
1

Paper SAS1875-2018

Docker Toolkit for Data Scientists – How to Start Doing Data Science in
Minutes!

Donna De Capite. SAS Institute Inc.

ABSTRACT
SAS® continues to grow its capabilities of running SAS in the cloud with containers! Learn what a
container is and how it can be used to run SAS® Analytics for Containers and leverage the power of in-
memory compute capabilities with SAS® Viya®. This paper discusses how SAS containers run in a variety
of cloud platforms including Amazon Web Services, Google Cloud Platform, Microsoft Azure, as well as
how they run on a private OpenStack cloud using Red Hat OpenShift. Additional topics include
provisioning web-browser based clients via Jupyter Notebooks and SAS® Studio to empower data
scientists with the tool of their choice, and how to take advantage of working with SAS Analytics for
Containers with Hadoop.

INTRODUCTION
This paper introduces the concept of a container, discusses why there is a growing trend to run software
in a container, and shows how to run the SAS Analytics for Containers in a variety of public and private
clouds.

An important skill to have when working with containers is knowledge of the Linux operating system.
Many of the interactions with containers require working with the Linux command line. This paper
presents the requirements for getting containers into the necessary environment. In Figure 1 below, the
user interacts with SAS through their browser. The browser connects to a URL that represents the
address of the SAS process running in the cloud. The SAS process is a Docker container that could be
running in either a public or a private cloud. You could run the container on your laptop or desktop and
connect to the container from your browser, but this paper is focused on the deployments of SAS
containers in the cloud.

Figure 1 is a high-level overview diagram of how you interact with a SAS container. The user interacts
with a container through a browser running on their laptop or other device. The container is actually
running in the cloud, where it is taking advantage of the compute resources and infrastructure that are
offered by the cloud. Docker is also in the cloud.

Figure 1. High-level Overview of Interacting with a Container

Public	Cloud

Private	Cloud

2

CONTAINER BASICS
This section introduces Docker and some of the basic concepts of working with Docker containers. In
2017, I wrote a paper on the SAS Docker container. Since that time, I have made some changes in the
Dockerfile, and those changes are included in this document. See the Recommended Reading section of
this paper for the reference to this paper.

The best way to describe a container is to compare it to a shipping container. Shipping containers are
used all over the world to transport goods from one place to another. The contents of the container are
loaded and the container is picked up and moved to its destination. Along the way, it can be moved
around easily. All the containers look the same to the equipment moving the container, whether that
equipment is a forklift, ship, train, or tractor trailer truck. The contents are completely unique to each
container. A software container is like a shipping container. It has a standard format that is based on
open-source standards, and each container is defined specifically to run the software. A software
container holds the code executables, as well as any libraries, system tools, and anything else that is
needed to run the software. The container also describes the operating system on which the executables.
Most containers use Linux. CentOS is a popular distribution of Linux, because it is an upstream open-
source version of Red Hat Enterprise Linux (RHEL). If you have ever downloaded software and then
needed to run additional updates or hunt down a software or library dependency, you can understand
how the container can ease your pain. The container has in it all the pieces that are needed to run your
software. It eliminates the need to have different configurations to cover conflicting dependencies across
all the software that is installed on a system. The software container described in this paper is a Docker
container, but similar principles can be applied to other container providers. The container can be built
once and can be run anywhere that runs containers.

CONTAINER VERSUS A VIRTUAL MACHINE
Many people are familiar with working with virtual machines, and the container concept is very similar. A
virtual machine also has all of the necessary pieces to run software. However, the way that the virtual
machine consumes resources is very different from that of the container. The biggest difference that is
visible to end users is that the container shares the operating system and Linux kernel with other
containers that are running on the same physical host. The operating system is already running for the
containers, which allows for quicker start-up time. A virtual machine needs to boot up the operating
system each time it starts up. Another advantage of using containers is that the container image is
registered in a central repository. This allows the container to be referenced and easily deployed from that
image. After you pull down the container from the repository start it up, the running software is then
available.

WHAT IS A CONTAINER ORCHESTRATOR?
Our Docker container is executing in our cloud environment and doing all the work for our requests. So, if
the Docker container is the WHAT, then the container orchestrator is the HOW, WHEN, and WHERE.
The orchestrator tells the containers how to run and allows for scaling up and down. It can provide the
run-time settings for the container. The orchestrator can also provide settings about the resources that
are needed to run that particular container, so you can tune these settings based on the expected
workload. The orchestrators take care of making sure that the minimum settings needed to run the
container are met when provisioning resources for the container. The orchestrators can also provide
some amount of scheduling about when containers start and stop. Because of these factors, the
orchestrators are a major part of any enterprise deployment of containers. The container itself only holds
the pieces that are needed to run. The orchestrator can add variables to fine-tune how the container runs.
There are many different container orchestrators.

