ABSTRACT
It is a well-known fact that the structure of real-world data is rarely complete and straightforward. Keeping this in mind, we must also note that the quality, assumptions, and base state of the data we are working with has a very strong influence on the selection and structure of the statistical model chosen for analysis and/or data maintenance. If the structure and assumptions of the raw data are altered too much, then the integrity of the results as a whole are grossly compromised. The purpose of this paper is to provide programmers with a simple technique which will allow the aggregation of data without losing information. This technique will also check for the quality of binned categories in order to improve the performance of statistical modeling techniques. The SAS® high performance analytics procedure, HPBIN, gives us a basic idea of syntax as well as various methods, tips, and details on how to bin variables into comprehensible categories. We will also learn how to check whether these categories are reliable and realistic by reviewing the WOE (Weight of Evidence), and IV (Information Value) for the binned variables. This paper is intended for any level of SAS User interested in quality control and/or SAS high performance analytics procedures.

INTRODUCTION
With the emergence of big data, programmers have been trying to find the most efficient ways to work through their now exponentially larger workloads. In addition to having larger numbers of observations and variables to work with, they also have a wider range of predictor and outcome values that must be considered. When handling these large quantities of datapoints, it is important to note that the existence of this wide variability in values can result in significantly more chaotic information when utilizing data mining applications such as decision trees as well a much higher probability of losing information during the process of splitting. To overcome these issues data reduction can be used as an unsupervised discretization technique for data smoothing methods.

This paper provides detailed information about how the continuous variable can be split into binning categories and how the resulting model can be precisely enhanced. In response to this need, High Performance analytical procedures were created. These procedures are capable of working in either Single-Machine mode or Distribution mode. By using these procedures, we can increase the quality of data and ultimately improve a model’s performance. This paper provides several techniques through which you can bin variables into a number of categories for the model without losing information. PROC HPBIN gives the results of descriptive analytics- missing variables, outliers, generic multiple effects, and non-linear information. This procedure can perform various binning methods – bucket binning, winsorized binning and pseudo-quantile binning with WOE (weight of evidence) and IV (information value) for grouping values, each of which will be covered in detail.
**GENERAL SYNTAX**

The following syntax is pretty basic for the HPBIN procedure:

```sas
PROC HPBIN DATA=dataset name <options>;
   CODE FILE = filename;
   ID variables;
   <INPUT> variables <options>;
   PERFORMANCE <performance options>
   TARGET variable/LEVEL=level ORDER=order;
RUN;
```

The following table provides several options that can be utilized within the HPBIN procedure:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINS_META=SAS-data-set</td>
<td>BINS-META dataset specifies the dataset which contains the mapping table information which is generated by PROC HPBIN</td>
</tr>
<tr>
<td>BUCKET</td>
<td>WINSOR</td>
</tr>
<tr>
<td>WINSORRATE=number</td>
<td>Specifies the binning method to categorize the data. The default is BUCKET</td>
</tr>
<tr>
<td>PSEUDO_QUANTILE</td>
<td>Computes the quantile result, which contains the following percentages: 0% (Min), 1%, 5%, 10%, 25% (Q1), 50% (Median), 75% (Q3), 90%, 95%, 99%, and 100% (Max)</td>
</tr>
<tr>
<td>COMPUTEQUANTILE</td>
<td>Computes the statistic result which is descriptive statistics.</td>
</tr>
<tr>
<td>DATA=SAS-data-set</td>
<td>Specifies the input SAS data set or database table. For single-machine mode, the input must be a SAS dataset.</td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses the generation of ODS outputs.</td>
</tr>
<tr>
<td>NUMBIN=integer</td>
<td>Specifies the global number of levels for the binning variables which is between 2 and 1000 inclusive. The default number is 6.</td>
</tr>
<tr>
<td>OUTPUT=SAS-data-set</td>
<td>Creates an output SAS dataset either in single-machine mode or as a database table for the distributed database in distributed mode. ***In order to avoid duplicate data for large datasets, the variables in the input dataset are not included in the output dataset.</td>
</tr>
<tr>
<td>WOE</td>
<td>This option computes the Weight of Evidence and Information Values for the input variables.</td>
</tr>
<tr>
<td>WOEADJUST=number</td>
<td>Specifies the adjustment value for WOE which is 0.0-1.0 inclusive. Default value is 0.5.</td>
</tr>
<tr>
<td>CODE FILE=filename</td>
<td>This statement generated the score code and is saved in a file and used for scoring purposes. ***If you specify multiple CODE statements, only the first one is used.</td>
</tr>
<tr>
<td>FREQ variable ;</td>
<td>The frequency of occurrence of each observation which is appeared n times where n is the value of variable observation.</td>
</tr>
<tr>
<td>ID variables ;</td>
<td>Lists the variables to transform to output dataset which are from input dataset.</td>
</tr>
</tbody>
</table>
INPUT variables < / option > ;

INPUT statement names for one or more continuous variables for binning process. The options are: NUMBIN=integer

PERFORMANCE < performance-options > ;

This statement defines the performance parameters for a multithreaded and distributed computing environment as well as controlling whether the HPBIN procedure executes in either a single-machine or distributed mode.

