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ABSTRACT  

One of the key questions a data scientist asks when interpreting a predictive model is “How do the model 
inputs work?” Variable importance rankings are helpful for identifying the strongest drivers, but these 
rankings provide no insight into the functional relationship between the drivers and the model’s 
predictions.  

Partial dependence (PD) and individual conditional expectation (ICE) plots are visual, model-agnostic 
techniques that depict the functional relationships between one or more input variables and the 
predictions of a black-box model. For example, a PD plot can show whether estimated car price increases 
linearly with horsepower or whether the relationship is another type, such as a step function, curvilinear, 
and so on. ICE plots enable data scientists to drill much deeper to explore individual differences and 
identify subgroups and interactions between model inputs.  

This paper shows how PD and ICE plots can be used to gain insight from and compare machine learning 
models, particularly so-called “black-box” algorithms such as random forest, neural network, and gradient 
boosting. It also discusses limitations of PD plots and offers recommendations about how to generate 
scalable plots for big data. The paper includes SAS® code for both types of plots.  

INTRODUCTION  

After assessing a model’s accuracy, data scientists often want to know how the model’s predictions vary 
depending on the values of the inputs. This knowledge can help data scientists identify flaws in their 
models, select from among competing models, and explain their models to stakeholders such as 
consulting clients, credit card applicants, and medical patients.   

In the days of small data sets and relatively simple models, interpreting predictive models was fairly 
straightforward. For example, the coefficients from a linear regression model indicate the strength and 
direction of the relationship between a model input and the model’s predictions. Small decision trees are 
also easily understood by data analysts. But although so-called “black box” machine learning algorithms 
such as neural network, gradient boosting, and random forest are capable of highly accurate predictions, 
their inner workings can be very difficult to grasp because these algorithms are enormously complex.  

Partial dependence (PD) plots (Friedman 2001) and individual conditional expectation (ICE) plots 
(Goldstein et al. 2014) are highly visual, model-agnostic tools that can help you interpret modern machine 
learning models. PD plots show how values of model inputs affect the model’s predictions. ICE plots, 
which are closely related to PD plots, let you drill down further to identify individual differences, interesting 
subgroups, and interactions among model variables. 

PD and ICE are post hoc methods of model interpretation, meaning that they do not reveal a model’s 
inner workings; rather, they show how the model behaves in response to changing inputs. The difference 
is similar to the difference between looking under the hood of a sports car and observing how the car 
responds when you operate the driver’s controls. Nonetheless, PD and ICE plots are popular and highly 
visual tools for obtaining a working understanding of increasingly complicated machine learning models. 

PARTIAL DEPENDENCE PLOTS 

A partial dependence plot depicts the functional relationship between a small number of model inputs 
(generally one or two inputs) and a model’s predictions. PD plots are thus named because they show how 
the model’s predictions partially depend on values of the input variables of interest.  
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ONE-WAY PD PLOTS 

The simplest PD plots are one-way plots, which show how a model’s predictions depend on a single input 
to the model. For example, Figure 1 shows the relationship between horsepower and predicted MSRP 
(manufacturer’s suggested retail price in US dollars) for automobile models. 

 
Figure 1. Partial Dependence Plot for Horsepower 

Here the model’s estimate of MSRP is a step function: MSRP tends to increase with horsepower, but 
there are sharp increases in expected MSRP for certain values of horsepower. There is a price premium 
of approximately $20,000 for cars that have more than 285 horsepower, and an additional (and even 
greater) premium of about $40,000 for cars that have about 400 horsepower. Expected MSRP levels off 
for higher values of horsepower.  

PD plots can be used with any supervised learning algorithm. The following block of code uses a decision 
tree to predict MSRP. As is often true, the model includes several other inputs such as engine size, 
number of cylinders, and origin. Each value shown in a PD plot represents a prediction for a particular 
value of horsepower while averaging out the effects of the other (complementary) model variables.  