Figure 2 below illustrates several of the most used container orchestrators. After you have decided to
work with Docker containers, your next step in managing how the containers will run under your corporate
workloads will likely be to choose one of these orchestrators. Although some customers have “rolled their
own” method for managing the complexities involved with containerized workloads, more and more
customers have adopted orchestrators. Kubernetes is currently the market leader.

3

Figure 2 Container Orchestrators

KUBERNETES - The Google-designed Kubernetes is an open-source system for Docker container
management and orchestration.

AMAZON EC2 CONTAINER SERVICE (ECS) - Amazon Elastic Compute Cloud (EC2) Container
Service is a container management service for Docker containers. Importantly, any containers managed
by Amazon ECS will be run only on instances of Amazon Web Services EC2; so far, there is no support
for external infrastructure.

MARATHON FOR MESOS AND DC/OS - Marathon is a production-grade open-source framework
for container management and orchestration that is based on Apache Mesos and is intended to work with
applications or services that will run over a long period of time.

DOCKER SWARM - Docker’s own tool for cluster management and orchestration was introduced into
Docker Engine as “swarm mode” with the Docker 1.12 update. This update added support to the Docker
Engine for multi-host and multi-container orchestration. Note: During the time that this paper was being
prepared, Docker announced support for Kubernetes as well; see https://www.docker.com/kubernetes for
more details.

AZURE CONTAINER SERVICE (ACS) – The container orchestration solution provided by Microsoft
for its Azure cloud computing platform, Azure Container Service, reached general availability in April
2016. ACS is based on the open-source Apache Mesos cluster manager, and enables users to choose
between three container orchestration tools: Apache Mesos, Docker Swarm, and Kubernetes.

A container orchestrator should be in place for any enterprise deployment of containers. An organization
that has initiated moving to containerized workloads should choose some type of orchestration to help
manage their containers. The portability of the Docker container makes a container fit into any of these
orchestrators because they all work with the Docker standard.

Copyr ight	©	SAS	Inst i tu te	Inc .	A l l	r ights	reserved.

Kubernetes
Amazon	
ECS

Marathon

Mesos

DC/OS

Docker	
Swarm

Azure	
Container	
Service

http://mesos.apache.org/
https://www.docker.com/kubernetes
https://azure.microsoft.com/en-us/services/container-service

4

BUILDING A SAS CONTAINER
One of the first containers that SAS has made available to customers is the SAS Analytics for Containers.
This container is built using a tarball of the SAS Linux deployment, which is then referenced in the
container. Figure 3 is an example of building a Docker container. The process starts with laying down
CentOS Linux, and then adding the necessary libraries to run SAS. We then add a group and user to
configure the container’s Linux environment the way we want it to be on the file system. This example
includes a VERY rough way of adding a password and user to the container). We create the SASHome
directory, add the pieces of SAS to this SASHome directory, and set the proper permissions on all the
files in SASHome. We expose a port so that the container can communicate out to our web browser. The
addition of the entry.sh allows us to provide a script that will always run each time the container is started.

Figure 3 is an example Dockerfile. This Dockerfile is the basic template to start and run a SAS container.
A typical production Dockerfile could also have mount points for customizations such as persistent
storage, user authentication, and SAS settings, including formats and pre-assigned LIBNAME
statements.

Figure 3. Example Dockerfile
Figure 4 is an example entry.sh script. This script runs each time the container is started. It starts SAS
Studio so that a web browser can connect to SAS through SAS Studio.

