Paper SAS2000-2018

Just Enough SAS® Cloud Analytic Services: CAS Actions for SAS® Visual
Analytics Report Developers

Michael Drutar, SA S Institute Inc.

ABSTRACT

SAS Visual Analyticsincludesall of the point-and-click functionality required to load data, manage data,
and perform other back-end worknecessary to make Visual Analytics visualizations efficient and
effective. But there are a handful of critical tasks that are sometimesjust easier to do with a few lines of
code, especially if your end goal isto automate that that process. While there isa substantial and
growing codebase for CAS Actionsand SAS Viya procedures, Visual Analyticsreport developersneed to
focuson the creation and implementation of reports. What we need isjust enough CAS code to simplify
the back-end work. Thispaper presentssome of the most common, most useful CAS actionsthat can be
run from any SAS Viya powered code window, including the SAS Studio interface. These bare bones
code examplesinclude: loading a data setto a CAS server, using CAS actionsto transform data from a
“‘wide” to a “tall” structure, and other formatting operationsthat make data reporting-ready. The paper
demonstrates, using minimal code, how the scored output of a Viya-based model can be lifted into CAS
and made ready for Visual Analyticsreporting. Finally, the paper describes exactly how coded back-end
actionsaffect the Visual Analytics platform, including how to verify that back-end processesare working
and ensure Visual Analytics settingsfor refresh and automated data re -load are set to take advantage of
the automated back-end processesimplemented in code.

INTRODUCTION

The SAS Viya platform offers many waysfor a user to programmatically interact with CAS. These include
connections such python and API calls. Thispaper willfocuson using SAS Studio’sweb programming
interface, which isinstalled alongside SAS Visual Analytics. The ability to interact with the SAS platform
via a streamlined, completely web-based interface issomething that SAS usershaslooked forward to for
years. And now that SAS Viya hasdelivered it, all that'sneeded isfor the usersto know “just enough
CAS”.

CONENCTING AND LOADING DATA TO CAS

Before importing data of any type into CAS, the programmer must first connectto CAS and create a
sesson. Thisisdone with a simple CAS statement. Thisissimilarto how a user would connectto the
SAS metadata server within a SAS 9 .x install. However, with CAS the connection can easily be enabled
with only one simple line of code:

cas mysession;

After submitting the code above, the user can view the log to ensure that they are now successfully
connected to CAS. Now that a CAS session hasbeen established the user hasopened the door to SAS
Viya, fromwhich they can accessall of the powerful features CAS hasto offer. The first step after
establishing a connection to SAS Viyaisloading a data set into CAS.

In most cases, any data thatisloaded to CAS must be loaded into a CASLIB. CASLIBsare spaces
within SAS Viya that operate like SAS metadata libraries. They can be assigned, authorized, and

designed. One of the many advantages cadibsoffer SAS Viya programmersisthe ability to assign all
the cadibsavailable to them with one single line of code:

caslib ALL assign;

Upon submitting the statement above, the programmer can see the caslibsthat have been made
available to them:

+ Libraries
=1 %
4 &8 ity Libraries
b # CASUSER
b % FORMATS
b 5 MODELS
I & PUBLIC
b % SAMPLES
b SR sASHELP
b & WORK

Figure 1. CASLIBS Availableinthe Current CAS Session

With the CAS session created and cadibsassigned, the programmer isnow ready to load data to the
CAS server. While a variety of methods exist that allow usersto load data to CAS, this paper will focus
on loading data via the SAS DATA step. By using thismethod, the programmer can take advantage of all
the data set optionsthat they are accustomed to when working with SAS data.

One important element of SAS Viya isthat whena CAS data set isloaded, it functionslike data sets
within the SAS worklibrary. Meaning thatifa data set isloaded to CAS, itwill only persist for the duration
of the current CAS session. Soifthe user clearstheir CAS session, or logsoff of SAS Studio, the data
that wasloaded to CAS will be deleted.