 

   proc hpsplit data=sashelp.cars leafsize = 10; 

 target MSRP / level = interval;  

 input horsepower engineSize length cylinders weight  

      MPG_highway MPG_city wheelbase / level = int; 

 input make driveTrain type / level = nominal;  

 code file="treeCode.sas"; 

   run;  

 

The next block calls the %PDFunction macro (described in detail in a later section) to compute the partial 
dependence function for horsepower:  

 

   %PDFunction( 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars=horsepower,  

 otherIntervalInputs=engineSize length cylinders weight  

        MPG_highway MPG_city wheelbase, 

 otherClassInputs=origin make driveTrain type, 

 scorecodeFile=treeCode.sas, 

 outPD=partialDependence 

   ); 



3 

Finally, the next block calls the SGPLOT procedure to plot the partial dependence function, which is 
shown as a series plot in Figure 1:  

 

   proc sgplot data=partialDependence; 

 series x = horsepower y = AvgYHat;    

   run; 

   quit; 

 

You can create PD plots for model inputs of both interval and classification variables. Figure 2 shows the 
partial dependence for the nominal (classification) variable Make. 

 

 
Figure 2. Partial Dependence Function for Make 

As you might expect, predicted MSRP is highest for luxury brands such as Acura, Mercedes-Benz, and 
Porsche. The following code generates the bar chart:  

 

   %PDFunction( 

 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars=make,  

 otherIntervalInputs=horsepower engineSize length cylinders  

        weight MPG_highway MPG_city wheelbase, 

 otherClassInputs=origin driveTrain type, 

 scorecodeFile=treeCode.sas, 

      outPD=partialDependence 

 

    ); 

 

 

 

   proc sgplot data=partialDependence; 

 vbar  make / response = AvgYHat categoryorder = respdesc;    

   run; 

   quit; 

 



4 

TWO-WAY PD PLOTS 

Because one-way PD plots display one variable at a time, they are valid only if the variable of interest 
does not interact strongly with other model inputs. However, interactions are common in actual practice; 
in these cases, you can use higher-order (such as two- and three-way) partial dependence plots to check 
for interactions among specific model variables. For example, Figure 3 shows an interaction between the 
model variables Horsepower and Origin:  

 
Figure 3. Partial Dependence for Horsepower by Origin 

Figure 3 shows a separate PD function for each region (Asia, Europe, and USA). Consistent with the one-
way plot for Horsepower in Figure 1, MSRP increases monotonically with horsepower for each region. But 
the two-way plot shows that powerful European cars (more than 350 horsepower) have much higher 
expected prices than their American counterparts, an interaction that was not apparent in the one-way 
plot.  

Two-way PD plots are computed much like one-way PD plots. The difference is that two-way plots 
compute average prediction for each combination of values of the plot variables. Here are the 
%PDFunction and PROC SGPLOT calls that generate Figure 3:  

  

   %PDFunction( 

 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars=horsepower origin,  

 otherIntervalInputs=engineSize length cylinders weight  

        MPG_highway MPG_city wheelbase, 

 otherClassInputs=make driveTrain type, 

 scorecodeFile=treeCode.sas, 

      outPD=partialDependence  

 

   ); 

 

   proc sgplot data=partialDependence; 

 series x = horsepower y = AvgYHat / group = origin;    

   run; 

   quit; 
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Figure 3 plots an interval input by a nominal input. Figure 4 is a scatter plot for two interval variables, 
Horsepower and MPG_City. PD plots of two interval variables are typically gradient scatter plots, 
response surfaces, or 3-D plots. 

