
1

Paper SAS2022-2018

Implementing Privacy Protection-Compliant SAS® Aggregate Reports
Leonid Batkhan, PhD, SAS Institute Inc.

ABSTRACT
Personal data protection in published reports is an important human right, and is required by US Federal
Law, European Union General Data Protection Regulation, and many other jurisdictions. This paper
highlights the importance of producing privacy protection-compliant reports, discusses aspects of
potential privacy breaches, and suggests a robust algorithm for producing well-protected aggregate
reports. This paper walks through the complex logic of an enhanced complementary suppression
process, and demonstrates SAS® coding techniques to implement and automatically generate aggregate
tabular reports compliant with privacy protection law. The result is a set of SAS macros ready for use in
any reporting organization responsible for compliance with privacy protection.

INTRODUCTION
Personally Identifiable Information (PII) is any data that could potentially identify specific individuals and
their sensitive or confidential information. Such sensitive data can include health insurance information,
medical and epidemiological records, student education records, demographic information such as age,
ethnicity, race, gender, education, political or religious beliefs, financial and credit information,
geographical location, criminal history, and so on.

According to the law, Personally Identifiable Information must not be disclosed in any published reports.
However, it is easy to overlook an unintended disclosure of PII, especially when reports are generated
automatically or semi-automatically via dynamic data queries. Even for aggregate reports there is a high
potential for such a disclosure.

Suppose that we produce an aggregate crosstabular report on a small demographic group, and we count
distribution by students’ grade and gender. It is highly probable that we can get the count to equal 1 for
some cells in the report, which will unequivocally identify a person and thus disclose their education
record (grade). Even if the count is not equal to 1, but is equal to some other small number, there is still a
risk of possible deducing or disaggregating PII from related reports on that small demographic group.

Therefore, in order to protect PII from being figured out, an aggregate public demographic report must
have small count numbers somehow concealed, obscured, masked, or suppressed. But how much of the
data suppression is good enough in order to protect privacy and at the same time not have it overdone
and make the report useless?

GROUPING AS DATA MASKING
One way of obscuring small count numbers to protect people’s privacy is to combine them into a larger
group and call it OTHER.

For example, when producing pie charts with PROC GCHART, the other= option can be used to specify
a cutoff number. If a category count (or percent) is less or equal to that of a cutoff number, then that count
is put in the OTHER category. However, this might not protect small numbers if only a count of 1 falls into
the OTHER category. Also, this approach can be problematic as it does not show all the values of the
categorical variable and might encourage inaccurate interpretation.

In addition, while protecting PII, this method distorts the composition of the report group as it can put
different demographic characteristics into OTHER category for different report groups, thus making it
impossible to compare them side by side.

2

PRIMARY DATA SUPPRESSION
Primary data suppression is based on the values of the cells in a tabular aggregate report. The criteria for
the primary data suppression can be expressed as 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 where 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 is the suppression cutoff
number. All cell values 𝑐𝑐𝑖𝑖𝑖𝑖 less or equal than 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 must be suppressed.

When a row or a column contains just a single suppressed small number and in addition to frequencies
(or counts), the report also displays totals by rows and/or columns, primary data suppression that is
based on the number value itself is not enough for privacy protection as the single suppressed number
can be calculated as total minus the sum of the other reported (not suppressed) numbers in that row or
column.

The following figures illustrate how easy it is to reveal data that is subjected to the primary suppression
only (this example uses 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 5). Let’s compare report outputs before and after the primary
suppression.

Figure 1. Cross-Frequency Report before Suppression

Figure 2. Cross-Frequency Report after Primary Suppression

3

As you can see, it is very easy to unveil the suppressed cells by simply subtracting from the row or
column totals all the displayed counts in that row or column.

Different jurisdictions have various guidelines for assigning the value for 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 depending on the
sensitivity of the reported data. These guidelines range from 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 2 as the absolute minimum
(suppressing only 1s), to 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 5 for more sensitive PII, and to as high as 15.

However, no matter how large a number is assigned for 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, there is no guarantee that there won’t be a
single suppressed cell in a row or column that would allow for an easy unraveling of all the suppressed
cells.

