
DialysisType: classification variable for type of peritoneal dialysis

The treatment (PKD) and outcome (Mortality) variables are shaded in Figure 14. As in Evans et al. (2012), it is
assumed that research subjects receive peritoneal dialysis as a condition of enrollment in the research study. Thus,
the variable PeritonealDialysis is conditioned on as a consequence of the design of the study. It is further assumed
that any medical assistance received by a subject is not recorded, so the variable AssistanceType is unmeasured.
This is indicated by the broken outline in Figure 14.

The dashed edge in Figure 14 indicates uncertainty about the structure of the data generating process, and thus
about the form of the causal model. In this case, you are uncertain as to whether there is a causal effect of the type of
medical assistance a subject receives (AssistanceType) on five-year mortality (Mortality).

Figure 14 Two Possible Causal Models for the Effect of PKD on Mortality

e
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The following code uses the CAUSALGRAPH procedure to assess the identifiability of the causal effect in the models:

proc causalgraph common (only) ;
model "Original Model"
PKD ==> DialysisType Mortality PeritonealDialysis,
Age ==> PKD ComorbidityIndex AssistanceType Mortality,
ComorbidityIndex ==> PKD PeritonealDialysis Mortality AssistanceType,
Gender ==> ComorbidityIndex AssistanceType,
AssistanceType ==> DialysisType Mortality,
PeritonealDialysis ==> DialysisType;
model "Reduced Model"
PKD ==> DialysisType Mortality PeritonealDialysis,
Age ==> PKD ComorbidityIndex AssistanceType Mortality,
ComorbidityIndex ==> PKD PeritonealDialysis Mortality AssistanceType,
Gender ==> ComorbidityIndex AssistanceType,
AssistanceType ==> DialysisType,
PeritonealDialysis ==> DialysisType;
identify PKD ==> Mortality | PeritonealDialysis;
unmeasured AssistanceType;
run;

You specify each of the two models (one model with the dashed edge and one model without the dashed edge) in a
separate MODEL statement. Each MODEL statement must begin with a quoted string that provides a unique name
for the model. This example uses the labels “Original Model” and “Reduced Model.” You use the IDENTIFY statement
to specify the treatment and outcome variables. In this example, you also use the IDENTIFY statement to specify that
the variable PeritonealDialysis has already been conditioned on.

Because you are interested only in determining whether there exists a common adjustment set that can be used to
identify the causal effect in either of the two causal models, you use the COMMON(ONLY) option in the CAUSAL-
GRAPH statement. If you want to search for adjustment sets that are unique to each model in addition to searching
for common adjustment sets, you can use the COMMON option rather than the COMMON(ONLY) option, as shown in
Example 4.

The adjustment sets are shown in Figure 15. There are two adjustment sets that you can use to estimate the causal
effect of PKD on Mortality. The existence of these adjustment sets means that the causal effect can be identified
as long as either of the two models in Figure 15 (that is, with or without the dashed edge) accurately reflects the
data generating process. Both adjustment sets contain the variables Age and Comorbiditylndex in addition to
PeritonealDialysis (the latter having been conditioned on by virtue of the study design). The first adjustment set is
minimal, which means that you cannot remove either Age or Comorbiditylndex from the adjustment set and still
have a valid covariate adjustment. The second adjustment set also contains the variable Gender, but this adjustment
set is not minimal because you could remove Gender from the set and still have a valid adjustment.

Figure 15 Common Adjustment Sets for the Models in Figure 14

Covariate Adjustment Sets Common to All Models
Causal Effect of PKD on Mortality
Covariates
Size Minimal Age Comorbiditylndex DialysisType Gender PeritonealDialysis
1 3 Yes * * *
2 4 No * * * *

EXAMPLE 4: DISTINGUISHING BETWEEN ALTERNATIVE MODELS

Just as in the previous example, this example demonstrates how you can use the CAUSALGRAPH procedure to
examine the identifiability of a causal effect when you have multiple plausible causal models. Unlike the previous
example, this example considers the case that you must choose which model (if either) to analyze because there is no
common adjustment set. In this case, you can use the CAUSALGRAPH procedure to find observationally testable
properties to help you decide between the competing models.
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The two causal models shown in Figure 16 are adapted from Caillet et al. (2015) and examine the relationship between
the use of psychotropic drugs and the risk of hip fracture in a care facility for the elderly. The models include the

following variables:

PsychotropicUse: the treatment variable
Fracture: the outcome variable

Age: age in years

BMD: bone mineral density
BMI: body mass index
ChronicDisease: categorical variable that describes diagnosis with particular diseases
FiveSTST: five-sit-to-stand-test score
GaitSpeed: walking speed
HistoryFalls: indicator for more than two falls in the previous six months
HistoryFracture: indicator for previous hip fracture since age 55
GlucocorticoidUse: indicator for currently taking glucocorticoids
VitaminD: indicator for currently taking vitamin D

The treatment (PsychotropicUse) and outcome (Fracture) variables are shaded in Figure 16. For this example, it is
assumed that the variables BMD, ChronicDisease, HistoryFalls, and HistoryFracture are not observed.

The dashed edge in Figure 16 indicates uncertainty over the structure of the data generating process. In this case, you
are unsure whether ChronicDisease has a direct effect on GaitSpeed or whether the entire effect of ChronicDisease

on GaitSpeed is mediated through GlucocorticoidUse.

Figure 16 Two Possible Causal Models for the Effect of Psychotropic Drug Use on Hip Fracture
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As in the previous example, you can use the CAUSALGRAPH procedure to search for adjustment sets that can be
used to identify the causal effect in both of the causal models:

proc causalgraph maxsize=min common imap;

model

"Base Model"

Age ==> HistoryFracture BMD ChronicDisease GaitSpeed,

BMI <==> ChronicDisease ==> PsychotropicUse GlucocorticoidUse,
BMI ==> VitaminD BMD,
PsychotropicUse ==> FiveTSTS GaitSpeed,
GlucocorticoidUse ==> GaitSpeed FiveTSTS,
BMD ==> HistoryFracture VitaminD Fracture,
HistoryFracture ==> VitaminD,
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GaitSpeed ==> Fracture HistoryFalls;

model "Modified Model"
Age ==> HistoryFracture BMD ChronicDisease GaitSpeed,
BMI <==> ChronicDisease ==> PsychotropicUse GlucocorticoidUse GaitSpeed,
BMI ==> VitaminD BMD,
PsychotropicUse ==> FiveTSTS GaitSpeed,
GlucocorticoidUse ==> GaitSpeed FiveTSTS,
BMD ==> HistoryFracture VitaminD Fracture,
HistoryFracture ==> VitaminD,
GaitSpeed ==> Fracture HistoryFalls;

identify PsychotropicUse ==> Fracture;

unmeasured ChronicDisease BMD HistoryFalls HistoryFracture;

run;

You specify the models, the causal effect, and the unmeasured variables just as in the previous example. In this
example, you use the labels “Base Model” and “Modified Model” to identify the two possible causal models. You use
the COMMON option in the CAUSALGRAPH statement to request that the CAUSALGRAPH procedure search for
adjustment sets that are common to both models. The procedure also searches for adjustment sets that are unique
to each model. To suppress the adjustment sets that are unique to each model, you can use the COMMON(ONLY)
option as in the previous example. You use the MAXSIZE=MIN option to request only those adjustment sets that have
the smallest possible number of variables. You use the IMAP option to request a set of independence properties that
can be used to compare the two models. The IMAP option is discussed later in this example.

There is a single minimum-size adjustment set in the model “Base Model.” This adjustment set, as shown in Figure 17,
contains three variables: Age, BMI, and GlucocorticoidUse. In other words, if “Base Model” is the correct model,
then it is sufficient to adjust for these three variables and it is not necessary to include any other variables in the
adjustment set.

Figure 17 Minimal Adjustment Sets for “Base Model”

Covariate Adjustment Sets for Base Model
Causal Effect of PsychotropicUse on Fracture
Covariates
Size Minimal Age BMI FiveTSTS GaitSpeed GlucocorticoidUse VitaminD
1 3 Yes * * *

Unfortunately, there are no valid adjustment sets for the model “Modified Model.” This means that, if “Modified Model”
is the better description of the data generating process, then it is not possible to identify the causal effect by using an
adjustment set. Because there are no adjustment sets for “Modified Model,” there are correspondingly no adjustment
sets common to both models. The nonexistence of an adjustment set for “Modified Model” or a common adjustment
set is summarized in the following notes that PROC CAUSALGRAPH returns:

NOTE: There are no adjustment sets satisfying the specified criteria for Modified Model.

