Getting Started with Time Series Models
Danny Modlin
Senior Analytic Training Consultant
SAS – Cary Offices

Objectives

- Define a time series and the main ideas in time series data creation.
- Define and explore the systematic components in a time series.
- Introduce accuracy statistics to measure forecast accuracy.
- Briefly describe three types of time series models covered in this course.
A Time Series

A time series is an indexed set of *equally spaced* numbers.

Transaction Data Preparation Steps

Before you can perform time series analysis and forecasting, the observation (raw) series must be accumulated and interpreted to form a time series. The following diagram summarizes the process of converting timestamped data to time series data:
Transactional Data: Example

Historical Timestamped Data

No obvious patterns exist in the transactional data.

Transactional Data Accumulation

For this timestamped data, accumulating on a monthly *average* or *maximum* basis might be better than accumulating on a *total* basis.

ACCUMULATE=TOTAL ACCUMULATE=AVERAGE ACCUMULATE=MAXIMUM
Variation in Time Series Data: Two Main Parts

- signal
- noise

![Graph showing variation in time series data with signal and noise components.]

Signal Components

- Level
- Trend
- Seasonality
- Cycle
- Exogenous (also known as explanatory variable effects)
- Irregular
Component Decomposition

Monthly Airline Passengers
Linear+Seasonal+Irregular

T: Trend
S: Seasonal
L: Level
I: Irregular

Signal Components: Exogenous Effects (Inputs)

Forecast Plot for Units

Price
Promotions
Correlation of Y with Past Y: Autocorrelation

Autocorrelation (Order 1):

\(Y_t \) is correlated with \(Y_{t-1} \)

Time Series at Time \(t \):

\[Y_t = Y(t) \]

First Lag:

\[Y_{t-1} = Y(t - 1) \]

Autocorrelation Scatter Plots

- Autocorrelation is the correlation of present values versus lagged values.
- Autocorrelation between the present value and the first lagged value is called first order autocorrelation.
Autocorrelation Plots

• The autocorrelation plot enables you to see the autocorrelation at multiple lags.
• The blue range indicates 95% confidence intervals for each lag.

A White Noise Series

A series that:
• varies randomly around its mean
• has no systematic variation
• is comprised of only random variation
• has constant variance
The Ljung-Box Chi-Square Test for White Noise

"White means white."

The Three Families of Time Series Models

- exponential smoothing (ESM)
- autoregressive moving average [with exogenous variables] (ARMA[X])
- unobserved components (UCM)
Exponential Smoothing Premise

- Weighted averages of past values can produce good forecasts of the future.
- The weights should emphasize the most recent data.
- Forecasting should require only a few parameters.
- Forecast equations should be simple and easy to implement.

ARMAX Models

ARMAX: **AutoRegressive Moving Average with eXogenous variables**

- AR: Autoregressive \(\Rightarrow \) Time series is a function of its own past.
- MA: Moving Average \(\Rightarrow \) Time series is a function of past shocks (deviations, innovations, errors, and so on).
- X: Exogenous \(\Rightarrow \) Time series is influenced by external factors.
Unobserved Components Models (UCMs)

- Also known as *structural time series models*
- Decompose time series into components:
 - trend
 - season
 - cycle
 - irregular
 - regressors
- General form:
 \[Y_t = \text{Trend} + \text{Season} + \text{Cycle} + \text{Regressors} \]

UCMs

- Each component captures some important feature of the series dynamics.
- Components in the model have their own models.
- Each component has its own source of error.
- The coefficients for trend, season, and cycle are dynamic.
- The coefficients are testable.
- Each component has its own forecasts.
Comparison of Families

<table>
<thead>
<tr>
<th></th>
<th>Usability</th>
<th>Complexity*</th>
<th>Robustness</th>
<th>Able to Acc Dynamic Reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>ESM</td>
<td>ESM</td>
<td>ESM</td>
<td>ARIMAX</td>
</tr>
<tr>
<td>Worst</td>
<td>ARIMAX</td>
<td>UCM</td>
<td>UCM</td>
<td>ESM</td>
</tr>
</tbody>
</table>

*Best complexity is the least complex model

Forecasting

If someone asks you whether you can forecast something, your answer should always be “Yes.”

If someone asks you whether you can forecast something *accurately*, you cannot answer until you establish what accuracy means and until you perform preliminary diagnostics of the series.
Liability

- You need to assume that the underlying future behavior remains consistent with past behavior.
- However, you have no control over future events that might affect future behavior, such as catastrophes, economic downturns, war, the integrity of key players, the survival of key players, and so on.

Fit and Holdout Samples

<table>
<thead>
<tr>
<th>Quarter</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Q2018</td>
<td>(Y_{t+4})</td>
</tr>
<tr>
<td>3Q2018</td>
<td>(Y_{t+3})</td>
</tr>
<tr>
<td>2Q2018</td>
<td>(Y_{t+2})</td>
</tr>
<tr>
<td>1Q2018</td>
<td>(Y_{t+1})</td>
</tr>
</tbody>
</table>

 Ultimate Goal: Forecast the next four quarters.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Q2017</td>
<td>(Y_t)</td>
</tr>
<tr>
<td>3Q2017</td>
<td>(Y_{t-1})</td>
</tr>
<tr>
<td>2Q2017</td>
<td>(Y_{t-2})</td>
</tr>
<tr>
<td>1Q2017</td>
<td>(Y_{t-3})</td>
</tr>
</tbody>
</table>

Holdout Sample

How well can you forecast these four most recent observed quarters?

<table>
<thead>
<tr>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_{t-4})</td>
</tr>
</tbody>
</table>

Forecasting observed values with the remaining observed series

Fit Sample
Honest Assessment: Simulating a Prospective Study

1) Divide the time series data into two segments.
 1) The fit sample is used to derive a forecast model.
 2) The holdout sample is used to evaluate forecast accuracy.

2) Derive a set of candidate models.
 - Exponential Smoothing Models
 - ARMA and ARMAX Models
 - Unobserved Components Models

3) Calculate the chosen model accuracy statistic for each model by using the fit sample to forecast the holdout sample.

4) Choose the model with the best accuracy statistic.

5) Using the best model, generate forecasts for n future periods

Summary of Data Used for Forecast Model Building

<table>
<thead>
<tr>
<th>Fit Sample</th>
<th>Holdout Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Used to estimate model</td>
<td>• Used to evaluate model accuracy</td>
</tr>
<tr>
<td>parameters for accuracy</td>
<td>• Simulates retrospective study</td>
</tr>
<tr>
<td>evaluation</td>
<td></td>
</tr>
<tr>
<td>• Used to forecast values in</td>
<td></td>
</tr>
<tr>
<td>holdout sample</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ Full = Fit + Holdout data is used to fit a deployment model.
Necessary Conditions for Good Forecasts

- The identified signal continues into the future.
- Forecasting model complexity should be adequate to capture signal components.
- Forecasting models should not be overly complex.
- The best forecasting model is the one that captures and extrapolates the most signal, and that also ignores the noise.

Choosing a Winning Set of Forecasts

Good forecasts should
- be highly correlated with the actual series values
- exhibit small forecast errors
- capture the prominent features of the original time series.

In addition, assessment of forecast quality should be based on the business, engineering, or scientific problem that is being addressed.
Ready to learn more?
Visit the Learn Area in the Quad for the latest training and books.

SAS Training Course of Interest
Post-Conference training

- Time Series Forecasting in SAS University Edition: ARIMA Models
- Public training course
- Time Series Modeling Essentials

Get 20% off this book
Use code: SASGF
- SAS for Forecasting Time Series

Questions?