Figure 4: Example entry.sh

DEPLOYING A SAS CONTAINER
Just to clarify some terminology a bit, it can be overwhelming for people just starting to work with the
“cloud” to understand what we mean by the cloud. When we think of the cloud, it could mean running
workloads in our own company’s data center, where the compute and infrastructure is managed by our
company’s Information Technology (IT) folks. This is known as a private cloud or on-premise. Another
interpretation of running in the “cloud” could be running processes on a public cloud, where the compute
and infrastructure are provisioned and managed by a public cloud provider such as Amazon Web

FROM centos
MAINTAINER Your Name
install necessary libraries
RUN yum -y install numactl-libs.x86_64 libXp passwd libpng12 libXmu.x86_64
RUN groupadd -g 1001 sas
RUN useradd -m -u 501 -g sas sas
example set default password for this example only
RUN echo -e "yadayada" | /usr/bin/passwd --stdin sas
RUN mkdir -p /usr/local/SASHome
ADD SAS.tar /
RUN chown -R sas:sas /usr/local/SASHome
EXPOSE 38080
ADD entry.sh /
RUN chmod +x /entry.sh
ENTRYPOINT ["/entry.sh"]

 #!/bin/bash
./usr/local/SASHome/SASFoundation/9.4/utilities/bin/setuid.sh
./usr/local/SASHome/sas/studioconfig/sasstudio.sh start
tail -f /dev/null

5

Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, or Oracle Cloud,. If you use a public
cloud provider and need additional resources to run your workload, you don’t have to find or purchase
more hardware to run the workload as you would with on-premise data centers. Instead, you just get what
you need out of your public cloud provider. Because more companies are finding it more cost effective
and easier to get what they need from a public cloud, more customer data and processing has moved to
the public cloud providers.

With each passing year, the public cloud providers have made it easier to deploy workloads to their
clouds. This paper looks at deploying to AWS, GCP, and Azure public clouds and Red Hat Openshift for
private cloud.

It is well known that Docker is a standard where you build it once and it essentially can run anywhere that
supports Docker. However, each cloud provider has a different way to get the container deployed. The
following sections will outline the steps I went through to get SAS Docker containers to run in cloud.

Please note, there are many ways to run containers in cloud environments. One of the more basic ways
of running containers is to provision a Linux machine in your cloud environment, install Docker, and
deploy your container. For the purpose of this paper, I chose a container orchestrator for each cloud and
provided many screen shots to show how I deployed to each cloud.

PREREQUISITES
Each cloud provider has a command line tool that you need to download to your PC. For all the
screenshots provided, there is a way to perform each step completely using the command line interface
(CLI). This paper illustrates the process using the user interface (UI) as much as possible, and uses the
CLI only when absolutely necessary. Use these locations to download the command line tool for each
provider.

Google Cloud Platform https://cloud.google.com/sdk/

AWS https://aws.amazon.com/cli/

Azure https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-
latest

Openshift https://docs.openshift.com/enterprise/3.1/cli_reference/get_started_cli.html

The Docker images are built on a Linux environment. I installed Docker on Linux and pulled all the CLIs
needed to run with the various cloud environments. In my Linux environment, a Docker repository held
my Docker images, and these are the images that I pushed to the various cloud environments. In all
cases I needed to authenticate to the cloud provider from my Linux environment.

AWS – ELASTIC CONTAINER SERVICE
The first example in deploying to a public cloud uses the AWS Elastic Container Service. ECS is one of
Amazon’s offerings to easily deploy and manage Docker containers. ECS provides a cluster of machines
that can be used to deploy containers. It provides features like security groups, volumes, load-balancing,
and the ability to work with virtual private connections (VPCs).

AWS offers quick start capability to enable you to start using ECS. The first step is to create a repository
that will hold your Docker container image.

Step 1: Configure Amazon Elastic Container Service (ECS) Repository
The repository holds the Docker containers that will run in the service. Typically, developers build their
Docker containers in their own playpen and then push them to a production container repository. The
Docker container must be pushed to the ECS repository. Figure 5 shows how to configure AWS
repository.

https://docs.openshift.com/enterprise/3.1/cli_reference/get_started_cli.html

6

Figure 5: AWS - Configure Repository

Step 2: Tag and Push Docker Image
The quick-start steps provide the name of the location to which you will push the container image.
Working in a Linux command line terminal where your local Docker repository is accessible, tag the local
image to the location in AWS ECS. The next step is to push the image to ECS. Figure 6 shows the steps
to tag and push to the Amazon container repository.

Figure 6: AWS - Tag and Push to Repository
After these steps, the SAS container image is registered in the Amazon repository.

7

Step 3: Create a Task Definition
For the purpose of demonstrating how to integrate with AWS, this example uses FARGATE, because it
takes away the need to manage EC2 instances. Figure 7 shows the main screen when creating a new
Task Definition.