COMPLEMENTARY DATA SUPPRESSION
To exclude the possibility of deducing suppressed data, primary data suppression needs to be
complemented by secondary data suppression, when a second small number in a row or column is also
suppressed. What further complicates the matter is that as long as we suppress that second number in a
row, that suppressed cell might become the only suppressed cell across the column. In such a case, data
can be derived from the column total and other numbers in that column. To make sure that we truly
protect privacy and eliminate the possibility of unraveling suppressed data like we solve a Sudoku puzzle,
we need to complement secondary suppression with tertiary data suppression of that cell in that column.
We refer to those secondary, tertiary, and so on, data suppressions as complementary data
suppressions.

Depending on the cardinality of classification variables and data combinations, the number of those
complementary suppression iterations can vary.

Also, it is worthwhile noting that the complementary suppression might produce different solutions (end
results) depending on which classification variable you start with, that is whether you start with rows or
columns. If you do it both ways and the results are different, you have a choice of selecting a better
solution. However, the criteria of “a better solution” is somewhat nontrivial. It can be the solution that has
the least number of suppressed cells; the solution that produces the least sum of all suppressed counts,
as it has less “wasteful” count suppression, which makes the report more informative; or it could be
something else.

ZEROS: TO SUPPRESS OR NOT TO SUPPRESS?
An interesting question is what to do with cell counts that are equal to zero. While zero technically is
considered a “small number” (it’s the smallest of all counts), it’s a unique number in that it reveals
nobody’s personal information.

Although there might be an interpretation that zeros are not suitable for primary suppression, but are fair
game for complementary suppression, I don’t think it makes a lot of sense as that would make
suppression inconsistent and dependent on the data composition. Besides, suppressing zeros and then
counting them as complementary might actually aid in deducing values of other cells in a row or column
that it is supposed to protect. Therefore, we will treat zeros as not to be suppressed in either primary or
complementary suppression. The reason is that zero counts represent very useful and unique information
about the data distribution without compromising anybody’s confidentiality, while other “small numbers”
present the risk of revealing PII.

With zeros “disqualified” from being suppressed, the primary data suppression criteria can be rewritten
as: all cell values 𝑐𝑐𝑖𝑖𝑖𝑖 between 1 and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, inclusive, must be suppressed.

ENHANCED COMPLEMENTARY SUPPRESSION
However, as if the iterative complementary suppression is not complex enough, Kristian Lønø (Statistics
Norway) brought to my attention a special case that renders that seemingly invincible PII protection
algorithm vulnerable.

4

Imagine a situation where all (two or more) suppressed cells in a row/column of a report have the original
(before suppression) counts of 1. Then, even with the complementary suppression applied over all rows
and columns, if Total minus all unsuppressed counts in a row/column equals the number of suppressed
cells in that row/column, it is obvious to conclude that all the suppressed counts in that row/column are
equal to 1.

As long as we decipher that, it becomes easy to unscramble the rest of the suppressed counts in a
tabular report.

This is illustrated in the following example. Let’s say, our report output before suppression looks like the
report shown in Figure 3.

Figure 3. Cross-Frequency Report before Suppression

After we apply iterative complementary suppression, we get the following tabular aggregate report in
which every row and column has at least two cells suppressed (complementary suppression criteria has
been satisfied).

Figure 4. Cross-frequency Report after Complementary Suppression

5

As you can see, the column Age Group 100+ has 4 cells suppressed. However, look at the displayed
numbers in that column. If you subtract the remaining unsuppressed cell with the count of 7 from the
column total of 11, you get 11-7=4. This means that the sum of 4 suppressed cells is 4, which
unequivocally reveals that each suppressed number in this column is equal to 1 (don’t forget, we are
dealing with counts that are natural numbers, zero excluded). After we figure that out, it becomes quite
easy to crack the rest of the suppressed counts by subtracting the sum of the unsuppressed numbers in
each row from the row totals.

Hence, we need to augment the complementary suppression criteria with one more constraint: the sum of
all unsuppressed cells in each row/column subtracted from the row/column total should not equal the
number of the suppressed cells. If it is equal, then one more suppression iteration is warranted for that
row/column to conceal the fact that they are all equal to 1.

