

Page 1

Fuzzy Matching Programming Techniques

Using SAS® Software

Stephen Sloan, Accenture

Kirk Paul Lafler, Software Intelligence Corporation

Abstract

Data comes in all forms, shapes, sizes and complexities. Stored in files and data sets, SAS® users across industries

know all too well that data can be, and often is, problematic and plagued with a variety of issues. When unique and

reliable identifiers are available, users routinely are able to match records from two or more data sets using merge,

join, and/or hash programming techniques without problem. But, what happens when a unique identifier, referred to

as the key, is not reliable or does not exist. These types of problems are common and are found in files containing a

subscriber name, mailing address, and/or misspelled email address, where one or more characters are transposed, or

are partially and/or incorrectly recorded? This presentation introduces what fuzzy matching is, a sampling of data

issues users have to deal with, popular data cleaning and user-defined validation techniques, the application of the

CAT functions, the SOUNDEX (for phonetic matching) algorithm, SPEDIS, COMPLEV, and COMPGED functions, and an

assortment of programming techniques to resolve key identifier issues and to successfully merge, join and match less

than perfect or messy data.

Introduction

When data sources and data sets contain consistent and valid data values, share common unique identifier(s), and

have no missing data, the matching process rarely presents any problems. But, when data originating from multiple

sources contain duplicate observations, duplicate and/or unreliable keys, missing values, invalid values, capitalization

and punctuation issues, inconsistent matching variables, and imprecise text identifiers, the matching process is often

compromised by unreliable and/or unpredictable results. When issues like these exist, SAS users must first clean and

standardize any and all data irregularities before any attempts to match data records are performed. To assist in this

time-consuming and costly process, users often utilize special-purpose programming techniques including the

application of one or more SAS functions, the use of approximate string matching, and/or an assortment of

constructive programming techniques to standardize and combine data sets together.

Data Sets Used in Examples

The examples presented in this paper illustrate two data sets, Movies_with_Messy_Data and

Actors_with_Messy_Data. The Movies_with_Messy_Data data set, illustrated in Figure 1, consists of 31 observations,

a data structure of six variables where Title, Category, Studio, and Rating are defined as character variables; and

Length and Year are defined as numeric variables. After careful inspection several data issues can be found in this data

set including the existence of missing data, duplicate observations, spelling errors, punctuation inconsistencies, and

invalid values.

The Actors_with_Messy_Data data set, illustrated in Figure 2, contains 15 observations and a data structure consisting

of three character variables: Title, Actor_Leading and Actor_Supporting. As with the Movies_with_Messy_Data data

set, several data issues are found including missing data, spelling errors, punctuation inconsistencies, and invalid

values.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 2

Figure 2. Actors_with_Messy_Data data set.

Figure 1. Movies_with_Messy_Data data set.

The Matching Process Explained

In an age of endless spreadsheets, apps and relational database management systems (RDBMS), it’s unusual to find a

single sheet, file, table or data set that contains all the data needed to answer an organization’s questions. Today’s

data exists in many forms and all too often involves matching two or more data sources to create a combined file. The

matching process typically involves combining two or more data sets, spreadsheets and/or files possessing a shared,

common and reliable, identifier (or key) to create a single data set, spreadsheet and/or file. The matching process,

illustrated in the following diagram, shows two tables with a key, Title, to combine the two tables together.

MOVIES ACTORS

Title Title

Length Actor_Leading

Category Actor_Supporting

Year

Studio

Rating

But, when a shared and reliable key is associated with input data sources that are nonexistent, inexact, or unreliable,

the matching process often becomes more involved and problematic. As cited in Sloan and Hoicowitz (2016), special

processes are needed to successfully match the names and addresses from different files when they are similar, but

not exactly the same. In a constructive and systematic way the authors of this paper describe an eight step approach

to cleansing data and performing fuzzy matching techniques.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 3

Step 1: Eliminate exact matches.

Since we are trying to match entries that do not have an exact match, we can save processing time by immediately

pulling out entries that have exactly the same name and address. We can do this by using the NODUP or NODUPKEY

parameter with PROC SORT. There is more detail on these options further down in this paper.

Step 2: If categories are available, add the category to the start of the name.

Doing this can eliminate matches that might occur if two businesses in the same general geographic area have the

same name (for example: Smith’s could describe a hardware store, a restaurant, or another type of business.)

Step 3: Remove extraneous characters.

As a general rule, punctuation can differ while the names are the same. For example, John’s “super” pizza and John’s

super pizza refer to the same restaurant. Therefore, we remove the following characters from all names: ‘ “ & ? - .

Step 4: Put all characters in upper-case notation and remove leading blanks.

Step 5: Remove words that might or might not appear in the same company name.

Some examples are The, .com, Inc, LTD, LLC, DIVISION, CORP, CORPORATION, CO., and COMPANY.

Step 6: Rationalize the zip codes when matching addresses, using geocodes when

available.

We found it useful to remove the last 4 digits of 9-digit zip codes, because some files might only have 5-digit zip codes.

Since some files might have zip codes as numeric fields, and other files might have zip codes as character fields, make

sure to include leading zeroes. For example, zip codes with a leading zero, as in 08514, would appear in a numeric

field as 8514 requiring the leading zero to be inserted.

If working with US zip codes, make sure they are all numeric. This may not apply for other countries. One common

mistake to watch for is that sometimes Canada, with abbreviation CA, is put in as the state CA (California) instead of

the country CA. Since Canada has an alphanumeric 6-character zip code, this, hopefully, will be caught when checking

for numeric zip codes.