 

 
Figure 4. Partial Dependence for Horsepower by MPG_City 

No interaction is apparent among the plot variables in Figure 4: MSRP appears to increase with 
horsepower regardless of the car’s mileage estimate. The following %PDFunction macro call and PROC 
SGPLOT code generate the PD plot:  

 

   %PDFunction( 

 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars= horsepower MPG_City,  

 otherIntervalInputs= engineSize cylinders MPG_highway wheelbase  

       length weight, 

 otherClassInputs= make origin type driveTrain, 

 scorecodeFile=treeCode.sas, 

      outPD=partialDependence  

 

    ); 

 

 

   proc sgplot data=partialDependence; 

 scatter x = horsepower y = MPG_City /  

        colorresponse = avgYHat  

        colormodel=(blue green orange red)   

        markerattrs=(symbol=CircleFilled size=10)   ;   

   run; 

   quit; 
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COMPUTING THE PD FUNCTION 

To create a traditional PD plot (such as Figure 1), you must first compute the PD function by using the 
following steps. These steps are illustrated using hypothetical data in Figure 5 for a one-way plot.  

1. Find the unique values of the plot variable (for a one-way plot) or variables (for a higher-order plot) in 
the training set and identify the complementary variables.  

2. Create one replicate of the training set for each unique value of the plot variable, and fix the value of 
the plot variable. For complementary variables, use the same values as in the training set. 

3. Score each replicate by using your predictive model.  

4. Compute the average predicted value within each replicate.   

 
Figure 5. Computing the PD Function 
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As you can see from the last step in Figure 5, each value of the PD function represents an average 
prediction for a particular value of the plot variable. A simpler way to depict the functional relationship 
between the horsepower and MSRP variables might be to fix the values of the complementary variables 
at their average (or modal) values. But PD functions have the advantage that each value reflects the 
actual joint distribution of the complementary variables in the training set.  

THE %PDFUNCTION MACRO 

The following %PDFunction macro is called in the examples:  

   %macro PDfunction( 

 dataset=, 

 target=, 

 PDVars=, 

 otherIntervalInputs=, 

 otherClassInputs=, 

 scoreCodeFile=, 

      outPD=  

    ); 

 

 %let PDVar1 = %sysfunc(scan(&PDVars,1));  

 %let PDVar2 = %sysfunc(scan(&PDVars,2));  

 

 %let numPDVars = 1; 

 %if &PDVar2 ne %str() %then %let numPDVars = 2;  

 

 /*Obtain the unique values of the PD variable */ 

 proc summary data = &dataset.; 

  class &PDVar1. &PDVar2.; 

  output out=uniqueXs  

        %if &numPDVars = 1 %then  

      %do;  

           (where=(_type_ = 1)) 

       %end;  

        %if &numPDVars = 2 %then  

      %do;  

           (where=(_type_ = 3)) 

       %end;  

     ; 

 run;  

 

 /*Create data set of complementary Xs */ 

 data complementaryXs; 

  set &dataset(keep= &otherIntervalInputs. &otherClassInputs.); 

  obsID = _n_;  

 run;  

 

 /*For every observation in uniqueXs, read in each observation  

        from complementaryXs */ 

 data replicates; 

   set uniqueXs (drop=_type_ _freq_); 

   do i=1 to n;    

     set complementaryXs point=i nobs=n; 

  %include "&scoreCodeFile."; 

     output; 

   end; 

 run; 
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 /*Compute average yHat by replicate*/ 

 proc summary data = replicates; 

  class &PDVar1. &PDVar2.; 

  output out=&outPD. 

        %if &numPDVars = 1 %then  

      %do;  

           (where=(_type_ = 1)) 

       %end;  

        %if &numPDVars = 2 %then  

      %do;  

           (where=(_type_ = 3)) 

       %end;  

         mean(p_&target.) = AvgYHat; 

 run;  

 

   %mend PDFunction; 

 

The macro requires the following input parameters: 

 dataset: Specify the training set. 

 target: Specify the target variable to use in the predictive model. 

 PDVars: For one-way plots, specify one variable; for two-way plots, specify two model variables.  

 otherIntervalInputs: Specify the complementary model variables whose measurement level is interval. 

 otherClassInputs: Specify the complementary model variables whose measurement level is nominal 
or binary.  

 scoreCodeFile: Specify the score code from the machine learning model.  

 outPD: Name the output data set to contain the PD function. 