To simplify implementation of this requirement, we can approach this problem from a different, “insider”
perspective since we have access to the pre-suppression data. Instead of relying on surrounding data to
determine that all suppressed cells in a given row/column are equal to 1 (as the row/column total minus
the sum of the unsuppressed cells equals the number of the suppressed cells), we can derive that from
the sum and the number of the suppressed cells themselves, by keeping track of them. Here is my
reasoning. If suppressed cell counts in a given row/column are all equal to 1, it means that their sum
divided by their number is equal to 1. The converse is true as well for the counts. If the sum of the
positive integer numbers in a set divided by their cardinality is equal to 1, then all the numbers in the set
are equal to 1. But isn’t the sum of several quantities divided by the number of these quantities called an
average? Of course it is. Then we can say that the average of the suppressed cells in a row/column must
be greater than 1 in order not to breach privacy protection. Let’s call it the enhanced complementary
suppression criteria.

The enhanced complementary suppression criteria then can be written as follows. For each row and each
column of a tabular aggregate report, the averages of the suppressed cells should be greater than 1,
otherwise one more cell in that row/column must be suppressed. Here are the conditions that require
another suppression iteration.

𝑎𝑎𝑖𝑖 =
1
𝑛𝑛
�𝑠𝑠𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

≤ 1

or

𝑎𝑎𝑗𝑗 =
1
𝑚𝑚
�𝑠𝑠𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1

In these formulas, i is a row number, j is a column number, 𝑠𝑠𝑖𝑖𝑖𝑖 is as a suppressed cell original (hidden)
value, 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑗𝑗 are the averages of the suppressed counts in each row and each column accordingly,
and n and m are the numbers of the suppressed counts in each row and each column.

An additional benefit of using this criteria that is expressed through averages is that it can be easily
strengthened by requiring further suppression iterations when this average is not greater than any real
number ≥1. We can modify this criteria to be 𝑎𝑎𝑖𝑖 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 where 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 is any real number ≥1.
For example, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 1.5 indicates that if an average of the suppressed cells in a row/column is less or
equal to 1.5, then we need to suppress one more cell in that row/column. This is not an unreasonable
requirement. If a row has two (and complementary) suppressed cell values 1 and 2, and we are not
satisfied with these two values being the only ones suppressed, then 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 1.5 will do just that. It
initiates another suppression iteration to suppress one more cell in that row because the average of 1 and
2 is equal (1+2)/2 = 1.5.

6

In other words, depending on the sensitivity of reported data, the assigned value for 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 could range
from 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 1 as the absolute minimum identifying “all 1s” for additional complementary suppression, to
some larger real number (for example, 1.3, 1.5, 2, 2.5, and so on.) to flag a cluster of small counts in a
row/column as a group for additional complementary suppression.

TOTALS: TO SUPPRESS OR NOT TO SUPPRESS
While totals by rows and columns are inherently different from other report cells, they are just as capable
of revealing PII. Therefore, counts representing totals for rows and columns of a tabular report must be
suppressed by the same rules as the other report cells. That is, the row and column totals should be
suppressed based on all three suppression criteria: primary suppression, complementary suppression,
and enhanced complementary suppression.

SUPPRESSION ALGORITHM
Here is the summary algorithm combining the above primary, complementary, and enhanced
complementary suppression criteria for implementing small numbers of cell suppression using SAS for a
two-dimensional aggregate tabular report:

1. Use PROC MEANS to calculate count sums and output results in a data table. There will be two
class variables: class-var-1 and class-var-2. Class variable values for the totals will have blank
values.

2. Sort the data table from step 1 by class-var-1, count. That will order counts from smallest to
largest within each value of the class-var-1 (including blanks for totals).

3. Read through the sorted data table from step 2 by class-var-1 group and do the following:

o Replace all count values within [1, 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚] interval with a special numeric missing value, .S.
This is the primary suppression. All primary suppression “suspects” are “eliminated” during
this first iteration.

o If there is already a single suppressed value in the group, replace the current count value that
is the next largest to the first suppressed value with .S. This is the complementary
suppression.

o Calculate the average 𝑎𝑎𝑖𝑖 of the original values for the previously suppressed cells. If 𝑎𝑎𝑖𝑖 ≤
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, replace the current count value with .S. This is enhanced complementary suppression.

o If there are no cells that are eligible for primary suppression, the whole suppression process
stops after this step without suppressing any data.

4. Repeat steps 2 and 3 with class-var-2 variable instead of class-var-1. This is an iteration of the
complementary suppression.