Figure 7: AWS - Create FARGATE Task Definition
The task is the definition on how to run the container. The task sets the amount of memory needed and
the number of virtual CPUs. This setting should reflect the type of workload expected to be performed by
the container. It is easy to redeploy the container with more or fewer resources. Figure 8 illustrates that
the task size for running the SAS container allocates 10 GB of memory and four virtual CPUs. These
settings depend on the workload planned for the SAS container.

8

Figure 8: AWS - Task Settings

Step 4: Configure a Service
When configuring a service, configure the network with a VPC/subnet, create or use an existing security
group, and set the optional auto scaling feature. Figure 9 shows a summary screen of the settings that
are used to configure a service.

9

Figure 9: AWS - Configure Service Summary
After creating the service definition, the process to configure the service is launched. Figure 10 shows the
steps involved with configuring the service, including creating a security group and setting inbound rules.

10

Figure 10: AWS - Create Service Launch Status

11

Step 5: Configure a Cluster
The final step is to configure the cluster where the containers will run. Figure 11 shows the launch status
of creating the DD-Cluster below.

Figure 11: AWS - Configure Cluster Launch
If you look at the task definition in Figure 12, it shows that the DD-Cluster is running a FARGATE
template. The associated ENI is eni-998cb546. If you navigate to the ENI and select it, you can see that
the associated security group for this ID is SA4C-6822.The security group defines what traffic can
communicate with the container, as well as inbound and outbound rules. The SAS container in this
example requires that port 38080 be open so that it can be connected to through your browser. Figure 12
also shows the public IP address for the container. Assuming that all of the networking is open for port
38080, to navigate to the container, you only have to find the public IP and tag the port. You then will be
launched into SAS Studio that is running in a container on AWS. This URL is an example.

http://54.161.27.146:38080/

http://54.161.27.146:38080/

12

Figure 12: AWS - Task Details

13

For more information about setting up and running tasks, see the topic “Running Tasks” in Amazon
Elastic Container Service Developer Guide (listed in the Recommended Reading section of this paper)

Gotchas – Common Problems When Deploying Containers
My biggest problem with getting containers working are the network settings. Make sure you can access
the container from your browser. You might need specific entries in your inbound rules in order to connect
from your computer. The port must be opened so that you can connect from your browser. Sometimes
specific corporate standards such as firewall settings require further settings in order to make things work.
You might need to reach out to your corporate IT folks to see if there is anything additional that you need.
Another issue is figuring out where to connect to the running container after you’ve done all the work of
deploying your container and you think that it is running. I have depicted a red circle around the items
showing where to connect to the container and where in your container configuration to find that
information.

Figure 13: AWS - Security Group Settings

Step 6: Connect to SAS Container
Specify the URL that uses the public IP that can be found on the Details tab for the cluster definition, and
add the port number.

In this example, the URL and port are 54.161.27.146:38080, as shown in Figure 14a and Figure 14b.

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_run_task.html

14

Figure 14a: AWS - Connect to a SAS Container Running in ECS

Figure 14b: AWS - Connect to a SAS Container Running in ECS

GOOGLE CLOUD PLATFORM (GCP)
The following two sections on GCP and Azure make it clear that the process of running containers in
these cloud environments is very similar. After installing the SDK to talk to the public cloud, you must tag
and push your container image to GCP. Figure 15 shows how to verify your gcloud (GCP CLI)
environment by using the command gcloud –version, which gives all of the details about the Google
cloud SDK.

15

Step 1: Verifying GCP CLI

Figure 15: GCP - Verifying the CLI
Open a Linux command line where your local Docker repository is accessible. Issue commands to tag the
local image to the location in GCP and to push the image to GCP. Figures 16 and 17 show the steps to
tag and push to the GCP container repository.

Step 2: Tagging and Pushing Docker Image to GCP Container Repository

Figure 16: GCP - Pushing Container to Google Cloud Container Repository

Figure 17: GCP - Command Line Results of Push to Google Cloud Container Registry

Figure 18 shows the Google Cloud Platform dashboard with the image that was pushed from the gcloud
CLI.

Figure 18: GCP - Dashboard Showing SAS Container in Container Registry
Registering the container in GCP is only the first step. We want to take advantage of the Google-
developed Kubernetes orchestrator that deploys, manages, and scales containers. From the GCP

$ gcloud –version

$ docker tag sa4c:latest us.gcr.io/wwm-wpm/sa4c:latest
$ gcloud docker – push us.gcr.io/wwm-wpm/sa4c:latest

16

dashboard, create a Kubernetes Engine Cluster. This example is named dd-cluster-1. This cluster has
three nodes with eight virtual CPUs (vCPUs) each, and 30 GB memory. It takes a few minutes for the
Kubernetes cluster to be prepared. Figure 19 shows the progress of creating the Kubernetes cluster.