Therefore, if the intent of loading the data to CAS isto make it available to SAS Visual Analytics for
reporting, an extra DATA step option must be added: the PROMOTE option. Any data set that isloaded
to CAS using thisoption will persist beyond the current CAS session, meaning that the data will be
available for use in SAS Visual Analytics.

In the following example, the programmer wishesto load the SASHELP data set “BASEBALL” to CAS for
use in SAS Visual Analytics. To achieve this, the programmer submitsa DAT A step with the library
“PUBLIC” in the data statement along with the (PROMOTE=yes) data option:

Data PUBLIC.BASEBALL (PROMOTE=yes) ;
set sashelp.BASEBRALL;
run;

After submitting this code, the developer can see that the data set “BASEBALL” hasbeen made available
in the CASLIB PUBLIC:

+ Libraries

& %

4 &B Iy Libraries
b % CASUSER
I €% FORMATS
b 2 MODELS

4 2 PUBLIC

b F7 BASEEALL

b &2 SAMPLES
I 8B SASHELP
b S WORK

Figure 2. CAS Data Set BASEBALL Is Now Available in the PUBLIC CASLIB

A print procedure can now be executed to display the CAS data set PUBLIC.BASEBALL:

Obs | Player's Tearmn =t the Times =t Hits Horne Runs REls | ‘Walks ‘ears in the Career | Career Career | Career | Career | Career | League =t Division at Positior
MHare End of 1336 Batin in Runsin in in in Major | Times at Hits Home Runs REls | Walks | the End of the End of in 1986
19386 | 1386 1986 1986 1986 1386 Leagues B=t Run= 1986 1986
1 | Allanson, Cleveland 293 68 1 30 28 14 1 283 == 1 30 28 14 American East c
Andy
2 | Ashby, Alan Houston eR) 21 7 24 fes) 29 14 2440 835 =] 321 414 375 Mational fest C
2 | Davis, Alan Seattle 473 130 18 B T2 7B 3 1624 457 63 249 prdils) 263 | American st 1B
4 | Dawson, Montreal 405 144 20 =) e 27 1 G622 1675 2258 a2 g 264 | Mational East RF
Andre
5 | =alanaga, hontreal 3z1 87 10 =] 42 30 4 386 101 12 45 45 33 | Mational East 1B
Andres
B | Griffin, Dakland S04 169 4 74 &1 25 1 4402 132 19 501 fela) 194 | American iest sg
Alfredo
7 | Mewman, Al hontreal 185 37 1 23 g 21 4 219 42 1 30 a 24 | Mational East ZB
& | Salazar, kansas City 293 73 o 249 24 7 3 09 102 o 41 37 12 American iest 55
Argenis
9 | Thomas, Atlanta 222 21] 26 32 2 2 291 86 & 2 24 2 Mational st £E
Andres
10 | Thornton, Cleveland 401 9z 17 49 66 65 13 5206 1332 253 7eq a0 B66 American East oH
Andre
A1 | Trammell, Cretroit a74 159 24 107 75 54 0 4631 1200 ao oz 504 422 | American East £E
Alan
12 | Trewino, Alex | Los Angeles 202 a3 4 31 26 27 9 1876 467 15 192 186 161 | Mational iest C

Figure 3. PROC PRINT Output of CAS Data Set PUBLIC.BASEBALL

Thissimple SAS DATA step program, isall that isneeded to load data to CAS. The PROMOTE option
ensuresthat it willnot only be available in SAS Visual Analytics, but will also still be in the PUBLIC
CASLIB in other, future CAS sessions.

One of the main benefits of loading data to CAS via the DATA step isthat any data set that can be placed
in the SET statement can be used asa CAS data source. Data imported into Base SAS via the PROC
IMPORT procedure or a SAS/ACCESS engine are all valid candidatesfor being placed in the SET
statement for a CAS data load via the DATA step.