If the program has access to geocodes, or if they are in the input data bases, geocodes can provide a further level of

validation in addition to the zip codes.

Step 7: Choose a standard for addresses.

Decide whether to use Avenue or Ave, Road or Rd, etc, and then convert the address fields to match the standard.

Step 8: Match the names and addresses using one or more fuzzy matching techniques.

Users have an assortment of powerful SAS algorithms, functions and programming techniques to choose from.

Fuzzy matching is the process by which data is combined where a known key either does not exist and/or the

variable(s) representing the key is/are unreliable. In Dunn (2014), the author suggests addressing these types of

scenarios using the following steps.

1. Determine the likely matching variables using metadata (e.g., PROC CONTENTS, etc.) listings.

2. Perform data cleaning.

3. Use the COMPLEV and COMPGED functions to determine the dissimilarity between two strings.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 4

The authors of this paper agree with Sloan & Hoicowitz, and Dunn’s strategies for handling fuzzy matching issues. But,

we also want to stress the importance of understanding the physical side of data along with the distribution of data

values. To address these areas, we suggest adhering to a seven step approach, as follows:

1. Determine the likely matching variables using metadata (e.g., PROC CONTENTS, etc.) listings.

2. Understand the distribution of data values including the number of levels for categorical and key variables.

3. Perform data cleaning.

4. Perform data transformations.

5. Use Fuzzy matching programming techniques when a reliable key between data sources are nonexistent, inexact

or unreliable.

6. For those fuzzy matching techniques that are not commutative (it matters which data set is placed first and

which is placed second), use the lower score that results from the different sequences.

7. Eliminate entries where the word counts are significantly different (the level of significance will be determined

based on the data sets being compared).

Step #1: Determining the Likely Matching Variables

This first step determines whether any variables exist for matching purposes. Using a PROC CONTENTS alphabetical list

of variables and attributes listing for the data sets, Movies_with_Messy_Data and Actors_with_Messy_Data, shown

below; compare each variable assessing the likelihood of potential matching variables. The PROC CONTENTS code is

illustrated below.

PROC CONTENTS Code:

proc contents data=mydata.Movies_with_Messy_Data ;

run ;

proc contents data=mydata.Actors_with_Messy_Data ;

run ;

From the PROC CONTENTS listing, illustrated in Figure 3, we see that TITLE is consistently defined in both data sets as a

$30 character variable. Based on this, we examine the values of the TITLE variable in greater detail to determine

whether it can serve as the key for matching observations in both data sets, as well as the distribution of data values

for other categorical variables.

Movies_with_Messy_Data Actors_with_Messy_Data

Figure 3. PROC CONTENTS Metadata Results.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 5

Step #2: Understanding the Distribution of Data Values and NLEVELS

To derive a more accurate picture of the data sources, we suggest that users conduct extensive data analysis by

identifying missing values, outliers, invalid values, minimum and maximum values, averages, value ranges, duplicate

observations, distribution of values, and the number of distinct values a categorical variable contains. This important

step provides an understanding of the data, while leveraging the data cleaning and standardizing activities that will be

performed later. One of the first things data wranglers will want to do is explore the data using the FREQ procedure.

PROC FREQ Code:

proc freq data=mydata.Movies_with_Messy_Data ;

 tables Title / NOCUM NOPERCENT

 out=Missing_Titles(where=(Title = “”)) ;

run ;

Reviewing the FREQ results, we see there are duplicate “key” values and missing values, as shown in Figure 4.

Figure 4. PROC FREQ Results show duplicate “key” values and missing values.

Determining the number of distinct values a categorical variable has is critical knowledge that all data analysts and

wranglers seek an answer to. Acquiring this information helps everyone involved to better understand the number of

distinct variable levels, the unique values and the number of occurrences for developing data-driven programming

constructs and elements. The FREQ procedure provides details about the number of levels for each categorical

variable.

PROC FREQ Code:

title "NLevels for Variables of Interest in Movies_with_Messy_Data" ;

proc freq data=mydata.Movies_with_Messy_Data nlevels ;

 tables Title Rating Category Studio / nopct nocum ;

run ;

Reviewing the PROC FREQ results, we see the distinct variable levels for each variable: Title, Rating, Category and

Studio, as shown in Figure 5.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 6

Figure 5. PROC FREQ results show the number of levels for each variable of interest.

Reviewing the PROC FREQ results, an assortment of data consistency, validation and capitalization issues have been

identified for each variable, as shown in Figure 6.

Figure 6. PROC FREQ results depict unique values and the number of occurrences for each variable of interest.

Step #3: Performing Data Cleaning

Data cleaning, often referred to as data scrubbing, is the process of identifying and fixing data quality issues including

missing values, invalid character and numeric values, outlier values, value ranges, duplicate observations, and other

anomalies found in data sets. SAS provides many powerful ways to perform data cleaning tasks. For anyone wanting a

complete guide to the various SAS data cleaning techniques, we highly recommend Cody’s Data Cleaning Techniques

Using SAS, Third Edition. To illustrate one popular data cleaning technique that users frequently turn to for identifying

and removing duplicate observations, we illustrate the SORT procedure.

Exploring PROC SORT to Identify and Remove Duplicate Observations

A popular approach with users for identifying and removing duplicate observations in a data set is to use PROC SORT.

