ABSTRACT

Digital analytics is no longer just about tracking the number of visits to a page or the traffic from a campaign. Now the questions are about user experience and customer journeys. To answer these questions, we need a new breed of tracking tools and new ways of analyzing the data.

The Bank of New Zealand recently implemented SAS® Customer Intelligence 360. Over the last year, we would have done proof of concepts across multiple channels, made architecture decisions (and then remade them), integrated it into all our customer-facing digital channels, brought the data into our big data platform, provided near real-time reports and got our agile development teams using it.

"One line of JavaScript" is the famous phrase spouted by people selling digital analytics platforms. So what does it take to get that one line of code working and what else is really needed? What lessons have we learned when implementing SAS® 360 Discover across our website, two internet banking platforms, and two mobile apps?

Now that the hard part is done and we can track Customer A across all our platforms, what can we do with this? We need a way to analyze the huge volumes of data, blend in our offline data, and present this information to the business user and to our data scientists. In this paper, we explore how we used the Apache Hadoop ecosystem to build out our customer data hub to arrive at a "segment of one".

INTRODUCTION

The Bank of New Zealand (BNZ) was facing a challenge common to many businesses - we wanted to know more about how our customers were interacting with us. With an increasingly higher proportion of our customers and potential customers choosing to interact with us digitally, we needed to be able to track and analyze their actions and journeys across their entire digital experience.

After evaluating various tools, and doing a proof of concept with our developers, we chose to implement SAS® Discover; part of the SAS® Customer Intelligence 360 platform. This is a cloud-based analytics tool that enables seamless data capture from multiple platforms. We can now apply rules to categorize what we collect and track new elements and goals without releasing new code. Finally, it provides a usable data model for our analytics team to use. Implementing this meant coordinating the backlog of multiple teams, getting design and governance signoffs, creating ways to identify our customers and then getting that data back into our on-premise big data platform, where we were able to join it with our existing customer analytics.

The first part of this paper will outline some of the challenges and lessons we learned in our journey to deliver this to the business. The second part will cover a brief intro to Hadoop and how we used it as a big data engine for digital analytics.

BACKGROUND

BNZ is one of New Zealand's largest banks. We have over 150 Stores and 30 Partners Centers nationwide. We have over 5,000 staff, including a digital team of over 250. Over 80% of our customer interactions are through our digital channels; this could be transferring money using one of our mobile applications, changing home loan repayments in our Internet Banking application, creating new users in Internet Banking for Business, researching term deposit rates or applying for a credit card on our unauthenticated website.
Within BNZ Digital, we think of our digital platforms as split into three key channels (Figure 1). The unauthenticated website (often referred to as www) which acts as an information portal and has information on our products, sales capability as well as help and support content. For our personal banking customers, we have Internet Banking, which is the browser-based client, as well as mobile apps where our customers can check balances, transact on their accounts and service the products they hold. Similarly, for our business customers we have Internet Banking for Business, a browser-based banking application, as well as our mobile business banking applications.

![Figure 1. Digital Channels](image)

We have a strong digital analytics and insights team, which over the last five years has built out various ways to track and analyse what our users are doing. However, knowing where to go to get the data to answer a business question is starting to require more and more domain knowledge. We needed to simplify the way we were collecting data because our existing methods were highly siloed (Figure 2). Some platforms used Google Analytics but this only provided aggregated data. Other channels had bespoke logging, but any change required a code change in the application and a production release. Some parts of the applications were also using old legacy logging tables. To help us simplify our data collection, we decided to implement SAS® Discover.

![Figure 2. Example Customer Journey](image)
ANALYTICS IN THE CLOUD

IMPLEMENTATION

To successfully implement SAS® Discover we needed to get it into our three browser-based platforms and four mobile apps. So, we set up a cross functional team comprising the skills we needed from each of the channels. This allowed us to quickly implement the tool in the same way across multiple platforms, and established a core set of people with the technical skill to support it going forward. However, trying to coordinate with five different teams, each with its own set of priorities proved impractical. We would need a new plan if we wanted to start getting immediate value out of the tool, so we split the implementation into two phases:

1. Phase 1 - Insert the Javascript and SDK into each channel. This was a small task that could be added to the backlog of each of the teams with no other dependencies.