5. Keep repeating steps 2 and 3 while swapping class-var-1 and class-var-2 variables until step 3
produces no suppressed values.

6. Use PROC REPORT to write the results with .S values formatted to *.

7

SAS CODE TO IMPLEMENT SUPPRESSION
Let’s suppose that our original, unsuppressed tabular aggregate report that was produced by PROC
REPORT directly out of our data, looks like the one shown in Figure 5.

Figure 5. Original Report without Suppression

The full sample of the SAS code implementing primary, complementary, and enhanced complementary
suppression algorithms described above is presented in the Appendix section at the end of this paper.
This code produces the following final report as shown in Figure 6.

Figure 6. Final Report after Suppression

Here are the highlights of the suppression code.

The centerpiece of this code is the suppress macro:

%macro suppress(dsname=,supclass=);

 proc sort data=&dsname;

8

 by &supclass count;
 run;

 %let sup_flag = 0;
 data &dsname (drop=_supn_ _supsum_ avg_flg);
 set &dsname;
 by &supclass count;

 if first.&supclass then
 do; /* initialize number and sum of suppressed cells */
 supn = 0;
 supsum = 0;
 end;

 /* enhanced suppression flag */
 if (_supn_ ne 0) then avg_flg = (_supsum_/_supn_ <= &sup_avg);

 /* apply suppression criteria */
 if (count>0) and (count<=&sup_max or _supn_=1 or avg_flg) then
 do; /* suppress cell */
 count = .S;
 call symputx('sup_flag',1);
 end;

 if (count eq .S) then
 do; /* increment number and sum of suppressed cells */
 supn + 1;
 supsum + cnt_orig;
 end;
 run;

%mend suppress;

This macro performs a single iteration of the suppression algorithm. First, the source data table is sorted
by &supclass count. This arranges the data set in a way where for each value of the &supclass
counts are sorted from smallest to largest.

Then we loop through the source data set applying all three suppression criteria, and if at least one count
has been suppressed, we set flag macro variable sup_flag = 1.

I highlighted (in colors) the pieces of the code that relate to the three suppression criteria:

Blue – primary suppression.

Green – complementary suppression (_supn_ = 0; and _supn_ + 1; are also used in the
enhanced complementary suppression).

Red – enhanced complementary suppression.

The code snippet responsible for the suppression iterations across different dimensions is the
iterate_suppression macro:

%macro iterate_suppression (class1=, class2=);

 %let nextclass = &class1;
 %do %while (&sup_flag); /* iterate suppression across dimension */

 %suppress(dsname=people_sup, supclass=&nextclass);

9

 /* flip dimension */
 %if &nextclass eq &class1
 %then %let nextclass = &class2;
 %else %let nextclass = &class1;

 %end;

%mend iterate_suppression;

It iteratively invokes the suppress macro and swaps the class variables with each iteration until the
suppress macro stops producing any suppressed counts, that is when sup_flag macro variable
becomes 0.

Suppression constraint parameters 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 are assigned as macro variables:

%let sup_max = 5; /* suppression constraint based on value */
%let sup_avg = 1; /* suppression constraint based on average */

We also assign class variable names and format names to SAS macro variables:

%let tclass1 = race;
%let tclass2 = ageg;
%let f1 = $racef;
%let f2 = $agegf;

Then we calculate counts using PROC MEANS:
proc means data=people_roster noprint completetypes;
 format &tclass1 &f1.. &tclass2 &f2..;
 class &tclass1 &tclass2 / preloadfmt order=data;
 var count;
 output out=people_sup sum(count)=count sum(count)=cnt_orig;
run;

We use the COMPLETETYPES option along with the PRELOADFMT option to produce all combinations of
the class variable values even when they are not present in the source data. That provides consistency of
the data composition.

We create two duplicate variables representing counts using sum statistic, count, and cnt_orig, as
we will be manipulating the first one (count) by assigning .S (suppressed value) while preserving the
second one (cnt_orig) for use in the enhanced suppression.

Note that all SAS statistical procedures are smart enough not to calculate requested identical statistics
twice. They calculate them once and just replicate the second variable. It is a more efficient way of
creating duplicate columns than having an additional DATA step.