By using the SORT procedure’s three options: DUPOUT=, NODUPRECS, and NODUPKEYS, users are better able to

control how duplicate observations are identified and removed.

https://www.sas.com/store/books/categories/usage-and-reference/cody-s-data-cleaning-techniques-using-sas-third-edition/prodBK_70074_en.html
https://www.sas.com/store/books/categories/usage-and-reference/cody-s-data-cleaning-techniques-using-sas-third-edition/prodBK_70074_en.html

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 7

Specifying the DUPOUT= Option

PROC SORT’s DUPOUT= option is often used to identify duplicate observations before actually removing them from a

data set. A DUPOUT= option, often specified when a data set is too large for visual inspection, can be used with the

NODUPKEYS or NODUPRECS options to name a data set that contains duplicate keys or entire observations. In the next

example, the DUPOUT=, OUT= and NODUPKEY options are specified to identify duplicate keys.

PROC SORT Code:

PROC SORT DATA=mydata.Movies_with_Messy_Data

 DUPOUT=Movies_Dupout_NoDupkey

 OUT=Movies_Sorted_Cleaned_NoDupkey

 NODUPKEY ;

 BY Title ;

RUN ;

PROC PRINT DATA=work.Movies_Dupout_NoDupkey NOOBS ;

 TITLE “Observations Slated for Removal” ;

RUN ;

PROC PRINT DATA=work.Movies_Sorted_Cleaned_NoDupkey NOOBS ;

 TITLE “Cleaned Movies Data Set” ;

RUN ;

Results:

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 8

PROC SORT’s NODUPRECS (or NODUPREC) (or NODUP) option identifies observations with identical values for all

columns. In the next example, the OUT=, DUPOUT= and NODUPRECS options are specified.

PROC SORT Code:

PROC SORT DATA=mydata.Movies_with_Messy_Data

 DUPOUT=Movies_Dupout_NoDupRecs

 OUT=Movies_Sorted_Cleaned_NoDuprecs

 NODUPRECS ;

 BY Title ;

RUN ;

PROC PRINT DATA=work.Movies_Dupout_NoDuprecs NOOBS ;

 TITLE “Observations Slated for Removal” ;

RUN ;

PROC PRINT DATA=work.Movies_Sorted_Cleaned_NoDuprecs NOOBS ;

 TITLE “Cleaned Movies Data Set” ;

RUN ;

Results:

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 9

Note: Although the removal of duplicates using PROC SORT is a popular technique among many SAS users, an

element of care should be given to using this method when processing large data sets. Since sort operations can often

be CPU-intensive operations, the authors of this paper recommend comparing PROC SORT to procedures like PROC

SUMMARY with the CLASS statement to determine the performance impact of one method versus another.

Exploring SAS Functions to Modify Data

SAS functions are an essential component of the SAS Base software. Representing a variety of built-in and callable

routines, functions serve as the “work horses” in the SAS software providing users with “ready-to-use” tools designed

to ease the burden of writing and testing often lengthy and complex code for a variety of programming tasks. The

advantage of using SAS functions is evident by their relative ease of use, and their ability to provide a more efficient,

robust and scalable approach to simplifying a process or programming task.

SAS functions span a number of functional categories, including character, numeric, character string matching, data

concatenation, truncation, data transformation, search, date and time, arithmetic and trigonometric, hyperbolic, state

and zip code, macro, random number, statistical and probability, financial, SAS file I/O, external files, external

routines, sort, to name a few. The next example illustrates an old, an alternate, and new way of concatenating strings

and/or variables together. The code, results and analysis appear below.

DATA Step and CAT Functions:

data _null_ ;

 length NUM 3. A B C D E $ 8 BLANK $ 1 ;

 A = 'The' ;

 NUM = 5 ;

 B = ' Cats' ;

 C = 'in' ;

 D = ' the' ;

 E = 'Hat' ;

 BLANK = ' ' ;

 * Old way of concatenating with TRIM and LEFT functions and concatenation operator ;

 OLD = trim(left(A)) || BLANK || trim(left(NUM)) || BLANK || trim(left(B)) ||

 BLANK || trim(left(C)) || BLANK || trim(left(D)) || BLANK || trim(left(E)) ;

 * Using the STRIP function and concatenation operator ;

 STRIP = strip(A) || BLANK || strip(NUM) || BLANK || strip(B) || BLANK ||

 strip(C) || BLANK || strip(D) || BLANK || strip(E) ;

 * Using the CAT functions to concatenate character and numeric values together ;

 CAT = cat (A, NUM, B, C, D, E) ;

 CATQ = catq(BLANK, A, NUM, B, C, D, E) ;

 CATS = cats(A, NUM, B, C, D, E) ;

 CATT = catt(A, NUM, B, C, D, E) ;

 CATX = catx(BLANK, A, NUM, B, C, D, E) ;

 put OLD= / STRIP= / CAT= / CATQ= / CATS= / CATT= / CATX= / ;

run ;

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 10

Results:

OLD=The 5 Cats in the Hat

STRIP=The 5 Cats in the Hat

CAT=The 5 Cats in the Hat

CATQ="The " 5 " Cats " "in " " the " "Hat "

CATS=The5CatsintheHat

CATT=The5 Catsin theHat

CATX=The 5 Cats in the Hat

Analysis:

In the preceding SAS code, a single numeric variable, NUM, and six character variables: A, B, C, D, E, and BLANK are

defined with their respective values as: NUM=5, A=’The’, B=’ Cats’, C=’in’, D=’ the’, E=’Hat’ and BLANK=’ ‘. The oldest

way of concatenating two or more strings or variables together is specified using the TRIM and LEFT functions and the

concatenation operator “||” in an assignment statement. An alternate approach uses a STRIP function with the

concatenation operator “||” in an assignment statement to join two or more strings or variables together. Finally, the

newer and more robust concatenation approach uses the CAT family of functions: CAT, CATQ, CATS, CATT, and CATX.