2. Phase 2
 2.1. Track customer identities. This involved creating a new hashed identifier for our customers, then developing a method to send that identity to SAS® Discover when a customer logged in on any channel.
 2.2. Pull SAS® Discover from the cloud to our on-premise Cloudera® Hadoop cluster.
 2.3. Reverse the hash so we could use the identities.
 2.4. Build a visual analytics suite.

RISK VS THE CLOUD

As in any large company, and in particular a bank, everything needs to be managed within an accepted level of risk. One of the first requirements was to be able to capture as much data as possible. Only tracking what we had initially identified would lead to large data gaps and no ability to create baselines in the future. Our initial approach was to specifically exclude personally identifiable information (names, addresses, etc.) from being captured. This made it easier to ensure the project stayed within approved risk parameters.

We also wanted to collect form data, leverage existing logging, as well as be prepared for circumstances we hadn’t yet considered. SAS® Discover has built-in functionality to turn data capture on or off, or mask data at both a form and a field level, but it doesn’t trigger this based on the value. This meant we would need to identify every form on the website and field in our applications and determine if it could potentially contain one of the excluded data types. The sheer size of the analysis to identify all potential forms and fields as well as the ongoing maintenance to ensure future collection quickly proved unfeasible.

SAS® Discover encrypts data in motion as well as at rest and uses a series of the AWS tools, such as automated key rotation. There is also a strong logical data separation between our data and other client’s, as well as strong user controls from SAS who has administrative access. As the final data was integrated back into our on-premise data stores we were also able to limit the length of time that the data was kept in the cloud. With these controls in place from SAS and a review by our risk and security teams we can now collect all the data that we need using our cloud-based analytics tool.

FINAL DEPLOYMENT
With resources finally secured and risk signoff obtained, we successfully deployed SAS® Discover. The final design can be seen in Figure 3:

1. All five of our channels are connected to SAS® Discover. We are able to track our users as they move between desktop channels or even use multiple devices at the same time.
2. Business users are able to create rules to group pages and screens together, and determine goals and business processes they want to track.
3. The raw data flows back into the BNZ ecosystem using Informatica® via the SAS® Discover REST API. New data is available on an hourly basis with any extra business rules applied.
4. Business users can use a suite of visual analytics in Tableau® to answer the majority of their questions.
5. The analytics team is also able to use the raw data to generate insights or build advanced models.

Figure 3. Design

HADOOP IS NOT A THING

Most analysts and business users are used to a traditional set of analytics tools (See Figure 4). We are used to homogenous tools that provide us with:

1. A data storage mechanism: usually some sort of table made of columns containing a type of data
2. A way to import new data into the table
3. A way to manipulate the data, either through a visual editor or code
4. A way to view the output in a table or graph
5. A way to export data
To use those tools, analysts need to learn one tool, what it can and cannot do and how to manipulate the data. When first using Hadoop, most users assume it will be the same, only more powerful and able to analyse vast quantities of different types of data.

They are inevitably wrong. Hadoop is, in fact, an ecosystem of open source projects that fit loosely together and look something more like Figure 5. The core of Hadoop is made up of two projects: HDFS and MapReduce. These two core components started this type of distributed processing. Let’s revisit our processing steps in a Hadoop centric way:

1. Data Storage Mechanism. Data is stored in a distributed file system called HDFS. Unlike traditional analytics tools it works like a folder on your computer and can take any type of file. The most common files for the analyst to load are CSVs or text files, but HDFS can support unstructured tests such as log files, JSONs or images. It also has some extra formats for storing data. In particular, Parquet files form the closest analogy to the traditional table, they are highly typed and the columns have specific names. Parquet also uses column instead of row based storage, which makes it ideal for the big wide tables that you often get in big data.