Step 3: Create Kubernetes Cluster

Figure 19: GCP - Kubernetes Cluster to Host Containers
GCP does a nice job of intermingling the dashboard with the command line interface. When we select
Connect on the dashboard to connect to our cluster, it provides the commands needed to interact with
Kubernetes. It essentially provides an endpoint between the Linux command line environment and the
GCP Kubernetes environment with one command. The command in Figure 20 was provided by the
dashboard, and it can then be plugged into the local command line environment.

Figure 20: GCP - Kubernetes Console and CLI Integration

Step 4: Connect to Kubernetes
You can also set the environment to have defaults to reduce the amount of typing required. Figure 21
shows the compute/zone being set to default to us-east1-b. Figure 22 issues the endpoint command and
then starts the SAS container to run on dd-cluster-1.

Step 5: Run SAS Container and Get Address of Running Container
Figure 21 and 22 shows the commands to run the SAS container. Figure 23 shows the command to get
the public IP address of the running container.

Figure 21: GCP - Kubernetes Run SAS Container

$ gcloud container clusters get-credentials dd-cluster-1 –zone us-east1-b –project www-wpm

17

Figure 22: GCP - Create a Service Object That Exposes the SAS Container Deployment

Figure 23: GCP - Get Detailed Information about the SAS Kubernetes Service – Public IP Address

Step 6: Connect to SAS Container

Figure 24: GCP – Connect to SAS Container

MICROSOFT AZURE
The prerequisite step for all the public cloud providers is to get a CLI installed. I had a bit of trouble with
one of the prerequisite steps for the Azure CLI when trying to install xcode-select.

From the Macintosh command line, I used the command xcode-select –install.

Figure 25: Azure – Prerequisite Step to Install CLI
I had problems getting Xcode from the command line and found going to Apple’s App Store and
downloading Xcode was my best option. This step took quite some time, so it is best to start this
download before a meeting or lunch break. After accepting the Xcode license, I was able to perform a
“brew upgrade”. After that I was able to continue with the process of installing the Azure CLI.

After you install the Azure CLI, use the commands in Figure 26 to validate your environment.

$ xcode-select –install

18

Figure 26: Azure – Verify the CLI and Log into Azure
When you enter the az login command, you are directed to enter a URL with an access code to validate
the login information.

At this point you are authenticated and can work within your Azure project associated with your account.

MAKING THE CASE FOR PERSISTENT STORAGE
Note: All the cloud providers support persistent storage. I chose to demonstrate that integration with Azur,
but could have shown that capability with any of the providers.

For Azure, this example assigns persistent storage that resides outside of the container. This storage can
be used while the container is running, but most importantly, anything that is written there does not go
away when the container stops running. The idea is that you want to ensure that data is not lost, such as
files that you want to work with while you’re running SAS and output that you want to keep. Containers
need to have a definition for persistent storage to make this happen. In the world of the cloud, resources
are shut down when they are no longer needed and can be quickly restarted when the demand arises. If
we do not associate persistent storage with the container deployment, then all the data that was written
during the container session is lost.

For this environment, the environment variables are set to make the commands easier to manage.

Figure 27: Azure – Setup Environment to Interact with Azure
This Azure example includes external storage configured for the container.

Note: All of the cloud providers support external storage, and each has a different approach to defining
the storage that can be found on the cloud providers website.

The following figures list the az commands used to allocate and use this storage.

First, create the storage account, as shown in Figure 28.

Figure 28: Azure – Create Storage Account
Next, export the connection string as an environment variable. The command az storage share
create references this environment variable when creating the Azure file share. See Figure 29.

$ az –version
$ az login

ACI_PERS_RESOURCE_GROUP=d-resource-group

ACI_PERS_STORAGE_ACCOUNT_NAME=mystorageaccount$RANDOM

ACI_PERS_LOCATION=eastus

ACI_PERS_SHARE_NAME=acishare

$ az storage account create \

 --resource-group $ACI_PERS_RESOURCE_GROUP \

 --name $ACI_PERS_STORAGE_ACCOUNT_NAME \

 --location $ACI_PERS_LOCATION \

 --sku Standard_LRS

19

Figure 29: Azure – Export Storage Connection String
Create the file share, as shown in Figure 30.