 CAT, the simplest of concatenation functions, joins two or more strings and/or variables together, end-to-end

producing the same results as with the concatenation (double bar) operator.

 CATQ is similar to the default features of the CATX function, but the CATQ function adds quotation marks to any

concatenated string or variable.

 CATS removes all leading and trailing blanks and concatenates two or more strings and/or variables together.

 CATT removes trailing blanks and concatenates two or more strings and/or variables together.

 CATX, perhaps the most robust CAT function, removes leading and trailing blanks and concatenates two or more

strings and/or variables together with a delimiter between each.

Validating Data with PROC FORMAT

Problems with data often necessitate time-consuming validation activities. The strategy is to take the time to become

familiar with the data and to discover any problems before expending data analysis and reporting resources. A popular

technique used by many to identify data issues is to use the FORMAT procedure. In the next example, a user-defined

format is created with PROC FORMAT, a DATA step identifies data issues associated with the Category variable, and a

PROC PRINT is specified to display the Category variable’s data issues.

PROC FORMAT, DATA Step and PROC PRINT Code:

PROC FORMAT LIBRARY=WORK ;

 VALUE $Category_Validation

 'Action' = 'Action'

 'Action Adventure' = 'Action Adventure'

 'Action Cops & Robber' = 'Action Cops & Robber'

 'Action Sci-Fi' = 'Action Sci-Fi'

 'Adventure' = 'Adventure'

 'Comedy' = 'Comedy'

 'Drama' = 'Drama'

 'Drama Mysteries' = 'Drama Mysteries'

 'Drama Romance' = 'Drama Romance'

 'Drama Suspense' = 'Drama Suspense'

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 11

 'Horror' = 'Horror'

 Other = 'ERROR - Invalid Category'

 ;

RUN ;

DATA Validate_Category ;

 SET mydata.Movies_with_Messy_Data ;

 Check_Category = PUT(Category,$Category_Validation.) ;

 IF Check_Category = 'ERROR - Invalid Category' THEN

 DO ;

 PUT 'Category Error: ' Title ;

 OUTPUT ;

 END ;

RUN ;

PROC PRINT DATA=work.Validate_Category

 NOOBS

 N ;

 TITLE "Validation Report for Movie Category Variable" ;

 VAR Category Title Rating Length Studio Year ;

RUN ;

SAS Log:

The error messages for the variable, Check_Category, are displayed, below.

Category Error: Brave Heart

Category Error: Titanic

Category Error: Forrest Gumpp

Category Error: Christmas Vacatiion

Category Error:

Results:

Step #4: Performing Data Transformations

Data transformations are frequently performed by SAS users. From converting a data set structure from wide to long,

long to wide, observations to variables, variables to observations, and more, SAS users have a number of choices

available to them. A popular procedure used to transform selected variables into observations and observations into

variables is the TRANSPOSE procedure. Although PROC TRANSPOSE isn’t designed to print or display output, it is handy

for restructuring data in a data set, and is typically used in preparation for special types of processing such as, array

processing. In its simplest form, data can be transformed with, or without, grouping. In the example, below, an

ungrouped transformation is performed on only the numeric variables in the data set.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 12

PROC TRANSPOSE Code:

PROC TRANSPOSE DATA=mydata.Movies_with_Messy_Data

 OUT=Movies_Transposed ;

RUN ;

Results:

Data can be restructured with PROC TRANSPOSE using a grouping variable. In the next example, the Movies data set is

first sorted in ascending order by the variable RATING, the sort results written to the Movies_Sorted data set, and

then the Movies_Sorted data set is transposed using the RATING variable as the by-group variable.

PROC TRANSPOSE Code:

PROC SORT DATA=mydata.Movies_with_Messy_Data

 OUT=Movies_Sorted ;

 BY Rating ; /* BY-Group to Transpose */

RUN ;

PROC TRANSPOSE DATA=work.Movies_Sorted

 OUT=Movies_Transposed ;

 VAR Title ; /* Variable to Transpose */

 BY Rating ; /* BY-Group to Transpose */

RUN ;

PROC PRINT DATA=Movies_Transposed ;

RUN ;

Results:

Step #5: Using Fuzzy Matching Programming Techniques

Fuzzy matching is an essential programming technique used by organizations every day, particularly when the

matching variables between data sets are non-existent or unreliable. Although this type of processing can be more

involved than traditional matching processing techniques (e.g., interleaving, match-merging, joining, etc.), SAS users

have a number of powerful functions available to them, including the Soundex (phonetic matching) algorithm, and the

SPEDIS, COMPGED and COMPLEV functions, to help make fuzzy matching easier and more effective to use.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 13

Exploring the Soundex Algorithm

The Soundex (phonetic matching) algorithm involves matching files on words that sound alike. As one of the earliest

fuzzy matching techniques, Soundex was invented and patented by Margaret K. Odell and Robert C. Russell in 1918

and 1922 to help match surnames that sound alike. It is limited to finding phonetic matches and adheres to the

following rules when performing a search:

 Is case insensitive (ignores case);

 Ignores embedded blanks and punctuations;

 Is better at finding English-sounding names.