NOTE: There are no adjustment sets common to all models that satisfy the specified criteria.

Thus, of the two possible causal models for the effect of psychotropic drugs on the risk of hip fracture, the causal
effect can be estimated using an adjustment set in one model but not in the other model. Thus, it would be very useful
to determine which model is a better representation of the true data generating process. You can use the IMAP option
to request the set of conditional independence statements that are encoded within each causal model. If such a
conditional independence statement involves only observed quantities, then it can be tested in the available data to
determine whether the independence predictions of the model are appropriate.

By default, the IMAP option produces a very concise list of independence properties called the local Markov properties.
For each node in a DAG, the local Markov property states that the node is independent, conditional on its parents,
of its nondescendants. The local Markov properties for “Base Model” are shown in Figure 18, and the local Markov
properties for “Modified Model” are shown in Figure 19. These two sets of independence properties are identical
except for row 7, where ChronicDisease has changed from a nondescendant (second column) of GaitSpeed for
“Base Model” to a parent (third column) of GaitSpeed for “Modified Model.” This change is expected because it reflects
the single-edge difference between the two models.
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Figure 18 Independence Properties for “Base Model”

Local Conditional Independencies for Base Model
Independence Sets
BMI

ChronicDisease FiveTSTS GaitSpeed GlucocorticoidUse HistoryFalls
PsychotropicUse

Conditioning Set

Age BMI

Age ChronicDisease FiveTSTS GaitSpeed GlucocorticoidUse HistoryFalls

PsychotropicUse
BMD BMI HistoryFracture VitaminD

Age BMD BMI ChronicDisease Fracture GaitSpeed HistoryFalls
HistoryFracture VitaminD

Age BMI ChronicDisease FiveTSTS GlucocorticoidUse HistoryFalls
HistoryFracture PsychotropicUse VitaminD

BMD BMI ChronicDisease FiveTSTS HistoryFracture VitaminD

Age BMD BMI HistoryFracture PsychotropicUse VitaminD

Age BMD BMI ChronicDisease FiveTSTS Fracture GlucocorticoidUse
HistoryFracture PsychotropicUse VitaminD

BMI ChronicDisease FiveTSTS Fracture GaitSpeed GlucocorticoidUse
HistoryFalls PsychotropicUse

Age BMD BMI GlucocorticoidUse HistoryFracture VitaminD

Age ChronicDisease FiveTSTS Fracture GaitSpeed GlucocorticoidUse
HistoryFalls PsychotropicUse

Age

GlucocorticoidUse
PsychotropicUse

BMD GaitSpeed

Age GlucocorticoidUse
PsychotropicUse

ChronicDisease
GaitSpeed

Age BMD

ChronicDisease
BMD BMI HistoryFracture

Figure 19 Independence Properties for “Modified Model”

Local Conditional Independencies for Modified Model
Independence Sets
BMI

ChronicDisease FiveTSTS GaitSpeed GlucocorticoidUse HistoryFalls
PsychotropicUse

Age ChronicDisease FiveTSTS GaitSpeed GlucocorticoidUse
HistoryFalls PsychotropicUse

BMD BMI HistoryFracture VitaminD

Age BMD BMI ChronicDisease Fracture GaitSpeed HistoryFalls
HistoryFracture VitaminD

Age BMI ChronicDisease FiveTSTS GlucocorticoidUse HistoryFalls
HistoryFracture PsychotropicUse VitaminD

BMD BMI FiveTSTS HistoryFracture VitaminD

Age BMD BMI HistoryFracture PsychotropicUse VitaminD

Age BMD BMI ChronicDisease FiveTSTS Fracture GlucocorticoidUse
HistoryFracture PsychotropicUse VitaminD

BMI ChronicDisease FiveTSTS Fracture GaitSpeed
GlucocorticoidUse HistoryFalls PsychotropicUse

Age BMD BMI GlucocorticoidUse HistoryFracture VitaminD

Age ChronicDisease FiveTSTS Fracture GaitSpeed
GlucocorticoidUse HistoryFalls PsychotropicUse

Conditioning Set

Age BMI

Age
GlucocorticoidUse PsychotropicUse

BMD GaitSpeed
Age ChronicDisease
GlucocorticoidUse PsychotropicUse

ChronicDisease
GaitSpeed

Age BMD

ChronicDisease
BMD BMI HistoryFracture

Unfortunately, this one difference between the local Markov properties of the two models involves several unobserved
variables, so it cannot be tested directly. One possible alternative is to use the graphoid axioms (Pearl and Verma 1987;
Geiger and Pearl 1988) to derive additional independence properties that follow logically from the set of properties in
the tables in Figure 18 and Figure 19. Then perhaps some of these derived properties might involve only observed
quantities.