Figure 30: Azure – Create File Share
Set the Storage account and key value. See Figure 31 and Figure 32.

Figure 31: Azure – Setup Storage Account

Figure 32: Azure – Setup Storage Key
Figure 33 shows the command to create a container with the appropriate volume and mount settings.

$ export AZURE_STORAGE_CONNECTION_STRING=`az storage account show-connection-string -
-resource-group $ACI_PERS_RESOURCE_GROUP --name
$ACI_PERS_STORAGE_ACCOUNT_NAME --output tsv`

$ create -n $ACI_PERS_SHARE_NAME

$ az storage share create -n $ACI_PERS_SHARE_NAME

$ STORAGE_ACCOUNT=$(az storage account list --resource-group
$ACI_PERS_RESOURCE_GROUP --query
"[?contains(name,'$ACI_PERS_STORAGE_ACCOUNT_NAME')].[name]" --output tsv

$ echo $STORAGE_ACCOUNT

$ STORAGE_KEY=$(az storage account keys list --resource-group
$ACI_PERS_RESOURCE_GROUP --account-name $STORAGE_ACCOUNT --query "[0].value" --
output tsv)

$ echo $STORAGE_KEY

$ az container create \

 --resource-group $ACI_PERS_RESOURCE_GROUP \

 --name sas \

 --image dodeca.azurecr.io/sa4c-dd \

 --ip-address Public \

 --ports 38080 \

 --cpu 2 \

 --memory 8 \

 --azure-file-volume-account-name $ACI_PERS_STORAGE_ACCOUNT_NAME \

 --azure-file-volume-account-key $STORAGE_KEY \

 --azure-file-volume-share-name $ACI_PERS_SHARE_NAME \

 --azure-file-volume-mount-path /dodeca/mysas/

20

Figure 33: Azure – Create SAS Container with External Storage Outside the Container
Notice the file volume mount is used. This location is the container for SAS files and data sets.

SIDEBAR: OTHER EXAMPLES OF USING MOUNT POINTS
In another example, in my Dockerfile I made a directory to point to my Hadoop JAR files and then added
the JAR files to that directory. In this case, I added a shell script that defined predefined LIBNAME
statements, which I then called in my entrypoint shell script. I could have used a similar technique to
“load” things such as SAS formats, samples, or my Home directory with SAS data sets and files. Mounts
are also used to point to LDAP servers to provide container authentication. The following snippet shows
how I mounted the Hadoop Client Jars into my container needed to run SAS/ACCESS Interface to
Hadoop:

RUN mkdir -p /usr/local/SASHome/hadoopjars
ADD emrjars.gz /usr/local/SASHome/hadoopjars
ADD emrsite.gz /usr/local/SASHome/hadoopjars
ADD addins.sh /usr/local/SASHome

SHOW PROPERTIES OF AZURE CONTAINER
Figure 34 shows the command used to show the properties of the container. Azure prompts for the image
registry password, which is in the Access keys container registry.

Figure 34: Azure – Show Properties of SAS Container
Figure 35 shows the output of this command. Notice the public IP address and ports. This is the address
needed to connect to the container.

Figure 35: Azure – Output of Properties Command

Figure 36 shows what it looks like when a container is provisioned and ready to use. It includes the
address and IP:Ports used to connect to the running container instance.

$ az container show --resource-group $ACI_PERS_RESOURCE_GROUP --name sas --output table

21

Figure 36: Azure – Connect to SAS Container

CO-MINGLING CONTAINERS – SAS VIYA, JUPYTER NOTEBOOK, PYTHON, R
Many customers are putting more than one application into their containers. Figure 37 shows a snippet of
the Dockerfile that illustrates how you can comingle Anaconda, SASPy, SAS Scripting Wrapper for
Analytics Transfer (SWAT), R Studio and seaborn library. These additional components were added to
my SAS Viya container. The idea is to create one large container that can do all these things. It
essentially provides a data scientist toolkit of various capabilities such as these.