Although the Soundex algorithm does a fairly good job with English-sounding names, it often falls-short when dealing

with non-English sounding names. In Foley (1999) the author corroborates this by stating, “The Soundex algorithm is

not infallible since it has been known to miss similar-sounding surnames like Rogers and Rodgers while matching

dissimilar surnames such as Hilbert and Heibronn. “

So, how does the Soundex algorithm work? As implemented, SAS determines whether a name (or a variable’s

contents) sounds like another by converting each word to a code. The value assigned to the code consists of the first

letter in the word followed by one or more digits. Vowels, A, E, I, O and U, along with H, W, Y, and non-alphabetical

characters do not receive a coded value and are ignored; and double letters (e.g., ‘TT’) are assigned a single code value

for both letters. The codes derived from each word conform to the letters and values found in the table, below.

Letter Value

B, P, F, V 1

C, S, G, J, K, Q, X, Z 2

D, T 3

L 4

M, N 5

R 6

To examine how the movie title, Rocky, is assigned a value of R22, R has a value of 6 but is retained as R, O is ignored,

C is assigned a value of 2, K is assigned a value of 2, and Y is ignored. The converted code for “Rocky” is then matched

with any other name that has the same assigned code. The general syntax of the Soundex algorithm takes the form of:

Variable =* “character-string”

In the next example, the Soundex algorithm is illustrated using the =* operator in a simple DATA step WHERE

statement and a PROC SQL WHERE-clause to find similar sounding Movie Titles.

Soundex (=*) Algorithm:

DATA Soundex_Matches ;

 SET mydata.Movies_with_Messy_Data ;

 WHERE Title =* “Michael” ;

RUN ;

PROC PRINT DATA=Soundex_Matches NOOBS ;

 TITLE “Soundex Algorithm Matches” ;

RUN ;

TITLE “Soundex Algorithm Matches” ;

PROC SQL ;

 SELECT *

 FROM mydata.Movies_with_Messy_Data

 WHERE Title =* “Michael” ;

QUIT ;

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 14

Results:

Exploring the SPEDIS Function

The SPEDIS, Spelling Distance, function and its two arguments evaluates possible matching scenarios by translating a

keyword into a query containing the smallest distance value. Because the SPEDIS function evaluates numerous

scenarios, it can experience varying performance issues in comparison to other matching techniques. The SPEDIS

function evaluates query and keyword arguments returning non-negative spelling distance values. A derived value of

zero indicates an exact match. Generally, derived values are less than 100, but, on occasion, can exceed 200. Users can

control the matching process by specifying spelling distance values greater than zero (e.g., 10, 20, etc.).

So, how does the SPEDIS function work? As implemented, SAS determines whether a name (or a variable’s contents) is

alike by computing an asymmetric spelling distance between two words. The SPEDIS function computes the costs

associated with converting the keyword to the query, as illustrated in the following table, below.

Operation Cost Description

Match 0 No change

Singlet 25 Delete one of a double letter

Doublet 50 Double a letter

Swap 50 Reverse the order of two consecutive letters

Truncate 50 Delete a letter from the end

Append 35 Add a letter to the end

Delete 50 Delete a letter from the middle

Insert 100 Insert a letter in the middle

Replace 100 Replace a letter in the middle

Firstdel 100 Delete the first letter

Firstins 200 Insert a letter at the beginning

Firstrep 200 Replace the first letter

The general syntax of the SPEDIS function takes the form of:

SPEDIS (query, keyword)

In this first example, a simple DATA step with a WHERE statement and a PROC SQL with a WHERE-clause are illustrated

to show the values derived by the SPEDIS function for finding exact matches for the Movie Title, “Michael”.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 15

SPEDIS Function:

DATA work.SPEDIS_Matching ;

 SET mydata.Movies_with_Messy_Data ;

 Spedis_Value = SPEDIS(Title,"Michael") ;

RUN ;

PROC PRINT DATA=work.SPEDIS_Matching

 NOOBS ;

 TITLE "SPEDIS Function Matches" ;

 WHERE SPEDIS(Title,"Michael") GE 0 ;

RUN ;

TITLE “SPEDIS Function Matches” ;

PROC SQL ;

 SELECT *,

 SPEDIS(Title,“Michael”)

 AS Spedis_Value

 FROM mydata.Movies_with_Messy_Data

 WHERE SPEDIS(Title,“Michael”) GE 0 ;

QUIT ;

Results:

In the next example, a simple DATA step with a WHERE statement and a PROC SQL with a WHERE-clause are

illustrated to how the SPEDIS function is used to find exact matches for Movie Titles.

SPEDIS Function:

DATA work.SPEDIS_Matching ;

 SET mydata.Movies_with_Messy_Data ;

 Spedis_Value = SPEDIS(Title,"Michael") ;

RUN ;

PROC PRINT DATA=work.SPEDIS_Matching

 NOOBS ;

TITLE “SPEDIS Function Matches” ;

PROC SQL ;

 SELECT *,

 SPEDIS(Title,“Michael”)

 AS Spedis_Value

 FROM mydata.Movies_with_Messy_Data

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 16

 TITLE "SPEDIS Function Matches" ;

 WHERE SPEDIS(Title,"Michael") = 0 ;

RUN ;

 WHERE SPEDIS(Title,“Michael”) = 0 ;

QUIT ;

Results:

In the next example, a DATA step with a WHERE statement and a PROC SQL with a WHERE-clause are illustrated to

show how the SPEDIS function is used to find spelling variations associated with Movie Titles.