REFRESHING DATA

If a CAS data set needsto be refreshed (or reloaded) the data must first be removed from CAS. Thiscan
also be done with a familiar piece of SAS code: the PROC DATASETS procedure. Therefore, if the CAS
data set BASEBALL needed to be reloaded. An additional step isneeded to first remove the data from
the CASLIB “PUBLIC”. The full code to remove and reload the CAS BASEBALL data set isbelow:

Proc Datasets 1ib=PUBLIC;
delete BASEBALL;
run;

Data PUBLIC.BASEBALL (PROMOTE=yes)
set sashelp.BASERALL;
run;

The log isshown below:

73 PROC DATASETS LIB=PUBLIC;
74 delete BASEBALL;
75 U

MOTE: Deleting PUBLIC.BASEBALL (memtype=DATA).
MOTE: Cloud Analytic Services dropped table BASEBALL from caslib Public.

MOTE: PROCEDURE DATASETS used (Total process time):

real time @.06 seconds

cpu time @.87 seconds
76 Data PUBLIC.BASEBALL{PROMOTE=yes);
77 set cashelp. BASEBALL;
78 FUnG

MOTE: There were 322 observations read from the data set SASHELP.BASEBALL.
WOTE: The data set FUBLIC.BASEBALL has 322 obserwvatlions and 24 wvarlables.
MOTE: The data set BASEBALL was promoted.
MOTE: DATA statement used {Total process time):

real time B8] seconds

cpu time B.08 seconds

Figure 4. Log Output from Reloading the CAS Data Set BASEBALL

It isimportant to remember to remove any CAS data set before attempting to reload it. Otherwise, the
program will return errors.

FORMATTING OPERATIONS TO CREATE REPORT-READY DATA

In most cases, source data and output from analytics proceduresdo not come in a ‘report ready’ fomat.
Variablescan have cryptic labels and numeric variables might be not formatted correctly. The image
below showsa Visual Analyticscrosstab built off the CAS data set “BASEBALL” that wasloaded in the
previous section:

Runswe Salary in 1988 R

Division atthe End of 1984 & League atthe End of 1984 & 1987 Salaryin $ Thousands Runein 19864

American 4541777 4974
East

Mational 34913234 3574

American 29720147 4787
West

Mational 30697.334 3477

Figure 5. Visual Analytics Crosstab Using CAS Data Set BASEBALL

Thisreport should not be considered “reportready”. The column labelsare redundant asthey each
contain a reference to the year the data wascollected. Also, ‘1986’ isdeclared at in the tabitself. Hence,
the only column which should reference the year in itsname should be the “1987 Salary in $ Thousands’
column. Also, the numeric formatting needsto be adjusted to have the “1987 Salary in $ Thousands’
column in dollar format and the ‘Runsin 1986’ in the comma format.

Whileitispossible to make these adjustments within the Visual Analyticsreport itself, another, simpler
method would be to apply these changesto the CAS table itself. Thereby globally resolving the
formatting issuesand making the fix available to everyone who usesthe data. Thissavesreport
developerstime asthey will not have change the labelsand formats within Visual Analyticseach time a
new report iscreated.

One of the best thingsabout the SAS Viya platform ishow well it workswith the traditional SAS
programming methods. SAS programmerscan apply several of the same data operationsto CAS data
that they apply to SAS data. In the example below, the programmer applieslabel and format statements
to the original DATA step from the previous section of this paper:

Proc Datasets|lib=PUBLIC;
delete BASEBALL;
run;

data PUBLIC.BASEBALL (promote=yes);
set sashelp.baseball;
label League="League"
Division = "Division"
nRuns="Total Runs'
Salary="1987 Salary";
format nRunscomma8. Salary dollar18.0;
run;

First, the CAS data set BASEBALL must be removed from the PUBLIC library via the PROC DATASETS
statement. After which the data set isadded backinto CAS, but with the “report ready” labelsand
numeric formatsapplied. Now all thatisneeded isa simple data refresh within SAS Visual Analytics.
The changesto the data set are automatically reflected in the crosstab:

Runswe Salaryin 1988 P+

League A Ciwision A 12987 Salary Total Rune
East Fd5 618 4 974
American
West E29, 720 4 787
East £34.913 3,576
Maticnal
West £30,697 3,477

Figure 6. Visual Analytics Crosstab Using CAS Data Set BASEBALL with ‘Report Ready’
Formatting

ThisVisual Analytics crosstab looks much better and isnow ‘report ready’. The changeshave been
applied atthe CAS table rather than at the report level. Hence, making future report building quicker and
easier.