TARGET variable / LEVEL=level ORDER=order ;

Defines the target variable to calculate WOE and IV values. The values of level can be BINARY or NOMINAL. The values of order can be ASCENDING or DESCENDING. The default is DESCENDING.

Table 1: PROC HPBIN options and descriptions

By using the procedure we could minimize the variance of variable length using the following methods:

- **Bucket binning**: In this method, the predictor is minimized into a number of categories by displaying the numbin statement.

- **Winsorized binning**: By using this method, the outliers are discarded to obtain smooth binning categories with the winsorate option.

- **Pseudo-Quantile Binning Method**: In this method, the predictor values should be categorized into quantile values by using the pseudo-quantile option.

### DATASET INTRODUCTION

The dataset we will be using in this paper provides detailed customer information from a Portuguese banking institution. The premise behind this data is to predict the rate of success for the bank’s current telemarketing strategies.

The following is a screenshot of our input variables and observations:

Display 1: Dataset variables and observations
Our main target before applying a machine learning algorithm, would be to precisely define the continuous variables of age and duration to predict whether or not a particular client would subscribe to a term deposit (the outcome variable).

**FIRST METHOD: BUCKET BINNING**

The first method we will explore is that of bucket binning.

**MATHEMATICAL THEORY**

For bucket binning, the length of the bucket is:

\[
L = \frac{\max(x) - \min(x)}{n}
\]

where \( \max(x) = \text{maximum value of a variable} \)

\( \min(x) = \text{minimum value of a variable} \)

\( n = \text{number of buckets} \)

while the split points are:

\[
s_k = \min(x) + L * k
\]

where \( k = 1, 2, \ldots, \text{numbin} - 1 \)

**SYNTAX**

```sas
/*Bucket Binning */
proc hpbin data=bank_details numbin=5 bucket computestat
code file="/home/lakshminirmala.b/publications/binning_code.sas";
  input duration/numbin=4;
  input age;
  ods output mapping=result_bucket;
run;
```

**RESULTS**

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>N Missing</th>
<th>Mean</th>
<th>Median</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
<th>N Bins</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>41188</td>
<td>0</td>
<td>40.0240604</td>
<td>38</td>
<td>10.4212500</td>
<td>17</td>
<td>98</td>
<td>5</td>
</tr>
<tr>
<td>duration</td>
<td>41188</td>
<td>0</td>
<td>258.285010</td>
<td>180</td>
<td>259.279249</td>
<td>0</td>
<td>4918</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Binned Variable</th>
<th>Range</th>
<th>Frequency</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>BIN_age</td>
<td>age &lt; 33.2</td>
<td>13009</td>
<td>0.31584442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.2 &lt;= age &lt; 49.4</td>
<td>20124</td>
<td>0.48858891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.4 &lt;= age &lt; 65.6</td>
<td>7436</td>
<td>0.18053602</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.6 &lt;= age &lt; 81.8</td>
<td>520</td>
<td>0.01262504</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81.8 &lt;= age</td>
<td>99</td>
<td>0.00240381</td>
</tr>
<tr>
<td>duration</td>
<td>BIN_duration</td>
<td>duration &lt; 1229.5</td>
<td>40725</td>
<td>0.98875886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1229.5 &lt;= duration &lt; 2459</td>
<td>426</td>
<td>0.01058581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2459 &lt;= duration &lt; 3888.5</td>
<td>24</td>
<td>0.00058299</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3888.5 &lt;= duration</td>
<td>3</td>
<td>0.00007284</td>
</tr>
</tbody>
</table>

Error! Reference source not found.: Results of bucket binning process
SECOND METHOD: WINSORIZED BINNING

The second method we will explore is that of winsorized binning.

MATHEMATICAL THEORY

In the case of Winsorized binning, the Winsorized statistics are the first to be computed. After the minimum and maximum values are found, the split points are calculated the same way as in bucket binning.

Winsor Minimum

1. Calculate the tail count by $\text{wc} = \text{ceil}(\text{WinsorRate} \times n)$, and find the smallest $l$, such that $\sum_{i=1}^{l} c_i \geq \text{wc}$.
2. Then, calculate the left tail count by $\text{lwc} = \sum_{i=1}^{l} c_i$. When you are finished, find the next $l_i$, such that $\sum_{i=1}^{l_i} c_i \geq \text{lwc}$.
3. Considering these calculations, we can calculate Winsor Minimum as $\text{WinsorMin} = \text{min}_{i_i}$.