SPEDIS Function:

DATA work.SPEDIS_Matching ;

 SET mydata.Movies_with_Messy_Data ;

 Spedis_Value = SPEDIS(Title,"Michael") ;

RUN ;

PROC PRINT DATA=work.SPEDIS_Matching

 NOOBS ;

 TITLE "SPEDIS Function Matches" ;

 WHERE SPEDIS(Title,"Michael") LE 20 ;

RUN ;

TITLE “SPEDIS Function Matches” ;

PROC SQL ;

 SELECT *,

 SPEDIS(Title,“Michael”)

 AS Spedis_Value

 FROM mydata.Movies_with_Messy_Data

 WHERE SPEDIS(Title,“Michael”) LE 20 ;

QUIT ;

Results:

Exploring the COMPLEV Function

The COMPLEV function is another fuzzy matching technique used by the SAS user community. It stands for

Levenshtein Edit Distance. As with the SPEDIS and COMPGED functions, the COMPLEV function provides an indicator

of how close two strings are, with one exception. In lieu of assigning a score for each operation, it returns the number

of operations. The general syntax of the COMPLEV function takes the form of:

COMPLEV (string-1, string-2 <, cutoff-value> <, modifier>)

Required Arguments:

string-1 specifies a character variable, constant or expression.

string-2 specifies a character variable, constant or expression.

Optional Arguments:

cutoff-value specifies a numeric variable, constant or expression. If the actual Levenshtein edit distance is

greater than the value of cutoff, the value that is returned is equal to the value of cutoff.

modifier specifies a value that alters the action of the COMPLEV function. Valid modifier values are:

 i or I Ignores the case in string-1 and string-2.
 l or L Removes leading blanks before comparing the values in string-1 or string-2.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 17

 n or N Ignores quotation marks around string-1 or string-2.
 : (colon) Truncates the longer of string-1 or string-2 to the length of the shorter string.

In the next example, a PROC SQL inner join is constructed along with the specification of a COMPLEV function to

determine the best possible match producing a value of, COMPLEV_Number. As illustrated in the results, the

COMPLEV_Number column displays the number of operations that have been performed. The lower the value the

better the match (e.g., 0 = Best match, 1 = Next Best match, etc.).

PROC SQL Join with COMPLEV Function:

proc sql ;

 select M.Title,

 Rating,

 Length,

 Category,

 COMPLEV(M.Category,”Drama”) AS COMPLEV_Number

 from mydata.Movies_with_Messy_Data M

 where M.Title NE ""

 order by M.Title ;

quit ;

Results:

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 18

In the next example, we modify what was produced previously and restrict our PROC SQL WHERE-clause to subset

non-missing Titles and COMPLEV_Number values containing either 0 or 1. The results confirm that a fuzzy matching

process using the COMPLEV function to select values of 0 or 1, representing the “best” matches for

COMPLEV_Number, has been correctly performed.

PROC SQL Join with COMPLEV Function:

proc sql ;

 title “COMPLEV Function Matches” ;

 select M.Title,

 Rating,

 Length,

 Category,

 COMPLEV(M.Category,”Drama”) AS COMPLEV_Number

 from mydata.Movies_with_Messy_Data M

 where M.Title NE ""

 AND COMPLEV_Number LE 1

 order by M.Title ;

quit ;

Results:

Exploring the COMPGED Function

The COMPGED function is another fuzzy matching technique used by the SAS user community. It works by computing

and using a Generalized Edit Distance (GED) score when comparing two text strings. In Teres (2011), the author

describes the Generalized Edit Distance score as “a generalization of the Levenshtein edit distance, which is a measure

of dissimilarity between two strings.” Sloan and Hoicowitz describe their experience using the COMPGED function to

match data sets with unreliable identifiers (or keys) by pointing out, “The higher the GED score the less likely the two

strings match.” Conversely, for the greatest likelihood of a match with the COMPGED function users should seek the

lowest derived score from evaluating all the possible ways of matching string-1 with string-2.

The COMPGED function returns values that are multiples of 10, e.g., 20, 100, 200, etc. In Cadieux and Bretheim’s

(2014) paper, the authors mention that most COMPGED scores of 100 or less are valid matches. So how is the

COMPGED function used to compare two text strings for possible matching? The general syntax of the COMPGED

function takes the form of:

COMPGED (string-1, string-2 <, cutoff-value> <, modifier>)

Required Arguments:

string-1 specifies a character variable, constant or expression.

string-2 specifies a character variable, constant or expression.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 19

Optional Arguments:

cutoff-value specifies a numeric variable, constant or expression. If the actual generalized edit distance is

greater than the value of cutoff, the value that is returned is equal to the value of cutoff.

modifier specifies a value that alters the action of the COMPGED function. Valid modifier values are:

 i or I Ignores the case in string-1 and string-2.
 l or L Removes leading blanks before comparing the values in string-1 or string-2.
 n or N Ignores quotation marks around string-1 or string-2.
 : (colon) Truncates the longer of string-1 or string-2 to the length of the shorter string.