SENDING VIYA-BASED MODEL SCORED OUTPUT DATA TO VISUAL ANALYTICS

SAS Viya comeswith a wide range of statistical modelsand advanced analytical capabilities. While
these are powerful toolsto use, their value canbe made even greater if their data setscan be sentto
SAS Visual Analyticsfor reporting. Asshown thusfar in this paper, any data set can be loaded and
promoted to CAS and therefore made available asa data source within SAS Visual Analytics reports.
Thisprinciple also appliesto resultsfrom viya-based modeling procedures.

To demonstrate thisan example from support.sas.com, which usesthe BASEBALL will be shown. The
example leveragesthe Viya-based REGSELECT procedure, using the variable logsalary asitstarget.
The models inputsare the baseball players various performance metrics. For more information about
the model, see

(http://documentation.sas.com/?docsetld=webeditorre f&docsetTarget=pOty95p387a761nlpiSdnowdm7m
.htmé&docsetVersion=3.71&locale=en).

Upon completing the example, the REGSELECT procedure producesthe table casuser.Regselect_stats:

Table: | CASUSERREGSELECT_STATS ~ view: | Columnnames ~ | E3 B 3 B Triter: (none)
Columns ® Total rows: 322 Total columns: 4 Rows 1-100 = =M
¥ Selectall predicted residual cookd leverage
4 @ predicted 10 6.2248061115 0.7182593473 0.0032659376 0.083218127
4 @ residual 11 6.6370115927 -0.388692161 0.0024610007 0.024387800
4 @ cookd 12 54857224375 0.7535722735 0.0033745764 0.03294239°
¢ @ leverage 13 57619571532 05479611251 0.0020399853 0.03273005¢
14 53517600216 1.1993203134 0.0090897163 0.03626996:
15 6.006339253 052570093 00028192964 0.05615875!
16 4.6310283242 . . 0.03231574¢
17 7351324763 -0.638461734 0.0094404475 0.09741
18 4.8147045167 03500214572 0.0003897509 0.0454698;
19 6.2860367635 . . 0.10960488¢

Figure 7. View of the CAS Output Table casuser.Regselect_stats.

http://documentation.sas.com/?docsetId=webeditorref&docsetTarget=p0ty95p387a761n1pi5dnow9m7rm.htm&docsetVersion=3.71&locale=en
http://documentation.sas.com/?docsetId=webeditorref&docsetTarget=p0ty95p387a761n1pi5dnow9m7rm.htm&docsetVersion=3.71&locale=en

The output from the model isalready a CAS data set in the CASLIB ‘casuser’. However, the data set has

not been PROMOTED and therefore isnot available in SAS Visual Analytics. Asshown in the first
section of thispaper, a smple DATA step with a promote statement can create a CAS data set that is
available for reporting in SAS Visual Analytics. In the example below, the table specified in the set
statement of the DATA step isitself, a CAS table.

Consequently, the programmer submitsthe following code:

data PUBLIC.Regselect_stats(promote=yes);

set casuser.regselect_stats;

run;

After which the data set isavailable in SAS Visual Analyticsfor reporting. By loading the data to the
PUBLIC library and promoting it, it isready for use by the entire suite of SAS Visual Analyticsobjects
(scatter plots, bar charts, and so on.) The same table from figure 7 isdisplayed below asa list object:

regeelect output i+

Predicted Value & Residual Influen:::t::il:tz Leverage
45948903545 -0.3753824651 0.00092773845 00376787254

4. 61946542024 -0.371158%94 0.00134848161 00541243723
46310283242 00323157453
4.6370113034 00854140734