• SASPy – SAS Python Integration (https://github.com/sassoftware/saspy)
• SWAT - The SWAT package is the Python client to SAS Viya Cloud Analytic Services (CAS). It

allows users to execute CAS actions and process the results all from Python.
• R
• Python
• Additional libraries (seaborn)

https://github.com/sassoftware/saspy

22

Figure 37. snippet to add additional capabilities to Docker container

Install Anaconda & R

Install Jupyter prerequisites
RUN yum -y install bzip2 wget git libpng12-devel urw-fonts \
 && yum clean all

Set the install location & add to the PATH
ENV INSTALL_DIR /opt/anaconda
ENV PATH $PATH:$INSTALL_DIR/bin

Download and install Anaconda
RUN wget https://3230d63b5fc54e62148e-c95ac804525aac4b6dba79b00b39d1d3.ssl.cf1.rackcdn.com/Anaconda3-2.5.0-
Linux-x86_64.sh \
 && chmod 755 Anaconda3-2.5.0-Linux-x86_64.sh \
 && ./Anaconda3-2.5.0-Linux-x86_64.sh -b -p $INSTALL_DIR \
 && rm -f Anaconda3-2.5.0-Linux-x86_64.sh

Install additional R and Python packages
RUN yum install -y R libcurl-devel cairo-devel \
 && yum clean all

Install SAS Kernel & SASPy

Install the packages
RUN $INSTALL_DIR/bin/pip install saspy sas_kernel pipefitter
RUN sed -i 's|/opt/sasinside/SASHome/SASFoundation/9.4/bin/sas_u8|/opt/sas/viya/home/SASFoundation/bin/sas_u8|g'
/opt/anaconda/lib/python3.5/site-packages/saspy/sascfg.py

Install SWAT

Install from public GitHub page
NOTE: Install into the Anaconda env not the default RHEL env
RUN $INSTALL_DIR/bin/pip install https://github.com/sassoftware/python-swat/releases/download/v1.2.1/python-swat-1.2.1-
linux64.tar.gz
RUN echo "install.packages(c('httr','jsonlite','repr', 'IRdisplay', 'evaluate', 'crayon', 'pbdZMQ', 'devtools', 'uuid',
'digest','ggplot2','formatR','highr','markdown','yaml','htmltools','caTools','bitops','knitr','base64enc','rprojroot','rmarkdown'),
repos='http://cran.us.r-project.org'); devtools::install_github('IRkernel/IRkernel')" > /tmp/setup.R \
 && R CMD BATCH /tmp/setup.R /tmp/setup.out \
 && cat /tmp/setup.out \
 && wget -O /tmp/r-swat-1.0.0-linux64.tar.gz https://github.com/sassoftware/R-swat/releases/download/v1.0.0/r-swat-
1.0.0-linux64.tar.gz \
&& R CMD INSTALL /tmp/r-swat-1.0.0-linux64.tar.gz

Install RStudio

RUN wget https://download2.rstudio.org/rstudio-server-rhel-1.0.153-x86_64.rpm \
 && yum install -y --nogpgcheck rstudio-server-rhel-1.0.153-x86_64.rpm \
 && rm -f rstudio-server-rhel-1.0.153-x86_64.rpm

install seaborn

Install additional Python packages
RUN conda install -y seaborn

Expose only port 80
SAS Studio & Jupyter are proxied behind port 80
EXPOSE 80

Startup script will expect this directory for Jupyter

ADD notebooks /home/sas/notebooks

Expose only port 80

SAS Studio & Jupyter are proxied behind port 80

23

Figure 38: SAS Studio Leveraging CAS Capabilities

Figure 39: Leveraging Jupyter Notebook from the Container

24

Figure 40: Leveraging Python SWAT Notebook from the Container

AWS – EMR INTEGRATION
The next example is accessing EMR Hadoop data from the container running on AWS. Follow the steps
outlined earlier for pushing and running the container. Define the AWS ECS environment to use a Virtual
Private Cloud and install the AWS EMR in the Virtual Private Cloud. You can use the quick start path in
order to configure AWS EMR. By using the Dockerfile techniques mentioned earlier in this document that
injected the Hadoop JAR files into the container, you can point to the Hadoop JAR file path and issue a
LIBNAME statement to EMR from your SAS Client (SAS Studio). The figures below show some simple
steps to connect to EMR Hadoop and create a table.

25

Figure 41: Leveraging EMR from SAS Container Running in AWS

Figure 42: Leveraging EMR from SAS Container Running in AWS

OPENSHIFT
Red Hat Openshift provides another container environment that can be leveraged by customers. The big
difference between Openshift and the other public cloud providers is that OpenShift runs on-premise in a
private cloud, but it can also leverage hybrid cloud environments (both public and private cloud).
OpenShift uses Kubernetes as its container orchestrator.