The %PDFunction macro is intended to introduce the concept of partial dependence and might not scale 
well to large data sets. As the number of unique values and observations increase, the number of 
replicated observations can grow out of hand. To avoid creating too many replicates for larger data sets, 
you can consider alternative approaches such as the following:  

 Bin unique values of high-cardinality inputs such as income.  

 Sample or cluster observations. 

 Avoid stacking the replicates altogether: process the replicates one at a time, keeping only the 
average predicted value for each replicate.  

Subsequent examples use one or more of these strategies to greatly reduce the number of rows that are 
replicated.  

INDIVIDUAL CONDITIONAL EXPECTATION PLOTS 

Whereas PD plots provide a coarse view of a model’s workings, ICE plots enable you to drill down to the 
level of individual observations. Essentially, ICE plots disaggregate the PD function (which, after all, is an 
average) to reveal interactions and individual differences. To avoid visualization overload, ICE plots show 
one model variable at a time.  

This section shows an example that uses generated data. The PD function in Figure 6 is essentially flat, 
giving the impression that there is no relationship between X1 and the model’s predictions.  
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Figure 6. PD Plot for X1 

 
Figure 7 is an ICE plot for two observations in the same data set. 

 
 

Figure 7. ICE Plot for X1 

 
The ICE plot presents a much different picture: the relationship is strongly positive for one observation, 
but strongly negative for the other observation. So despite the PD plot, the ICE plot shows that X1 is 
actually related to the target; it’s just that there are strong individual differences in the nature of that 
relationship.  

Traditional ICE plots display one curve for each observation in the training set, but plotting a curve for 
every observation can result in visualization overload even for data sets of moderate size. Fortunately, 

you can manage the number of curves that are displayed by sampling or clustering.  
Figure 8 shows the dependence of predicted MSRP on horsepower for 10 randomly selected 
observations.  
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Figure 8. ICE Plot for Horsepower 

Each series in the plot represents a different car model. Although some overlap is apparent among the 
individual curves, expected MSRP clearly diverges in the 280–350 horsepower range. The predictive 
model indicates that if horsepower were varied (leaving the other characteristics of each car unchanged), 
the same change in horsepower would have a different effect on the MSRP of the various car models. 
Although testing this in real life might not be practical, the model’s prediction makes intuitive sense. It 
suggests that car manufacturers believe that customers are willing to pay for increased horsepower for 
some car models but not others.  

 

COMPUTING THE ICE FUNCTION 

You can think of each ICE curve as a kind of simulation that shows what would happen to the model’s 
prediction if you varied one characteristic of a particular observation. As illustrated in Figure 9, the ICE 
curve for one observation is obtained by replicating the individual observation over the unique values of 
the plot variable and scoring each replicate.  
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Figure 9. Computing an ICE Curve for One Observation 

THE %ICEPLOT MACRO 

ICE plots are essentially plots of raw replicates. Thus, if you have computed the PD function for a single 
variable, you need to add only a few more steps to produce an ICE plot for that variable:  

5. Sample individuals from the replicates data set that is created by the %PDFunction macro.  

6. Select the replicates that correspond to the sampled individuals. 

7. Plot the sampled replicates as overlaid series.  

The following %ICEPlot macro is used to plot the ICE curves:  

 

   %macro ICEPlot( 

 

        ICEVar=, 

   samples=10, 

   YHatVar= 

 

        ); 

 

 /*Select a small number of individuals at random*/ 

 proc summary data = replicates; 

  class obsID; 

  output out=individuals (where=(_type_ = 1)); 

 run;  

 

 data individuals; 

  set individuals; 

  random = ranuni(12345); 

 run;  
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 proc sort data = individuals; 

  by random;  

 run;  

 

 data sampledIndividuals; 

  set individuals; 

  if _N_ LE &samples.;  

 run;  

   

 proc sort data = sampledIndividuals; 

  by obsID;  

 run;  

 

 proc sort data = replicates; 

  by obsID;  

 run;  