4. 6639409872 0.04452841883

4. 6803053144 . . 0.0408325394

4, 699848385 -0.145971493 0.0001445347 0.04346433013

4. 7107665928 0.0402180887

4. 72890546874 -0.480410445 0.00186514464 00454985529

4. 7479001832 -0.43041207 0001192285 0.03468908435

4. 76068946122 -0.155419424 00001764779 0.0414799444

Figure 7. View of the CAS Output Table PUBLIC.Regselect_stats as a Visual Analytics List Table

Thisexample above canbe taken one step further. The Linear Regression taskin SAS Studio offersthe
ability to view the code that SAS Studio createsasthe taskis generated. Thisgivesthe programmer the
ability to automate the process of running the model and sending the resultsto SAS Visual Analytics.

From the code window in the Linear Regression task, the programmer can see the generated PROC
REGSELECT code. From thisit can be seen that (asexpected) the input CAS data set is
PUBLIC.BASEBALL and the output CAS data set isCASUSER.Regselect_Stats.

ods noproctitle;

proc regselect|data=FUBLIC.BASEBALL;
class League Division,
model logSalary=League Division nAtBat nHits nHome nRuns nRBI nBE YrMajor
CratBat CeHite CrbHome CrBlpe CeRbi CrBBE nQOuts nAssts nError f clb wif;
outputout=casuser.Regselect stats|p=predicted r=residual cookd=cookd
h=leverage;

run;

Figure 8. Code Generated from the Linear Regression Task in SAS Studio

Using what hasbeen learned throughout this paper, the developer can now write a simple program that
loadsthe source data to CAS, runs PROC REGSELECT procedure, and makesthe output from the
procedure to available in SAS Visual Analytics. The code below demonstratesthe complete end to end
process:

casmysession;
cadib_ALL_assign;

proc datasetslib=PUBLIC;
delete BASEBALL;
run;

data PUBLIC.BASEBALL;
set sashelp.baseball;
label League="League"
Division ="Division"
nRuns="Total Runs'
Salary="1987 Salary";
format nRunscomma8. Salary dollar18.0;
run;

odsnoproctitle;

proc regselect data=PUBLIC.BASEBALL,
classLeague Division;
model logSalary=League Division nAtBat nHitsnHome nRunsnRBI nBB YrMajor
CrAtBat CrHits CrHome CrRuns CrRbi CrBB nOuts nAssts nError / clb vif;
output out=casuser.Regselect_stats p=predicted r=residual cookd=cookd
h=leverage;

run;

proc datasetslib=PUBLIC;
delete Regselect_stats;
run;

data PUBLIC.Regselect_stats(Promote=yes);

set casuser.regselect_stats;

run;

The processabove showsthat with just a few linesof SAS code, a robust processcan easily be created
to load data, run Viya-based modelsand deliver their output data setsto SAS Visual Analytics.

TRANPSOING DATA

As with most projectsthere are timeswhen data must be modified to getitinto the format needed for
analysis. One ofthe most common data manipulation tasks is transposing data from a WIDE to a TALL
format. Considerthe BASEBALL data set example from the previous example. Suppose the
programmer needed to quicky create a ‘baseball card’ style report that displaysthe Career Statisticsfor
the player Billy Beane. The data in itscurrent, wide format isdisplayed below:

Name Team nAtBat | nHits nHome | nRuns | nREBI | nBE | ¥YrMajor | CrAtBat | CrHits | CrHome CrRuns | CrRbi | CrBE | Leaguw
Beane, Billy | Minneapolis 182 jei=} 2 20 15 11 2 201 42 3 20 16 11 Americ

Figure 9. Billy Bean Data in Wide Format

In order to do this, the data needsto be transposed in a TALL data set format. Nomally, might require
the use of SAS arrays. Fortunately, the CAS Transpose Action allowsthe programmer to create the
needed TALL data set in just a few lines. Hence, the programmer can submit the code:

proc cas,
transpose.transpose /
table={name="baseball", cadib="PUBLIC",where="name=Beane, Billy"?}
attributes={{name="name", label="name"}}
transpose={"CrAtBat", "CrBB", "CrHits', "CrHome", "CrRbi", "CrRuns"}
name="Statistic"
id={"Name"}
casOut={name="Billy_Beane_Career_Stats’, cadib="PUBLIC", replace=true} ;
run;