In this first example, a PROC SQL inner join is constructed along with the specification of a COMPGED function to allow

for matches that are not perfect. The COMPGED function derives a value corresponding to the computed generalized

edit distance (GED) score as, COMPGED_Score in the new table, Movies_Fuzzy_Matches. As illustrated in the results,

the COMPGED_Score column contains a subsetted value between 0 and 100 due to the “cutoff-value” of 100 as is

specified in the WHERE-clause expression. Along with the “cutoff-value, the WHERE-clause also eliminates missing

titles from further consideration.

PROC SQL Join with COMPGED Function:

proc sql noprint ;

 create table Movies_Fuzzy_Matches as

 select M.Title,

 Rating,

 Category,

 Actor_Leading,
 Actor_Supporting,

 COMPGED(M.Title,A.Title) AS COMPGED_Score

 from mydata.Movies_with_Messy_Data M,
 mydata.Actors_with_Messy_Data A

 where M.Title NE "" AND

 CALCULATED COMPGED_Score LE 100

 order by M.Title ;

quit ;

Results:

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 20

In the next example, the “cutoff-value” is maintained at 100, as it was in the previous example. In addition to the

COMPGED function, a modifier value of “I” has been specified to tell SAS to ignore the case of both string-1 and string-

2. Unlike the previous example’s results, the results for this example show that the row associated with the movie

“Ghost” in the argument for string-1 matches the value of “GHOST” in the argument for string-2.

PROC SQL Join with COMPGED Function and a Modifier of ‘I’:

proc sql noprint ;

 create table Movies_Fuzzy_Matches as

 select M.Title,

 Rating,

 Category,
 Actor_Leading,

 Actor_Supporting,

 COMPGED(M.Title,A.Title,’I’) AS COMPGED_Score

 from mydata.Movies_with_Messy_Data M,

 mydata.Actors_with_Messy_Data A

 where M.Title NE "" AND

 CALCULATED COMPGED_Score LE 100

 order by M.Title ;

quit ;

Results:

In the next example, the COMPGED function’s modifier value of “I” has been removed and the “cutoff-value” was

increased from 100 to 400. By increasing the “cutoff-value”, we liberalized the matching process to perform matches

when the matching columns are not perfect. Unlike the previous example where the modifier value of “I” was

specified, the results for this example shows the row associated with the movie “Ghost” with a COMPGED_Score of

400, and the argument for string-1 matches the value of “GHOST” in the argument for string-2,.

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 21

PROC SQL Join with COMPGED Function and COMPGED_Score LE 400:

proc sql noprint ;

 create table Movies_Fuzzy_Matches as

 select M.Title,

 Rating,

 Category,
 Actor_Leading,

 Actor_Supporting,

 COMPGED(M.Title,A.Title) AS COMPGED_Score

 from mydata.Movies_with_Messy_Data M,

 mydata.Actors_with_Messy_Data A

 where M.Title NE "" AND

 CALCULATED COMPGED_Score LE 400

 order by M.Title ;

quit ;

Results:

In the next example, the COMPGED function has a “cutoff-value” for the COMPGED_Score set at 100, and a modifier

value of “INL” to ignore the case, remove leading blanks, and ignore quotes around string-1 and string-2. As before,

the results for this example show the row associated with the movie “Ghost” in the argument for string-1 matches the

value of “GHOST” in the argument for string-2.

PROC SQL Join with COMPGED Function and Modifier of ‘INL’:

proc sql noprint ;

 create table Movies_Fuzzy_Matches as

 select M.Title,

 Rating,

 Category,
 Actor_Leading,

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 22

 Actor_Supporting,

 COMPGED(M.Title,A.Title,’INL’) AS COMPGED_Score

 from mydata.Movies_with_Messy_Data M,

 mydata.Actors_with_Messy_Data A

 where M.Title NE "" AND

 CALCULATED COMPGED_Score LE 100

 order by M.Title ;

quit ;

Results:

Conclusion

When data originating from multiple sources contain duplicate observations, duplicate and/or unreliable keys, missing

values, invalid values, capitalization and punctuation issues, inconsistent matching variables, and imprecise text

identifiers, the matching process is often compromised by unreliable and/or unpredictable results. This paper

demonstrates a seven-step approach including identifying, cleaning and standardizing data irregularities, conducting

data transformations, and utilizing special-purpose programming techniques such as the application of SAS functions,

the SOUNDEX algorithm, the SPEDIS function, approximate string matching functions including COMPLEV and

COMPGED, and an assortment of constructive programming techniques to standardize and combine data sets

together when the matching columns are unreliable or less than perfect.

References

Cadieux, Richard and Daniel R. Brethiem (2014). “Matching Rules: Too Loose, Too Tight, or Just Right?”, Proceedings of
the 2014 SAS Global Forum (SGF) Conference.

Cody, Ron (2017). “Cody’s Data Cleaning Techniques Using SAS®, Third Edition”, SAS Press, SAS Institute, Cary, NC,
USA.

Dunn, Toby (2014). “Getting the Warm and Fuzzy Feeling with Inexact Matching”, Proceedings of the 2014 SAS Global
Forum (SGF) Conference.

Foley, Malachy J. (1999). “Fuzzy Merges: Examples and Techniques”, Proceedings of the 1999 SAS Users Group
International (SUGI) Conference.