 

 data ICEReplicates ; 

  merge replicates sampledIndividuals (in = s);  

     by obsID;  

  if s;  

 run;  

 

 

 /*Plot the ICE curves for the sampled individuals*/ 

 title "ICE Plot (&samples. Samples)";  

 proc sgplot data = ICEReplicates; 

  series x=&ICEVar. y = &yHatVar. / group=obsID; 

 run;  

 

 

   %mend ICEPlot; 

 

 

 
Figure 8 is created by the following call of the %ICEPlot macro, which specifies a plot variable, the 
number of individual curves to sample, and the variable to contain the model’s predicted values: 

 

   %ICEPlot( 

        ICEVar=horsepower, 

   samples=10, 

   YHatVar=p_MSRP 

           ); 

 

EXAMPLE: NBA BASKETBALL SHOTS 

This section presents an extended example that uses a larger data set and more complicated machine 
learning models. The data are a sample of 16,934 basketball shots taken in the NBA 2015–2016 regular 
season.  

An autotuned neural network model is used to predict shot success. As shown in Table 1, model inputs 
include both shot and player characteristics.  
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Variable Role Measurement 
Level 

Values 

Shot outcome Target Binary 0=made,1=missed 

Distance to basket Input Interval In feet 

Player experience Input Interval In years  

Player height Input Interval In inches 

Player weight Input Interval In pounds 

Player position Input Nominal Center, guard, or forward 

Shot style Input Nominal Jump, layup, hook, or dunk 

Shot location Input Nominal Right, left, center, left center, or right center 

Shot area Input Nominal Mid-range, restricted area (RA), in the paint (non-
RA), above the break 3, right corner 3, left corner 
3 

Table 1. Model Variables 

Because predictive models can have many inputs, it is customary to focus on the most important inputs 
when interpreting the model. According to a decision tree model, the most important predictors for the 
shot success model are distance to basket, shot style, and shot location (in that order). Figure 10 
through  
Figure 12 show partial dependence for the top model inputs in order of their relative importance.  

 
 

Figure 10. Distance to Basket 
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Figure 11. Shot Style 

 

 
 

Figure 12. Shot Location 

 

Figure 10 and  
Figure 11 show that there is a success advantage for shots taken near the basket and for dunk shots, 
respectively. Because the plots use a consistent Y-axis scale, you can compare the success rate for each 
type of shot. For example, shots taken near the basket are approximately 20 percentage points more 
successful than those taken 10 feet away. This is about the same advantage as for dunk shots over hook 
shots.  
Figure 12 shows a disadvantage for shots taken in the restricted area, although the effect of shot location 
is small compared to the difference among the different shot styles.  

Typically data scientists build multiple candidate models and choose a champion based on both its 
accuracy and some assessment of its validity. Figure 13 compares PD functions for a neural network, an 
autotuned gradient boosting model, and an autotuned random forest. 
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Figure 13. Comparison of Three Models 

The models represent three different perspectives: For the neural network, the predicted effect of 
distance to basket on shot success is nonlinear and asymptotic, whereas the effect is more steplike for 
the other two models. Only one candidate, the forest, predicts a steep drop-off in success for shots taken 
from around 28 feet or more. That seems intuitive because long-distance shots are typically taken out of 
desperation. Overlaying PD functions in this manner can help you choose models that not only are 
accurate but also make intuitive sense and are acceptable to consumers of the model.  

Let’s see whether ICE plots reveal any interesting interactions or subgroups. Figure 14 is an ICE plot for 
distance to basket for the neural network model.  

 

 

Figure 14. Distance to Basket 
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This plot actually is a segmented ICE plot. Unlike a traditional ICE plot, in which each curve represents a 
single observation, each curve in a segmented plot represents a cluster of observations whose ICE 
curves have a similar shape. By plotting representative clusters rather than observations, the number of 
curves is greatly reduced, making the plot easier to digest. Figure 14 also includes the PD function (the 
overall average) for reference.  