After that, we invoke the iterate_suppression macro that drives the whole suppression process:

%let sup_flag = 1;
%iterate_suppression (class1=&tclass1, class2=&tclass2);

And finally, when all the counts are suppressed according to our algorithm, we produce report using
PROC REPORT where .S special missing values are formatted as *.

To better understand and visualize the process, I encourage you to visit my blog where you can download
a variation of this suppression code that produces not just final report, but all the interim data sets and
interim report outputs before and after each suppression iteration.

https://blogs.sas.com/content/sgf/2016/04/13/automatic-data-suppression-in-sas-reports/

10

REMAINING CHALLENGES
While I believe that the algorithm and its SAS code implementation reliably protects PII in aggregated
tabular reports by suppressing small counts, there are still challenges and unsolved problems waiting to
be addressed:

• There is no solid mathematical foundation for optimizing the suppression constraint parameters
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 in order to optimize data suppression (minimize over-suppressing report data
without sacrificing PII protection). At this point, these parameters are mostly set heuristically, if
not arbitrarily.

• The suggested suppression algorithm and SAS implementation might produce different solutions
(report outputs) depending on which classification variable you start with. This is another
opportunity to optimize the suppression algorithm based on the report’s cell values composition
and the starting suppression dimension.

• Whether to keep zeros immune from suppression throughout all the suppression iterations or
dynamically “sacrifice” zeros by revoking their “special protection status” when complementary
suppression encroaches on rather large counts that might significantly reduce report usefulness.

REFERENCES
Committee on Privacy and Confidentiality, American Statistical Association. 2011. “Laws and Regulations
about Privacy and Confidentiality.” Available at http://community.amstat.org/cpc/lawsregulations.

European Commission. 2016. “Data protection: Rules for the protection of personal data inside and
outside the EU.” Available at http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf.

Batkhan, Leonid. 2016. “Automatic data suppression in SAS reports.” Available at
https://blogs.sas.com/content/sgf/2016/04/13/automatic-data-suppression-in-sas-reports/.

ACKNOWLEDGEMENTS
I would like to thank Kristian Lønø of Statistics Norway for being an inspiration for this paper, and for his
valuable suggestions and assistance in code testing. I would also like to thank Kita Garrido of SAS
Institute Inc. for thoroughly reviewing this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Leonid Batkhan
SAS Institute Inc.
919-531-0880
Leonid.Batkhan@sas.com
https://blogs.sas.com/content/author/leonidbatkhan

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://community.amstat.org/cpc/lawsregulations
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
https://blogs.sas.com/content/sgf/2016/04/13/automatic-data-suppression-in-sas-reports/
https://blogs.sas.com/content/author/leonidbatkhan

11

APPENDIX: SAS CODE TO IMPLEMENT SMALL COUNT SUPPRESSION
/* SAS sample program to accompany SGF-2018 paper by Leonid Batkhan,
 "Implementing Privacy Protection-Compliant SAS Aggregate Reports."
 This program illustrates data suppression in SAS tabular reports.
*/

/* Read in actual data, recode age to age group, ageg. */
/* Pre-aggregated sample. In reality you would use person-level data. */
data people_roster;
 length ageg $1;
 input ageg $ race $ count;
 datalines;
1 A 14
1 B 17
1 H 9
1 M 15
1 W 18
2 A 11
2 B 8
2 H 4
2 M 12
2 W 13
3 M 7
3 B 6
3 H 24
3 W 19
4 A 10
4 B 16
4 H 19
4 W 20
;

%let sup_max = 5; /* suppression constraint based on value */
%let sup_avg = 1; /* suppression constraint based on average */

/* assign other macro variables */
%let tclass1 = race;
%let tclass2 = ageg;
%let tlabel1 = Race;
%let tlabel2 = Age Group;
%let f1 = $racef;
%let f2 = $agegf;

%let hbcolor = edf2f9; /* header background color */
%let hfcolor = 3872ac; /* header font color */

/* define user formats */
proc format;
 value $racef (notsorted)
 'M' = 'Martian'
 'A' = 'Asian'
 'B' = 'Black'
 'H' = 'Hispanic'

12

 'W' = 'White'
 ' ' = 'Total'
 ;
 value $agegf (notsorted)
 '1' = '<18'
 '2' = '19-64'
 '3' = '65-99'
 '4' = '100+'
 ' ' = 'Total'
 ;
 value cntf
 .S = '*'
 . = '0'
 other = [comma18.0]
 ;
 value $totbgf
 'Total' = "&hbcolor"
 ;
run;