The following TALL data set iscreated in the PUBLIC CASLIB:

Billy Beane Career Stats in 1986

Obs | Statistic | _LABEL_ Beane, Billy
1 | CratBat | Career Times at Bat 201
2 | CrBB Career Walks 11
2 | CrHits Career Hits g2
4 | CrHome | Career Home Runs 3
5 | CrRbi Career RBIs 16
E CrRuns Career Runs 20

Figure 10.Billy Bean Data in TALL Format

Looking at thisoutput more closely, in just one CAS action the following happened:

e The CAS table PUBLIC.BASEBALL wasselected asthe action’sinput

e The table wasfiltered by the player name “Beane, Billy”

e The sixvariables"CrAtBat", "CrBB", "CrHits", "CrHome", "CrRbi", "CrRuns" where selected for
transposition

e The newly created ‘group’ variable was named “Statistic”
e The Transpose ID variable “Name” was selected
o Anew CAS data set in the library PUBLIC was created containing the output.

Attempting to create the above output without SAS Viya action might have required multiple steps. Ina
world where promptly delivered resultsare highly valued, the ability to not have to manually transpose
data, but also feed the output directly backinto CAS isone of the handiest toolsthat a developer can

have.

Now all thatisneeded isa smple DATA step to make a new version of the Billy_Beane_Career_Stats
data set and promote it in the CAS PUBLIC library:

proc datasetslib=public;
delete Billy_Bean Baseball Card;
run;

DATA PUBLIC.Billy_Bean_Baseball Card(promote=yes);
set PUBLIC.Billy_Beane_ Career_Stats,

label label ="Statistics";

run;

Thanksto the CAS Transpose Action and the DATA step PROMOTE option, the “Baseball Card” report
can now be created:

Basekall Card Report o+

Billy Bean - 1984 Baseball Card

Statistics 4 Beaneg, Billy
Career Hits 42
Career Home Runs 3
Career RBls 14
Career Runs 20
Career Times at Bat 201
Career Walks 11

10

Figure 11. Visual Analytics Report “Baseball Card Report” Built on CAS Data in TALL Format
VERIFY THAT BACK-END PROCESSES ARE WORKING

Thusfar, everythingin thispaper hasfocused on the ability to load CAS data, manipulate CAS data and
capture output from CAS modelsfor further analysisin Visual Analytics. However, ensuring that
everything isrunning correctly in the SAS Viya environment isequally asimportant. The SAS Viya
system comeswith several featuresthat can ensure that reporting data is always available and secure.
Thissection coversuseful CAS actionsthat can help to ensure thatthe SAS Viya environmentis
operating asexpected. The examples below assume that a CAS session hasbeen established.

CASLIB PERMISSIONS

One question that every SAS administrator hasbeen asked is, “Who hasaccessto that that data library?”
In a SAS9 environment the answer to this question usually required bringing up the SAS Management
Console and looking at pemissionson a SAS Metadata library. This can be quite tedious, asthere could
be several metadata objects that the administrator would have to look through to find the exact library in
guestion. SAS Viya completely simplifiesthe processof deciphering who hasaccessto a particular
CASLIB. The accessControl action set providesa simple, programmatic view into a CASLIB’s
permissions.