However, this is a very laborious process. In fact, approximately 17,000 independence conditions can be derived
from each of the tables in Figure 18 and Figure 19! Fortunately, the d-separation property that was discussed in the
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section “Theory of Causal Graph Analysis” provides a tool that can be used to decide whether any two variables can
be made conditionally independent. In this view, d-separation is a global Markov property. In fact, you can use the
graphoid axioms to show that the local and global Markov properties are equivalent for causal graphs (Koller and
Friedman 2009). In the CAUSALGRAPH procedure, you request the set of all global Markov properties for each
model by specifying the IMAP=GLOBAL option.

As noted earlier, there are approximately 17,000 global Markov conditions for each of the two models in this example.
However, if you consider only those independence properties that consist exclusively of observed variables, this
number is reduced to 150 for “Base Model” and to 144 for “Modified Model.” Moreover, the 144 properties for “Modified
Model” are all shared by “Base Model.” The remaining six properties for “Base Model” are unique to that model. These
six properties are shown in Figure 20. Code is available online to produce the global independence properties, select
the properties that are observationally testable, and then compare these properties in the two models.

You can perform statistical tests on the available data to assess the extent to which these six conditional independence
properties are present in the data. If all six properties seem to be present, then you have evidence that “Base Model”
is a better model of the data generating process. Otherwise, you might consider eliminating “Base Model” in favor of
“Modified Model.” Of course, you might also consider examining the 144 properties that are shared between the two
models to examine the extent to which other parts of the models agree with the available data.

Figure 20 Independence Properties Unique to “Base Model”

Obs Model Set1 Set2 CondSet
1 Base Model BMI GaitSpeed Age FiveTSTS GlucocorticoidUse PsychotropicUse
2 Base Model BMI GaitSpeed Age FiveTSTS GlucocorticoidUse PsychotropicUse VitaminD
3 Base Model BMI GaitSpeed Age GlucocorticoidUse PsychotropicUse
4 Base Model BMI GaitSpeed Age GlucocorticoidUse PsychotropicUse VitaminD

5 Base Model GaitSpeed VitaminD Age FiveTSTS GlucocorticoidUse PsychotropicUse
6 Base Model GaitSpeed VitaminD Age GlucocorticoidUse PsychotropicUse

CONCLUSION

Unbiased estimation of causal effects from observational data is an increasingly common task faced by data scientists
and applied statisticians. Such an analysis requires assumptions about the underlying data generating process and
research design. As described in this paper, causal graphs are a useful and concise tool that can help you articulate
these assumptions and analyze patterns of association in your data. Once a causal graph has been articulated, you
can use the rules of association and bias in a causal graph to assess the feasibility of estimating a causal effect.

The CAUSALGRAPH procedure enables you to analyze one or more causal graphs in order to determine whether it is
possible to estimate a causal effect that has a valid causal interpretation. When a causal effect is identified, you can
use the procedure to produce an estimation strategy for the causal effect. The CAUSALGRAPH procedure can find
an adjustment set any time such a set exists. It can also identify instrumental variables that you can use to estimate a
causal effect. It includes support for multiple treatment variables and multiple outcome variables, as well as support for
unmeasured or latent variables. Whether or not a causal effect is identified, the CAUSALGRAPH procedure provides
tools that you can use to examine the observationally testable implications of a causal model. You can use these
implications to assess the extent to which a causal model accurately represents a data generating process, or you
can use them to choose between competing causal models of a process.

The examples in this paper illustrate the use of the CAUSALGRAPH procedure to find adjustment sets for a single
model and for multiple models. An example also shows how you can combine the CAUSALGRAPH procedure with
the CAUSALTRT procedure to produce an estimate of a causal effect. Finally, this paper shows how you can find and
use the observationally testable implications of a set of causal models in order to distinguish between those models.
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