Lafler, Kirk Paul and Stephen Sloan (2017). “Fuzzy Matching Programming Techniques Using SAS® Software”,
Proceedings of the 2017 South Central SAS Users Group (SCSUG) Conference.

http://support.sas.com/resources/papers/proceedings14/1674-2014.pdf
https://www.sas.com/store/books/categories/usage-and-reference/cody-s-data-cleaning-techniques-using-sas-third-edition/prodBK_70074_en.html
http://support.sas.com/resources/papers/proceedings14/1316-2014.pdf
http://www2.sas.com/proceedings/sugi24/Advtutor/p46-24.pdf
https://www.lexjansen.com/scsug/2017/Fuzzy-Matching-Programming-Techniques-Using-SAS-Software-SCSUG-2017.pdf

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 23

Lafler, Kirk Paul (2016). “Removing Duplicates Using SAS®”, Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Patridge, Charles (1997). “The Fuzzy Feeling SAS Provides: Electronic Matching of Records without Common Keys”,
Proceedings of the 1997 SAS Users Group International (SUGI) Conference.

Russell, Kevin (January 27, 2015). “How to Perform a Fuzzy Match Using SAS Functions”. blogs.sas.com.

Roesch, Amanda (2012). “Matching Data Using Sounds-Like Operators and SAS® Compare Functions”, Proceedings of
the 2012 SAS Global Forum (SGF) Conference.

Sloan, Stephen and Kirk Paul Lafler (2017). “Fuzzy Matching Programming Techniques Using SAS® Software”,
Proceedings of the 2017 South East SAS Users Group (SESUG) Conference.

Sloan, Stephen and Dan Hoicowitz (2016). “Fuzzy Matching: Where Is It Appropriate and How Is It Done? SAS Can
Help.”, Proceedings of the 2016 SAS Global Forum (SGF) Conference.

Staum, Paulette (2007). “Fuzzy Matching using the COMPGED Function”, Proceedings of the 2007 NorthEast SAS Users
Group (NESUG) Conference.

Teres, Jedediah J. (2011). “Using SQL Joins to Perform Fuzzy Matches on Multiple Identifiers”, Proceedings of the 2011
NorthEast SAS Users Group (NESUG) Conference.

“Transforming SAS Data Sets”, (2000). http://www.rhoworld.com/pdf/ch599.pdf.

Zirbel, Douglas (2009). “Learn the Basics of PROC TRANSPOSE”, Proceedings of the 2009 SAS Global Forum (SGF)
Conference.

Acknowledgments

The authors thank Dr. Goutam Chakraborty, SAS Global Forum (SGF) 2018 Conference Chair, and the SGF 2018

Leadership for accepting our abstract and paper. We also thank the SAS Global Forum (SGF) Executive Board and SAS

Institute for organizing and supporting a great conference!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute

Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of

their respective companies.

About the Authors

Kirk Paul Lafler is an entrepreneur, consultant and founder of Software Intelligence Corporation, and has been using

SAS since 1979. Kirk is a SAS application developer, programmer, certified professional, provider of SAS consulting and

training services, advisor and adjunct professor at UC San Diego Extension, educator to SAS users around the world,

mentor, and emeritus sasCommunity.org Advisory Board member. As the author of six books including Google®

Search Complete (Odyssey Press. 2014) and PROC SQL: Beyond the Basics Using SAS, Second Edition (SAS Press. 2013);

Kirk has written hundreds of papers and articles; selected as an Invited speaker, trainer, keynote and section leader at

SAS International, regional, special-interest, local, and in-house user group conferences and meetings; and is the

recipient of 25 “Best” contributed paper, hands-on workshop (HOW), and poster awards.

Stephen Sloan has worked at Accenture in the Services, Consulting, and Digital groups and is currently a senior

manager in the SAS Analytics area. He has worked in a variety of functional areas including Project Management, Data

Management, and Statistical Analysis. Stephen has had the good fortune to have worked with many talented people

at SAS Institute. Stephen has a B.A. in Mathematics from Brandeis University, M.S. degrees in Mathematics and

Computer Science from Northern Illinois University, and an MBA from Stern Business School at New York University.

http://www.lexjansen.com/mwsug/2016/TT/MWSUG-2016-TT02.pdf
http://www2.sas.com/proceedings/sugi22/APPDEVEL/PAPER28.PDF
http://blogs.sas.com/content/sgf/2015/01/27/how-to-perform-a-fuzzy-match-using-sas-functions/
http://support.sas.com/resources/papers/proceedings12/122-2012.pdf
https://www.lexjansen.com/sesug/2017/APP-38.pdf
http://support.sas.com/resources/papers/proceedings16/7760-2016.pdf
http://support.sas.com/resources/papers/proceedings16/7760-2016.pdf
http://www.lexjansen.com/nesug/nesug07/ap/ap23.pdf
http://www.lexjansen.com/nesug/nesug11/ps/ps07.pdf
http://www.rhoworld.com/pdf/ch599.pdf
http://support.sas.com/resources/papers/proceedings09/060-2009.pdf

Fuzzy Matching Programming Techniques Using SAS
®
 Software, continued SGF 2018

Page 24

Comments and suggestions may be sent to:

Kirk Paul Lafler

SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author

Software Intelligence Corporation

E-mail: KirkLafler@cs.com

LinkedIn: http://www.linkedin.com/in/KirkPaulLafler

Twitter: @sasNerd

~ ~ ~ ~ ~ ~ ~

Stephen Sloan

Senior Manager in SAS Analytics

Accenture

E-mail: Stephen.B.Sloan@accenture.com

http://www.linkedin.com/in/KirkPaulLafler
mailto:Stephen.B.Sloan@accenture.com