There are two things to look for in ICE plots: intersecting slopes, which indicate interactions between the 
plot variable and one or more complementary variables, and level differences, which indicate group 
effects. The slopes of the various clusters are nearly parallel, indicating a lack of strong interaction 
between distance to basket and the other model variable. But notice the dark blue line (cluster 1): it 
indicates a marked success advantage for certain types of shots compared to other shots taken at the 
same distance to basket. It turns out that this cluster includes a disproportionate number of dunk shots 
taken in the restricted area at center court. These shots had an extremely high success rate of 84.6%.  

An alternative to clustering the individual curves is to group them by values of other model variables.  

Figure 15 and Figure 16 show ICE curves for distance to basket for 250 randomly selected shots that are 
grouped by shot style and location, respectively:  

 
 

Figure 15. Grouped ICE Plot: Shot Style 
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Figure 16. Grouped ICE Plot: Shot Location 

When ICE curves are grouped by shot style, it appears that dunk shots are more advantageous than  
other shot styles. This is consistent with the PD plot for shot style. But when ICE curves are grouped by 
shot location, it appears that shots taken in the restricted area include high-, medium-, and low-probability 
shots. In other words, some shots in the restricted area are actually advantageous—a finding that is not 
apparent from the PD plot. After segregating the ICE curves in this manner, you could drill even deeper to 
explore why some shots in the restricted area are more successful than others.  

SAS® VISUAL DATA MINING AND MACHINE LEARNING 

SAS Visual Data Mining and Machine Learning enables you to run machine learning pipelines that build 
powerful supervised learning models. Figure 17 shows a pipeline that runs three autotuned black-box 
algorithms to predict shot success: neural network, gradient boosting, and forest.  

 
Figure 17. Model Studio Pipeline 
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Model Studio, the visual interface to SAS Visual Data Mining and Machine Learning, enables you to use a 
Code node to generate partial dependence plots. Each node that immediately follows a modeling node is 
a Code node that produces PD plots for the predecessor model. (The Code nodes are identified by the  
symbol.) For example, Figure 18 shows Code node output for the forest model.  

 
 

Figure 18. Partial Dependence Results 

Each Code node calls the %partialDep macro (available at https://github.com/sassoftware/sas-viya-
machine-learning/tree/master/interpretability) to create for each requested input a PD plot that is 
appropriate to that input’s measurement level. Depending on the modeling algorithm used in the pipeline, 
the macro obtains either score code or the analytics store from the preceding modeling node. To limit the 
number of replicated observations, the macro samples observations by default.  

Using the macro is straightforward: simply download the macro, paste it into a Code node, and then call 
it, specifying the number of important inputs to plot and the proportion of observations to sample. For 
example, the following macro call requests PD plots for four inputs and uses a 10% sample of the 
observations:  

%partialDep( 

importantInputs=distance_to_basket shot_style shot_location,  

obsSampProp=.10 

      ); 

CONCLUSION 

Modern machine learning algorithms can be incredibly powerful predictors but their inner workings are 
often difficult for data scientists to digest. PD plots help you understand how your model works by 
depicting how changes in input values affect a model’s predictions, and you can use them to evaluate 
competing models. ICE plots enable you to drill deeper to find interactions among model variables and 
unusual subgroups in your data.  

Although you can easily compute traditional PD and ICE plots, you might need to make some 
adjustments for efficient computation with large data sets. Several options are available, including binning 
of plot variables, sampling of rows, and sampling or clustering of observations and ICE curves. You can 
use these techniques individually or in combination to produce reasonable approximations of traditional 
plots in a fraction of the time. 

https://github.com/sassoftware/sas-viya-machine-learning/tree/master/interpretability
https://github.com/sassoftware/sas-viya-machine-learning/tree/master/interpretability
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Although PD and ICE plots provide only indirect approximations of a model’s workings, they are popular 
and highly visual tools for obtaining a working understanding of increasingly complicated machine 
learning models. 
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