/* suppression macro definition */
%macro suppress(dsname=,supclass=);

 proc sort data=&dsname;
 by &supclass count;
 run;

 %let sup_flag = 0;
 data &dsname (drop=_supn_ _supsum_ avg_flg);
 set &dsname;
 by &supclass count;

 if first.&supclass then
 do; /* initialize number and sum of suppressed cells */
 supn = 0;
 supsum = 0;
 end;

 /* enhanced suppression flag */
 if (_supn_ ne 0) then avg_flg = (_supsum_/_supn_ <= &sup_avg);

 /* apply suppression criteria */
 if (count>0) and (count<=&sup_max or _supn_=1 or avg_flg) then
 do; /* suppress cell */
 count = .S;
 call symputx('sup_flag',1);
 end;

 if (count eq .S) then
 do; /* increment number and sum of suppressed cells */
 supn + 1;
 supsum + cnt_orig;
 end;
 run;

%mend suppress;

13

/* suppression iteration macro definition */
%macro iterate_suppression (class1=, class2=);

 %let nextclass = &class1;
 %do %while (&sup_flag); /* iterate suppression across dimension */

 %suppress(dsname=people_sup, supclass=&nextclass);

 /* flip dimension */
 %if &nextclass eq &class1
 %then %let nextclass = &class2;
 %else %let nextclass = &class1;

 %end;

%mend iterate_suppression;

/* -- */
/* START PROCESSING */
/* -- */

/* get count summary by class variables */
proc means data=people_roster noprint completetypes;
 format &tclass1 &f1.. &tclass2 &f2..;
 class &tclass1 &tclass2 / preloadfmt order=data;
 var count;
 output out=people_sup sum(count)=count sum(count)=cnt_orig;
run;

%let sup_flag = 1;
%iterate_suppression (class1=&tclass1, class2=&tclass2);

/* generate output */
options nocenter pagesize=max;
title1 'People by Race and Age Group';
ods html style=styles.seaside path='C:\temp' file='report.html';

 /* generate footnote */
%let ftnote=;
data _null_;
 set people_sup (where=(count eq .S));
 call symput('ftnote',"j=L h=10pt '*) The data is suppressed to protect
privacy'");
 stop;
run;
footnote &ftnote;

/* get number of columns for table report */
data _null_;
 set people_sup (where=(_type_ eq 1)) end=e;

14

 totcol + 1;
 if e then call symputx('totcol',totcol + 2); *<-- Column number for Total;
run;
%put ***&totcol***;

/* produce tabular report */
proc report data=people_sup nowd split='*' spanrows missing
 style(header)=[font_size=11pt just=C color=#&hfcolor]
 style(column)=[font_size=10pt just=L];
 column &tclass1 count,&tclass2 count=tot;
 define &tclass1 / group order=data "&tlabel1" f=&f1.. preloadfmt
style(column)=header[vjust=m cellwidth=1.5in color=#&hfcolor];
 define &tclass2 / across order=data "&tlabel2" f=&f2.. preloadfmt
style(header)=[background=$totbgf.];;
 define count / display 'People Reported' style(column)=[just=R
cellwidth=1in] f=cntf.;
 define tot / sum noprint;

 compute &tclass1;
 if &tclass1 eq ' ' then
 do;
 call define(_col_,'style',"style=[just=C font_size=11pt
color=#&hfcolor]");
 call define(_row_,'style',"style=[font_weight=bold
background=#&hbcolor]");
 end;
 endcomp;

 compute &tclass2;
 call define("_c&totcol._",'style',"style=[font_weight=bold just=R
background=#&hbcolor]");
 endcomp;
run;

ods html close;

	Abstract
	Introduction
	Grouping as data Masking
	Primary data suppression
	Complementary data suppression
	zeros: to suppress or not to suppress?
	Enhanced complementary suppression
	TOTALS: TO SUPPRESS OR NOT TO SUPPRESS
	Suppression algorithm
	sas code to implement suppression
	remaining challenges
	references
	AcknowleDgements
	contact information
	Appendix: SAS CODE TO IMPLEMENT SMALL COUNT SUPPRESSION