OpenShift has a CLI like all the other vendors, but OpenShift also has a UI that allows you to easily
create projects and containers and perform most other tasks. The only requirement for the CLI is to
override some of the project settings. The pattern for deploying containers is very simple.

1. Create a project.

26

2. Add a container to the project.
3. Define the characteristics of how to run the container.

Figures 43 – 46 show these steps.

Figure 43: Adding to an Openshift Project

Figure 44: Adding Docker Image to an Openshift Project

27

Figure 45: Defining Characteristics of Container – Port Forwarding

Figure 46: Launch SAS Studio from a Running Openshift Container

28

CONCLUSION
The goal of this paper was to show the steps needed to run containers in the cloud. After you have
completed the work of getting things registered, it is very easy to quickly leverage cloud environments.
This paper contains information gathered from working with building containers, deploying them to
various cloud infrastructures, and working with Hadoop. Given the fast-moving technology of containers,
this paper might be updated in the future. For notifications of these updates along with other container
tuning guidelines, please subscribe to the SAS Administration and Deployment Community (go to
https://communities.sas.com/t5/Administration-and-Deployment/bd-p/sas_admin).

ACKNOWLEDGMENTS
Many thanks to Douglas Liming, Jonah Justice, and Jonathan Walker for helping with this paper.

RECOMMENDED READING
Orchestrators

• “Smooth Sailing with Kubernetes.” Google. Available https://cloud.google.com/kubernetes-
engine/kubernetes-comic/.

• Burt, Paul. “What is Kubernetes? An Intro for Beginners.” CoreOS. Available
https://coreos.com/blog/what-is-kubernetes.html

• Amazon Web Services. 2018. “”Running Tasks.” In Amazon Elastic Container Service Developer
Guide. Amazon Web Services Inc. Available
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_run_task.html.

• De Capite, Donna. 2017. “Convergence of Big Data, The Cloud, and Analytics: A Docker Toolbox
for the Data Scientist.” Proceedings of the SAS Global Forum 2017 Conference. Cary, NC: SAS
Institiute Inc. Available :http://support.sas.com/resources/papers/proceedings17/SAS0687-
2017.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Donna De Capite
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.

Donna.DeCapite@sas.com
http://www.sas.com
@geekyDonna

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

Disclaimer of Warranty
Any samples provided are "as is" without any warranties, express or implied, including but not limited to
implied warranties or merchantability and/or fitness for a particular purpose. The Institute and its
licensor(s) disclaim any liability connected with the use of the instruction. The Institute offers no
technical support for the instruction.

https://cloud.google.com/kubernetes-engine/kubernetes-comic/
https://cloud.google.com/kubernetes-engine/kubernetes-comic/
https://coreos.com/blog/what-is-kubernetes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_run_task.html
http://support.sas.com/resources/papers/proceedings17/SAS0687-2017.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0687-2017.pdf
mailto:Donna.DeCapite@sas.com

29

Limitation of Liability
The Institute and its licensor(s) are not liable for (a) incidental, consequential, special, or direct damages
of any sort, whether arising in tort, contract or otherwise, even if the Institute has been informed of the
possibility of such damages, or (b) any claim by any other party. Some jurisdictions do not allow the
exclusion or limitation of liability for incidental or consequential damages, so this limitation and
exclusion might not apply to you.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	Container basics
	Container vERSUS a Virtual machine
	What is a container orchestrator?
	BUILDING A SAS container
	DEPLOYING A SAS container
	Prerequisites
	AWS – Elastic Container Service
	Step 1: Configure Amazon Elastic Container Service (ECS) Repository
	Step 2: Tag and Push Docker Image
	Step 3: Create a Task Definition
	Step 4: Configure a Service
	Step 5: Configure a Cluster
	Gotchas – Common Problems When Deploying Containers

	Step 6: Connect to SAS Container

	Google cloud platform (GCP)
	Step 1: Verifying GCP CLI
	Step 2: Tagging and Pushing Docker Image to GCP Container Repository
	Step 3: Create Kubernetes Cluster
	Step 4: Connect to Kubernetes
	Step 5: Run SAS Container and Get Address of Running Container
	Step 6: Connect to SAS Container

	Microsoft AZURE
	Making The case for persistent storage
	Sidebar: Other examples of using mount points
	Show properties of Azure container
	Co-mingling containers – SAS Viya, Jupyter notebook, Python, R

	AWS – EMR Integration
	Openshift
	Conclusion
	Acknowledgments
	Recommended Reading
	Contact Information