Winsor Maximum

1. Calculate the largest $l$, such that $\sum_{i=1}^{N} c_i \geq \text{wc}$.
2. The right tail count is calculated by $\text{rwc} = \sum_{i=1}^{N} q_i$. When you are finished, find the next $l_r$, such that $\sum_{i=1}^{l_r} c_i \geq \text{rwc}$.
3. Considering these calculations, we can calculate Winsor Maximum is $\text{WinsorMax} = \text{max}_{i_r}$.

The mean is then calculated by using the formula:

$$\text{WinsorMean} = \frac{\text{lwc} \times \text{WinsorMin} + \sum_{i=1}^{l} \text{sum}_i + \text{rwc} \times \text{WinsorMax}}{n}$$

As stated earlier, the split points are still:

$$s_k = \text{min}(x) + L \times k$$

where $k = 1, 2, ..., \text{numbin} - 1$

SYNTAX

/* Winsorized Binning */
proc hpbin data=bank_details winsor winsorrate=0.02 computestats;
  code file="/home/lakshminirmala.b/publications/binning_code.sas";
  input duration/numbin=4; input age/numbin=5;
  ods output mapping=result Winsorized;
run;

RESULTS
THIRD METHOD: PSEUDO-QUANTILE BINNING

The last method we will explore is that of pseudo-quantile binning.

MATHEMATICAL THEORY

This procedure computes 0%, 1%, 5% 10%, 25%, 50%, 75%, 90%, 95%, 99%, and 100% percentiles respectively for each binning variable. The mathematical computation of this process is as follows:

Let \( m \) be the number of nonmissing values for a variable, and let \( x_1, x_2, \ldots, x_m \) represent the ordered values of the variable. Let the \( t \)th percentile be \( y \), set \( p = \frac{t}{100} \), and let \( mp = j + g \), where \( j \) is the integer part of \( mp \) and \( g \) is the fractional part of \( mp \). Then the \( t \)th percentile is as described:

\[
y = \begin{cases} 
  x_j & \text{if } g = 0 \\
  x_{j+1} & \text{if } g > 0 
\end{cases}
\]

SYNTAX

/*Pseudo-Quantile Binning with woe and iv values*/
proc hpbin data=bank_details pseudo_quantile computehist computequantile;
    code file="/home/lakshminirmala.b/publications/binning_code.sas";
    input duration/numbin=4;  input age/numbin=5;
    ods output mapping=result_pseudo;
    ods output histogram=histo_pseudo;
run;

RESULTS
Output 3: Results of pseudo-quantile binning process

**BINNING AND WEIGHT OF EVIDENCE**

In order to check on how the data is categorized for each model, we use the WOE and IV values. The IV values are listed in order to check the quality of data:

- < 0.02: unpredictable
- 0.02 to 0.1: weak
- 0.1 to 0.3: medium
- 0.3 to 0.5: strong
- > 0.5: suspicious

We then apply these category boundaries to our next step. By following this process we discover how the variable is binned through predictive analytics:

**SYNTAX**

```plaintext
proc hpbin data=bank_details woe woeadjust=0.08
  bins_meta=result_bucket;
  target y/level=nominal;
run;
proc hpbin data=bank_details woe bins_meta=result_winsorized;
  target y/level=nominal;
run;
proc hpbin data=bank_details woe bins_meta=result_pseudo;
  target y/level=nominal;
run;
```

**RESULTS**

<table>
<thead>
<tr>
<th>Technique</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket Binning</td>
<td></td>
<td>With this method, our IV values are very low for both age and duration. Given these results, this method would not be a good choice.</td>
</tr>
</tbody>
</table>
**Winsorized Binning**

With this approach, we extract outliers for a winsorized splitting process, so the variable duration ends up having a reasonable IV value.

**Pseudo-Quantile Binning**

This approach also provides a reasonable result for binning the continuous variable of duration.

---

**FEATURES OF HPBIN PROCEDURES**

If the dataset is reading from the data source instead of SAS dataset, the input data can be read as parallel also gives the output data in parallel approach.

Data can be run either Single-machine code or Distribution code. If you run this procedure in a distribution method on a cluster of machines that distributes the data and calculated the computations. The Distribution mode can read data could be Client-Data mode, Database mode, HDFS mode, or LASR mode.

**CONCLUSION**

This paper provides a brief discussion of PROC HPBIN and its capabilities and a comparison to various methods that can be used via PROC HPBIN depending on the goal of the project.

**REFERENCES / RECOMMENDED READING**


**CONTACT INFORMATION**

Your comments and questions are valued and encouraged. Contact the author at:

Deanna Naomi Schreiber-Gregory
Data Analyst II / Research Associate