2. Importing Data. Hadoop has many ways to import data: Sqoop for reading and writing from relational databases, Flume for dealing with streams, and WebHDFS for files via a REST API. While some of these tools can perform minor transformations, they are only really good at landing the original data into HDFS.

3. When it comes to data manipulation, there is plenty of choice. MapReduce is a java based language that uses HDFS’s native functionality. Hive has been built on this to provide a familiar SQL interface. Impala uses the table metadata from Hive but performs much faster, thanks to its in-memory engine. Finally, Spark is a vastly powerful data engine that has Python and R APIs for Data Science and Machine Learning. Learning each of these, their strengths and limitations and how to combine them into an analytics pipeline is much more complex than traditional tools.

4. A way to output the data. Cloudera Hue provides a quick way to interact directly with the cluster, but lacks much of the visual output we are used to from tools like SAS®. Thankfully the SQL engines provide connectors to modern visualization tools like Tableau®.

5. Due to the massive nature of much of the data on Hadoop, it’s often best to just leave the data there.
The final step of fully integrating SAS® Discover as a key data source for digital data was deploying the data model to Hadoop. Because of the separation between file storage and interpreter, it is primarily a “write once” infrastructure. This means that if you want to update a row, you need to pick up all the files in the folder where your row might be, process the update and then rewrite the entire dataset. There are a few key issues with this:

- Extremely processing intensive
- High potential for data loss
As a result, our data architecture for SAS® Discover looks like

Figure 6. Our Hadoop deployment is separated into logical zones: a raw zone where we initially land data and a production zone where we can land optimised data. To get from SAS® Discover to our business user, we follow these steps:

1. Informatica® retrieves new data from the SAS® Discover REST API

 1.1. Check for new data

 1.2. Informatica retrieves s3 bucket address and single use credentials for each new file

 1.3. Download the fact tables in chunks and appends to existing data

 1.4. Download the full identity map and appends a new partition in a time series

2. Informatica® writes the optimised data model to production

 2.1. Create Event Streams. Most of the key event streams in SAS® Discover have two parts: one stream records the event at the start, when a person lands on a page. The other is processed later to describe the entire event, loading time and time spent on page. To get a complete view of the stream we need to join the data from both tables. However, the starting fact arrives up to four hours before the ending fact. Being able to react quickly is increasingly important, so we need a way to temporarily add the partial facts to the output stream. To do this, we make use of partitions. This allows us to maintain a small set of transitory data that is co-located in the same ‘table’ as the final data. On each run, the process picks up any new start facts, the partition with the partial facts and any new end fact. It then writes any completed facts to the relevant monthly partition and any un-joined facts overwrite the previous partial partition (See Figure 7).
2.2. Create Identity Map. The identity map is much easier. Informatica picks up the most recent partition of the identity tables, joins them together and then uses the near real-time data feed from the Operational Data Store to decode the hashed customer identities. SAS Discover allows us to have multiple levels of identities, so we need to flatten the identity table to allow one-to-one joining with our time series and enrichment tables.

3. Data Engineering team creates the Enrichment tables. Now that we have an hourly feed of customer data, we need to add customer attributes such as segment, digital activation, or product holding. Our analytics team and data engineers use the other data within the raw zone to start to fill out the 360° degree view of our users.

Figure 7. Partition Based Update Strategy

CONCLUSION

What started out with promises of a 'single line of javascript' has now been fleshed out into an end-to-end data pipeline. Our business users can define new metrics and goals, the data is then captured, processed and joined to our enterprise data. They can then self-serve using a suite of visual analytics, freeing up our analyst to focus on delivering high value insights to the business. Our next steps are to reverse the data flow and start to use this data to inform the experience of our end user by providing targeted content and personalised digital journeys.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ryan Packer
Bank of New Zealand
ryan_packer@bnz.co.nz
https://www.linkedin.com/in/ryanspacker/