The example code below demonstrates how to display the variouslevels of accessto the CASLIB
‘MODELS’;

proc cas,
accessControl.listAcsData /

cadib="MODELS" listType="direct";
run;

The returned output isdisplayed below:

Res=sults from access Contral listAcs Data

Origin | Twpe FPermis=sion Idertity Type | Identity Idertity Description | Crestion Timestamp | Crestor
Direct &rant | CreataTable Group SAS5 Adminstrators 1.8347114E15 | sasdemo
Direct | rant DeleteSource | Group SA5 Adminstrators 1.8347114E15 | zasdemo
Direct Zrant | Readinfo Group ® 1.8347114E15 | sasdemo
Direct rant | Select Group i 1.8347114E15 | zasdemo

Figure 12. Output from the accessControl.listAcsData CAS Action

From here it can be seen that only SAS Administratorshave elevated privileges (CreateTable and
DeleteSource) on the CASLIB ‘MODELS'. The SAS administrator isthereby able to quicky and
accurately answer the question about CASLIB permissions by submitting only 4 linesof code in SAS
Studio. Thisaction can also be run by userswho are not SAS Administrators.

USER GROUPS

When the output from the accessControl action is viewed, the next question isusually: “What groupsis
my user ID in?”. Fortunately, there isalso a CAS actionfor quicky determining this. From the SAS
Studio window, a user can enter the following:

proc cas,

11

builtins.userinfo ;

run;
From this, the log window in SAS studio displaysa concise list of the groupsthat the user belongsto in
the environment:

73 proc cas;
74 builtins.userinfo ;
75 run;

MOTE: Active Session now MYSES.
{userInfo={userId=sasdemo,providediame=sasdemo,uniqueld=sasdemo,groups={sas,openid,Esrillsers,5ASAdministrators,sasdemousers’?
riame=

OAuth/External PAM,anonymous=FALSE,hostAccount=TRUE,guest=FALSE}}

75

Figure 13. Output from the builtins.userinfo CAS Action

From here the user (sasdemo in thiscase) can see lots of information surrounding their I1D; particularly
the groupsthat they belong to. Thisisa very useful, self-service action that can allow a user to source
information about their user ID without having to find an administrator.

LOADING DATA FROM SASHDAT:

When a Visual Analyticsreportisbeing actively used in a production environment, itisexpected that the
report’ssource data should alwaysbe available. One of the benefits SAS Viya offersisthe ability to load
datainto CAS Memory from a SASHDAT file; which isa special file that be used asa CAS data set input.
Once a CAS data set isloaded using a SASHDAT file asitssource, that CAS data can be used to build
Visual Analyticsreporting. However, the biggest advantage to using SASHDAT sourced CAS data asthe
source for production reporting isin the event that the CAS server isrestarted, the CAS data might not be
available. But atthistime, if a production report isrequested, CAS will automatically reload the CAS data
from the SASHDAT file on the fly. Thison demand, auto-reload feature makesthe SASHDAT file a
requirement for production reporting. The stepsbelow show how to create a SASHDAT file and use itas
a CAS data set’ssource.

Suppose that all the needed data workon the CAS data set “BASEBALL” hasbeen completed. This
includesall labeling and numeric fomatting described earlier in thispaper. Since the data setisnow
deemed completed, a second finalized data set (called BASEBALL_PROD) isto be created.

A SASHDAT file must be generated from a CAS table thatisalready in existence. Since, the

BASEBALL PROD data must contain all the labeling and formatting that was placed in the CAS data set
BASEBALL; BASEBALL can be used to generate a SASHDAT table. Thisisdone via a SAVE Statement
in the CASUTIL procedure. The code below createsthe SASHDAT file BASEBALL PROD: the CAS data
set BASEBALL to the CASLIB PUBLIC asthe file BASEBALL_PROD.sashdat:

proc casutil;
save incadib="PUBLIC" casdata="BASEBALL"
outcaslib="PUBLIC" replace casout="BASEBALL_PROD" replace;
run;

The SAS Log isshown below:
73

proc casutil;
MOTE: The UUID 'd8c9485a-8971-1b48-8db%-615478b239d5" 1s connected using session MYSES.
74 save incaslib="PUBLIC" casdata="BASEBALL"
75 outcaslib="PUBLIC" replace casout="BASEBALL FROD";
MOTE: Cloud Bnalytic Serwvices sawved the file BASEBALL_PROD.sashdat in caslib Public.
MOTE: The Cloud Analytic Serwvices server processed the request in 8.815%22 seconds.
76 run;

Figure 14.Log Output from the CASUTIL Procedure SAVE Statement

Now thatthe SASHDAT file hasbeen generated, the production CAS data set “BASEBALL_PROD” can
be created from it. Thisisalso donewith the CASUTIL procedure. The code below loadsthe sashdat
BASEBALL PROD.sashdattothe CAS data set BASEBALL PROD in the PUBLIC library. It also
PROMOTES the data set to make it available in SAS Visual Analytics:

proc casutil incaslib="Public" outcaslib="PUBLIC";
load casdata="BASEBALL_PROD.sashdat" casout="BASEBALL_ PROD" promote;
run;

The SAS Log isshown below:

73 proc casutil incaslib="Public" outcaslib="PUBLIC",;

NOTE: The UUID 'd&8c9485a-8971-1b48-8db9-615478b23%9d5"' is connected using session MYSES.

74 load casdata="BASEBALL_PROD.sashdat™ casout="BASEBALL_PROD" promote;

NOTE: Cloud Analytic Serwvices made the file BASEBALL PROD.sashdat awailable as table BASEBALL_PROD in caslib PUBLIC.
NOTE: The Cloud Bnalytic Serwices serwver processed the request in 8.881788 seconds.

75 run;

Figure 15. Log Output from the CASUTIL Procedure LOAD Statement

The log confimsthat the data set hasbeen loaded using BASEBALL PROD.sashdat asitsdata source.
A view fromthe SAS Environment Manager Data view also confisthe data source:

SAS® Environment Manager - Manage Environment: Search
Data
wiew: | [Loadedtables A Filterby: | Table A £2 baseball_prod <] 5]
Table State Likrary Source Takle Name Row Count Column Count B:
BASERBALL_PRGD [] Fublic BASEBALL_PROD.sashdat 322 24

Figure 16. SAS Environment Manager Data View

Now thatthe BASEBALL PROD data set hasbeen loaded and usesa SASHDAT file asitsdata source,
it essentially will always be available in CAS (even after a CAS restart). Thisfinal SASHDAT step isvery
useful in ensuring that production reporting will constantly be available to users. The SAS Administrator

should no longer be concerned with trying to load certain data setsafter a CAS server restart.

CONCLUSION

The Central Analytic Server on SAS Viya isthe most powerful analytical reporting solution on the market.
And while it might sesem complex at first, the tasks that most Visual Analyticsreport developersneed to
accomplish can be broken down to just a few linesof code. Be it loading CAS data setsusing the well-
known SAS DATA step or deciphering a global CASLIB's pemissions, these tasks can be easily
achieved from the SAS Studio window. Assaid in thispaper’sintroduction, the ability to interact with the
SAS platform via a streamlined, completely web-based interface is something that SAS usershaslooked
forward to for years. And now that SAS Viya hasdelivered it, all that'sneeded isfor the usersto know
“‘just enough CAS”.

REFERENCES

SAS Ingtitute Inc. 2018. “SAS® Studio 3.71: Task Reference Guide — Example: Linear Regression of

Baseball Data” Accessed February 2018
http://go.documentation.sas.com/?cdcld=pgmcdc&cdcVersion=8.11&docsetld=caspg&docsetTarget=title

page.htm&locale=en

http://go.documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=caspg&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=caspg&docsetTarget=titlepage.htm&locale=en

SAS Institute Inc. 2018 “SAS® Viya® Action Programming / “SAS Viya System Programming Guide”
Accessed February 2018
http://go.documentation.sas.com/?cdcld=pamcdc&cdcVersion=8.11&docsetld=caspa&docsetTarget=title
page.htmé&locale=en

CONTACT INFORMATION
Your commentsand questions are valued and encouraged. Contact the author at:

Michael Drutar
SAS Institute Inc.
Michael.Drutar@sas.com

SAS and all other SAS Institute Inc. product or service namesare registered trademarks or trademarks of
SAS Ingtitute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

14

http://go.documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=caspg&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=caspg&docsetTarget=titlepage.htm&locale=en

